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Abstract This paper reviews advances in epilepsy in

recent years with an emphasis on therapeutics and under-

lying mechanisms, including status epilepticus, drug and

surgical treatments. Lessons from rarer epilepsies regard-

ing the relationship between epilepsy type, mechanisms

and choice of antiepileptic drugs (AED) are explored and

data regarding AED use in pregnancy are reviewed. Con-

cepts evolving towards a move from treating seizures to

treating epilepsy are discussed, both in terms of the

mechanisms of epileptogenesis, and in terms of epilepsy’s

broader comorbidity, especially depression.
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Definitions and classification

Definitions in epilepsy have always been problematic

[1–5]. The disorder is characterised by seizures but not all

seizures are due to epilepsy—febrile seizures or drug

induced seizures, for example. Earlier classifications

sought to reconcile these difficulties by describing different

electroclinical syndromes but new data from modern

imaging and genetics need to be incorporated.

Diagnosis is difficult because in practice, the diagnostic

electrical hallmark of epilepsy may be absent interictally,

especially in adults or if seizures are infrequent and

interictal epileptiform discharges may occasionally be

present in those without seizures. Moreover, in some

instances, an ‘‘epileptic EEG’’ may be associated with an

epileptic encephalopathy, in which overt seizures may be

few or none, such as Landau–Kleffner syndrome, and a

cognitive disorder dominates the presentation.

The International League Against Epilepsy recently

consulted in an attempt to synthesise a consensus view [6],

whose output will be published in 2017. The result promises

to be useful and pragmatic, recognizing that the syndromes

are multifaceted; any one case defined by an association of

clinical, electrophysiological, etiological and comorbid

factors. It also accepts that it is not always known if seizures

are part of focal or generalized epilepsy and that in some

cases, such as tuberous sclerosis, genetic and structural

causes overlap. Some terms will be dropped, for example,

childhood epilepsies where the seizures remit will be called

pharmacoresponsive rather than benign, recognizing that

children whose seizures remit may nevertheless have sig-

nificant persisting psychosocial comorbidities.

The ILAE has also pondered the question of whether a

single seizure may be considered to be epilepsy [7] and

concluded that it may if there is a greater than 60% chance

of another seizure; a risk conferred by the presence of EEG

spikes or a major structural aetiology. Epilepsy may be

considered to have gone away after ten years with no sei-

zures and with no treatment. This approach has pragmatic

utility, rather than mechanistic validity and is useful in

allowing driving regulatory authorities to treat those with

lower risk more leniently and may be helpful in deciding

when to treat medically after a single seizure [8].

Some frontal lobe epilepsies may be particularly diffi-

cult to diagnose, often with non-diagnostic ictal scalp

EEGs and some were initially considered to be a movement

disorder, e.g. ‘‘paroxysmal nocturnal dystonia’’ [9] in
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which its epileptic basis was shown later [9, 10]. The sit-

uation has become more complex with the discovery that

patients with frontal lobe epilepsy may also have epileptic

nocturnal wandering, with similarities to parasomnias and

also brief nocturnal movements which are not due to sei-

zure discharges but may be a release phenomenon of

interictal discharges [11]. They may suffer also from non-

epileptic parasomnias more frequently than the general

population. In the new classification, the phenomenon will

be renamed ‘‘Sleep-related hypermotor epilepsy (SHE)’’.

Status epilepticus and limbic encephalitis

The ILAE recently defined status epilepticus as: ‘‘a condition

resulting either from the failure of the mechanisms respon-

sible for seizure termination or from the initiation of mech-

anisms, which lead to abnormally, prolonged seizures (after

time point t1). It is a condition, which can have long-term

consequences (after time point t2), including neuronal death,

neuronal injury, and alteration of neuronal networks,

depending on the type and duration of seizures’’ [12].

Timepoint t1 is at 5 min after seizure onset, when it is rec-

ognized for generalized tonic–clonic status epilepticus that

evolution to status is increasingly likely and when treatment

should be initiated. T2 is at 30 min, after which there is

increasing risk of irreversible consequences. Status is divi-

ded along four axes; semiology, aetiology, EEG correlates

and age. These axes align with the prognosis of status, which

when adequately treated is determined by cause and the age

and gender of the patient. The electroclinical state is another

prognosticator; subtle status evolving from convulsive status

has a particularly poor prognosis [13, 14].

The impressive out-of-hospital randomized, double-

blind RAMPART study has shown that IM midazolam is at

least as effective as IV lorazepam in the early treatment of

status, in adults and children [15, 16], probably because IM

speed of administration of midazolam compensates for

speed of IV distribution of lorazepam. It has long been

known that the effect of benzodiazepines in status epilep-

ticus wears off very rapidly [17, 18] and it has subsequently

been demonstrated that GABAA receptor sensitivity is

reduced, sometimes long term [18]. Receptor trafficking

may be contributory [19, 20]. As well as a reduction in

inhibitory neurotransmitters, within 1 h of onset of status in

rats, there is an increase in surface NMDA receptors in

status, associated with increased excitation [21]. Cholin-

ergic mechanisms are also implicated, supported by the

observation that in pilocarpine induced status epilepticus;

the addition of scopolamine provides additional seizure

control, when combined with phenobarbital and benzodi-

azepines, raising the possibility of the use of drug combi-

nations in status [22].

Basic mechanisms are starting to align with clinical

evidence in the initial treatment of status with benzodi-

azepines, but thereafter the evidence is less clear. Initial

uncontrolled reports suggested a 70% success rate for the

treatment of status epilepticus with levetiracetam [23], but

a recent randomized controlled trial of out-of-hospital

clonazepam plus either levetiracetam or placebo was

abandoned because of a lack of benefit in the levetiracetam

arm [24]. This mirrors the finding that diazepam plus

phenytoin confers no additional benefit to lorazepam alone

at 12 h [14] and raises questions around the appropriate

timing of the addition of AED to benzodiazepines. It also

emphasizes the importance of properly controlled studies

in an area where few have been undertaken. Shorvon et al.

have undertaken meta-analyses of existing therapies

[25–27]. From generally poor quality studies of lacosa-

mide, levetiracetam, phenobarbital, phenytoin or valproate

in benzodiazepine resistant status, they found efficacy

ranging from 50% (phenytoin), to levetiracetam (68.5%),

phenobarbital (58–84%) and valproate 76%. Lacosamide

treatments were too few to give figures. The conclusion

remains that all these drugs may be useful but there is no

clear guidance on choice. The caution with which data

from uncontrolled studies must be interpreted is high-

lighted by a recent randomized study of valproate versus

phenobarbital which showed a 44% response to valproate

and an 81% response to phenobarbital. However, in chil-

dren, valproate may have fewer adverse effects and better

efficacy than phenobarbital [28, 29] and similar efficacy to

phenytoin [30]. But children may not be comparable to

adults with a greater proportion of generalized epilepsies,

more responsive to valproate. Future options include

derivatives of valproate such as valnactomide and butyl-

propylacetamide, which may be more potently antiepileptic

and less teratogenic in animal studies [31].

For status epilepticus which remains refractory to a

second line AED, a range of intravenous benzodiazepines

or anaesthetic agents may be considered and again Shorvon

et al. found that studies are of poor quality. They found that

35% of patients in these studies died and a further 13% had

severe neurological deficits and 13% mild neurological

deficits on recovery. Studies underway may help answer

some of these questions [32, 33]. Ketamine’s role in

blocking NMDA receptors [34] has led to it become

increasingly popular in the treatment of refractory status,

with some efficacy on the basis of uncontrolled retro-

spective series [35–37]. A randomized trial in children is

planned [38]. A recent trial of hypothermia showed no

benefit at 90 days [39].

It is increasingly recognized that some patients with

refractory status epilepticus, where the cause was previ-

ously unrecognized, may be suffering from an antibody

mediated encephalopathy, ‘‘limbic encephalitis’’.
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Antibodies implicated include LGI1 and NMDA, with

CASPR less associated with seizures [40, 41]. More

recently, GABAB and AMPA receptors have been impli-

cated in some cases [42]. A specific phenotype of very

brief, frequent and highly focal, faciobrachial dystonic

seizures is almost pathognomonic of LGI1 associated dis-

ease, often heralding a more severe encephalopathy [43]

and providing an opportunity to intervene at an earlier

stage. Limbic encephalitis exhibits characteristic changes

on MRI in the mesial temporal structures, especially the

amygdalae [44] and responds primarily to immunotherapy

and treatment of any associated tumour, rather than to AED

[41, 45]. Early suspicion of the diagnosis and treatment,

even before definitive serological confirmation, is recom-

mended. Many patients will recover with appropriate

treatment but may be left with ongoing epilepsy and hip-

pocampal sclerosis is a reported outcome [46]. The extent

to which epilepsy in patients, who have not suffered limbic

encephalitis, may be attributable to antibody-mediated

disease is an area of exploration which may open new

avenues of treatment for chronic epilepsy. Small cohorts

suggest increased rates of antibody positivity but their

significance is not yet clear [47, 48].

Pharmacological treatment of epilepsy
and underlying mechanisms/genetics

In 2000, Kwan and Brodie [49] found that 63% of unselected

patients in an epilepsy service were rendered seizure free

with medication. Since then despite numerous antiepileptic

drugs becoming available, they found that the chance of a

patient, who is diagnosed in 2017 becoming seizure free, has

changed little [50]. Some studies are more optimistic;

refractory epilepsy may have a greater chance of 12-month

remission with or without AED change [51–53] at around 5%

per year and although up to 40% may relapse [51], many of

these may have a second longer remission.

The broad sweep of AEDs, generally affecting ion

channels or neurotransmitters is unchanged, but there is

slowly increasing evidence for a differential effect in

specific syndromes.

Of established epilepsy drugs, ethosuximide, often for-

gotten by adult neurologists, has the most specific mechanism

in relation to its role in the absence epilepsy. It acts on T-type

calcium channels [54], implicated in the thalamocortical dis-

turbance believed for decades to underlie generalized

epilepsies [55]. Valproate and ethosuximide have clearly

demonstrated greater efficacy over lamotrigine in childhood

absence epilepsy [56]. A small, non-randomized study has

suggested that ethosuximide may be also associated with a

greater chance of long-term remission [57]. In a mouse model

of absence epilepsy, Bomben et al. [58] selectively ablated

P/Q channels in the neurons of layer VI that provide the

descending cortical projection to the thalamus. This produced

spike-wave activity with clinical absences suppressed by

ethosuximide. This very selective lesion supports the view

that a highly specific cortical abnormality is necessary and

sufficient to generate the thalamocortical oscillations of

absence epilepsy. Not all patients respond equally to medi-

cation. A clinical imaging and EEG study, comparing those

patients responsive to valproate to those who are resistant,

suggested different patterns of activation may underlie the

varying therapeutic responses [59].

Despite strong epidemiological evidence of a genetic

basis of IGE, relevant genes remain elusive, hampering

efforts to identify specific drug targets. A recent genome

wide association study suggested links to SCN1A, a known

cause of GEFS?, protocadherin PCDH7 and PCDH19,

both known to be associated with epilepsy and learning

disability [60]. An analysis of microdeletions in general-

ized epilepsy showed an increased burden (7.3%) com-

pared to controls (4%) and specific involvement of a range

of genes known to be important in epilepsy, psychiatry and

neurodevelopment [61].

The first major application of pharmacogenetics in epi-

lepsy, and probably still the most widely applicable, has

been the identification of patients from South East Asia

who are HLA-B*1502 positive, putting them at high risk

for Stevens–Johnson syndrome from carbamazepine and

the elimination of this life-threatening complication by pre-

treatment screening [62, 63]. Genetic understanding is

creeping into other areas of pharmacological therapeutics.

It has been realized for a number of years that sodium

channel blocking drugs may be deleterious for children

with Dravet syndrome [64, 65], although this may not be so

clear for adult patients [66]. It is now known that Dravet

syndrome is commonly due to a genetic truncations leading

to total loss of function or missense mutations causing

partial loss of function of the sodium channel, usually

SCN1A [67, 68], which is located on inhibitory interneu-

rons and causes hyperexcitability and seizures as a result of

loss of function. A previously empirical observation of

relative AED efficacy is now underpinned by a mechanistic

understanding, which can guide drug choice. Mutations of

the SCN8A gene are also associated with epilepsy, some-

times with a Dravet-like syndrome [69]. However, the

phenotype may depend on the pathophysiology of the

mutation, which may be a gain or a loss of function [70]. In

four children with epileptic encephalopathy onset in the

first months of life, Boerma described a response to

phenytoin [71]. One of these had been demonstrated to

have a gain of function mutation.

There are a number of other instances where rare

monogenic cases of epilepsy have been evaluated in detail

and treatment tailored to the identified pathophysiological
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mechanism, with varying success. Most consistently

effective is the use of ketogenic diet to switch cerebral

energy metabolism away from glucose in patients with

Glut-1 deficiency, which may be dramatically successful

[72, 73]. Retigabine (ezogabine) increases activity at

KCNQ2 channels [74] and has been used to treat the

neonatal epileptic encephalopathy associated with reduced

function mutations of the KCNQ2 channel with some

success [75]. Unfortunately, this drug is to be withdrawn

from use in 2017 because of the pigmentary changes it may

induce in skin, mucosae and eyes [76]. GRIND2 mutations

resulting in gain of activity of the NMDA receptor may

cause balloon swelling and cell death. Children with a

severe encephalopathy due to this mutation may possibly

benefit from treatment with memantine, more generally

used in Alzheimer’s disease which inhibits this channel

[77]. KCNT1 encodes a sodium-activated potassium

channel and has been implicated in the migrating partial

epilepsy of childhood and in autosomal dominant frontal

lobe epilepsy, both causing a gain of function [78]. Two

children with this mutation and a severe epilepsy pheno-

type were helped by the administration of quinidine [79].

These cases illustrate the importance of not only an elec-

troclinical and genetic diagnosis of these epilepsies but also

delineation of the specific pathophysiology of the mutation

to enable drug choice, which may include opportunities

beyond those conventionally used in the antiepileptic

armamentarium.

Epileptogenesis and inflammation

Another focus is the mechanisms of epileptogenesis; the

process from initiation of pathological changes to the

development of epilepsy and possibly the maintenance of

epilepsy. There are changes, which involve altered gene

expression, inflammation, protein production and changes

in connectivity, which may all be the target for drugs to

suppress epileptogenesis. One of the most studied path-

ways links to the rapamycin (mTOR) pathway (Fig. 1).

Upregulation of mTOR, a serine/threonine protein kinase,

occurs as a result of the TSC1 and TSC2 mutations of

tuberous sclerosis (TS) complex. Other mutations in the

pathway may be associated with overgrowth in megalen-

cephaly [80]. mTOR has a role in protein synthesis and

inhibition of mTOR, cell growth and replication by ever-

olimus, a rapamycin analogue, has been shown to reduce

overgrowth of malignantly transformed tubers [81]. Ani-

mal models have shown an antiepileptic effect of mTOR

inhibition [82] but this has been more difficult to demon-

strate in humans. However, a recent double-blind study of

366 patients showed a dose-related seizure reduction of up

to 40% with everolimus, in patients with TS [83].

However, mTOR inhibitors may also have a direct effect

on Kv1.1 ion channels, independent of epileptogenesis

[84], blurring their possible mechanism in seizure

suppression.

Whilst immunological mechanisms are clearly impli-

cated in the aetiology of certain epilepsies such as limbic

encephalitis [85] or Rasmussen encephalitis [86], increas-

ing attention has been given to them in commoner forms of

epilepsy. There is broad evidence for their significance,

especially from animal studies and involving cytokines,

changes in the blood brain barrier and pathological alter-

ations associated with altered excitability [87–94]. Patho-

logical examination of resected human specimens of focal

cortical dysplasia [95] has also shown substantial increases

in mRNA expression of Toll-like receptors 2 and 4 and

associated with high-mobility group box protein 1,

restricted to astrocytes and microglia in pathological tissue.

These interact through interleukin IL1-b. Microglia acti-

vation appears increased more in focal cortical dysplasia

(FCD) type II than in FCD I, associated with the migration

of activated lymphocytes and activation of the mTOR

pathway, linking inflammation to epileptogenesis [96]. A

recent systematic review and meta-analysis [97] has

described increased CNS levels of interleukins of the IL1

family as well as of chemocytokines CCL 3-5, which are

involved in monocyte and lymphocyte migration. IL6

appears to be elevated in serum but not in CNS. A recent

study of patients with moderate to severe cerebral trauma

found a relationship between cerebrospinal fluid IL1-b
levels and an allelic variant of the IL1-b gene to the risk of

developing epilepsy [98]. This provides the first evidence

of a biomarker that might be used to predict epilepsy after

an epileptogenic insult and possibly a means of pharma-

cological intervention. These may need to be complex; a

recent study suggested a single intervention was inadequate

and a cocktail of anti-inflammatory drugs was required to

prevent epileptogenesis [99]. A small case series of

intractable childhood onset epilepsy has already been

treated successfully with human recombinant IL-1 receptor

antagonist (Anakinra\) [100] and it is hopeful that, as there

are already many drugs affecting the immune system and

some affecting the blood brain barrier, that this will prove a

fertile area for development.

Recently, mutations of the DEPDC5 (DEP domain

containing 5, involved in g-protein signalling) gene have

been demonstrated in patients with cortical dysplasia and in

up to 12% of small families of patients with familial focal

epilepsy phenotypes, including ADNFLE without demon-

strable lesions [101–103]. This gene is involved in the

same GATOR pathway as mTOR. Although the GATOR

(gap activity towards RAG’s) pathway is generally asso-

ciated with protein synthesis, it appears to reduce the levels

of Kv1.1 potassium channels in hippocampal pyramidal
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neurons increasing seizure expression, which can be

reversed by inhibitors [104]. These findings link lesional

and non-lesional ion channel related epilepsies to the same

pathway, providing a potential opportunity for the wider

use of inhibitors in treatment.

Although the scope is expanding, the relationship of

these mechanisms to the majority of epilepsies, those

triggered by a neurological insult (focal epilepsies) or a

complex genetic trait (generalized epilepsies) remains to be

established. It has long been recognized that epilepsy due

to trauma is more likely in those with a family history of

epilepsy [105] providing a potential to link to genetic

mechanisms. But the development of epilepsy may take

20 years [105, 106]. The key will be to identify those

patients at high risk and to find a low risk preventative

treatment akin to aspirin in stroke and very large, long-term

follow up studies, will be needed to establish efficacy.

Biomarkers such as IL1-b for evolving epileptogenesis are

needed to identify high risk patients and to act as drug

targets.

Antiepileptic drug trials

Despite being a common disorder, the number of high

quality trials of antiepileptic drugs is small. Trials of new

AED are normally in the form of an add-on therapy in

refractory partial epilepsy, usually with the end point of a

50% reduction of seizures. This may be realistic in showing

a biological effect but does not confer the psychosocial

benefits of seizure freedom, and therefore drugs enter the

market with the knowledge that they will not dramatically
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alter the burden of refractory epilepsy. The Federal Drug

Administration in the US requires monotherapy trials

against placebo and the European Medicines Agency

requires head-to-head trial of active agents. Consequently,

results cannot cross the Atlantic, delaying introduction and

increasing cost for manufacturers. Both types of trials have

their merits. The result is a non-systematic hotchpotch of

evidence in relation to monotherapy in epilepsy. Whilst the

pragmatic study SANAD has guided many UK clinicians to

lamotrigine as first line in monotherapy for focal epilepsy

[107], carbamazepine remains a drug of choice in many

countries and studies [108]. A recent study has shown that

zonisamide is non-inferior to carbamazepine in new onset

focal epilepsy in adults [109]. A large study of 1688 new

onset patients compared time to withdrawal of levetirac-

etam in two arms to first choice carbamazepine or valproate

in monotherapy in adults [110]. Overall, the drugs per-

formed similarly but in a post hoc analysis, levetiracetam

withdrawal rate was lower in those over 60, especially in

comparison to carbamazepine, with fewer adverse effects

rather than greater efficacy [111].

The repertoire of AED considered effective in IGE has

traditionally been more restricted that for focal epilepsy.

Case reports have supported the use of lacosamide

[112, 113] and it is the subject of ongoing larger scale

studies. Perampanel has been found to be effective as an

add-on for refractory generalized epilepsy with tonic–clo-

nic seizures [114].

Cannabis contains approximately 80 different active

cannabinoids and was used in the nineteenth century as an

AED [115]. It has been known for many years to be an

antagonist at NMDA receptors with antiepileptic activity

[116]. D9 tetrahydrocannabinol is the main psychoactive

component of cannabis, acting on THC1 and THC2

receptors but other components, especially cannabidiol

(CBD) do not act on these receptors, are not psychoactive.

They may have medicinal properties through a range of

other actions [117]. Clinical studies in the 1970s and 80s

reviewed in [117] pointed to antiepileptic effects and recent

anecdotal evidence and an open labelled trial have shown

benefit in epileptic encephalopathies such as Dravet syn-

drome [118, 119], which have had a profound social effect

in the United States, with parents moving their families to

states where cannabis is legal [120]. Although their

mechanisms point to a potential role for cannabinoids of

relevance to epilepsy [121], there are as yet, no good

studies to support their widespread use. The adverse effects

of natural cannabis are widely known [122] and a particular

problem for adolescents. Cannabinoids should be avoided

by those with epilepsy, especially the young, who are

already at risk of psychiatric problems, until good quality

trials support their use.

Epilepsy and comorbid depression

Data extracted from a US population survey of 340,000

households and those with epilepsy were compared to those

without [123]. Two percent had suffered with epilepsy and

reported increases in a range of disorders (Table 1). A

figure of approximately one third affected by depression is

consistent with numerous previous studies. The relation-

ship to epilepsy is complex. In studies of IGE, the epilepsy

and its impact may be important [124] but there is often

dissociation between a good seizure outcome and a poor

psychosocial outcome [125]. A key factor predicting out-

come relates to family environment support [126] but a

biological association is supported by the observation that

children and adults have an increased risk of psychiatric

disturbance, even before the onset of their epilepsy

[127, 128], and by a broad range of experimental studies

[129]. Interactions between epilepsy and depression may

include shared abnormalities in a number of neurotrans-

mitters including 5HT1A mechanisms [130, 131] and via

glutamate, where low-dose ketamine, an antiepileptic

NMDA antagonist, may have an impact on depression

[132]. These studies illustrate a bidirectional relationship of

epilepsy and depression, involving both biological and

psychosocial factors.

A common concern is that antidepressants may increase

seizures. The risk of de novo seizures from the use

antidepressants is 0.1% for newer drugs and 0.3% from

older drugs, e.g. tricyclics [133]. Exceptions may be

maprotiline, bupropion or clomipramine with a higher risk

[134] but overall, those in the treatment arm of antide-

pressant trials had fewer seizures than those in the placebo

arms [134]. In smaller studies of those with epilepsy at

therapeutic doses of antidepressants, many will experience

Table 1 Comorbidities in a nationwide US survey [123]

No epilepsy (%) Epilepsy (%)

Anxiety 13.9 22.4

Depression 25.6 32.5

Bipolar disorder 6.7 14.1

ADHD 5.5 13.2

Sleep disorder/apnea 13.6 19.6

Movement disorder/tremor 4.6 9.3

Migraine 20.6 27.9

Chronic pain 17.7 25.4

Fibromyalgia 7.5 15.4

Neuropathic pain 5.6 8.7

Asthma 16.6 20.7

Diabetes 15.2 15.2

Hypertension 36.7 36.2
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an improvement in their epilepsy [135]. A recent review

has brought together the newer mechanistic evidence,

showing that 5HT1A may mediate a number of actions,

which have antiepileptic effects, including increasing

GABA activity and reducing inflammatory cytokines and

those patients with epilepsy may have reduced PET ligand

binding at 5 HT1A sites [136]. In a mouse model of sudden

unexplained death in epilepsy, drugs acting on 5-HT3

receptors (fluoxetine, blocked by ondansetron) reduced

respiratory arrest in seizures, without affecting the seizures

themselves [137], a further possible mode of benefit of

antidepressants in epilepsy. Where possible, it may be

appropriate to avoid those antidepressants with pharma-

cokinetic interactions with AED, such as fluvoxamine,

paroxetine and fluoxetine. Hopefully, neurologists can now

encourage the use of antidepressants, especially as psy-

chiatric comorbidity is a greater determinant of quality of

life than seizure frequency in those with refractory epilepsy

[138].

Antiepileptic drugs and pregnancy

In recent years, information regarding major congenital

malformation (MCM) rates has been consolidated in epi-

lepsy and pregnancy registries. AED are divided into those

with reasonably quantified risk and those with insufficient

data. This becomes self-reinforcing with increased reluc-

tance to prescribe drugs of uncertain risk to those who may

conceive. The most recent data from the UK epilepsy and

pregnancy register, shows a very clear dose-related effect

with valproate risk 5% with \600 mg daily increasing to

11% at over 1000 mg. Carbamazepine at 2% risk when

given at \500 mg daily, 3% at 500–1000 mg and 5% at

[1000 mg. Lamotrigine had a less steep curve with 2% at

\200 mg, increasing to 3.5% over 400 mg daily [139].

These data are similar to those published from European

and US registries [140]. Oxcarbazepine, not widely used in

the UK, appears to have similar low risk to lamotrigine at

2.2% [141]. The risk for levetiracetam appears similarly

low at 0.7% in monotherapy, increasing in polytherapy

[142]. Added to the risk of MCM are concerns over more

subtle neurodevelopmental disturbances, including lower

IQ, autism and ADHD, which may conceivably arise from

exposure to valproate at any stage of pregnancy [143–146].

Although not widely used in pregnant women, topiramate

and zonisamide may be associated with significantly lower

birthweight [147]. Recent data have also shown the

importance of considering genetic factors in teratogenicity.

A family history of abnormalities increases the risk. The

risk to a second child, where a first was affected by an AED

may be as high as 17–36% [148, 149]. Clinicians must also

consider the risk to the mother of epilepsy in pregnancy

and data suggest a tenfold increase in mortality compared

to non-epilepsy controls, largely due to SUDEP [150].

Epilepsy surgery

Given the low chance of response to medical therapy after

the failure of two AED [49], this is the widely accepted

yardstick for defining refractoriness and the appropriate-

ness for consideration of resective epilepsy surgery. The

proportion of patients for whom surgery may be successful

is not clear, but is estimated as a maximum of around 2%

of the total cohort. With an incidence of 0.5%, in the USA

and a prevalence of 750,000, this translates to up to 3500

incident cases and 15,000 prevalent cases, in which surgery

might be considered. The rate of epilepsy surgery has

remained static at around 1500 cases per year [151, 152]

for over 20 years. The pattern of cases operated may be

changing with a reduction in mesial temporal sclerosis

[153], perhaps due to improved outcomes of childhood

febrile seizures. At the same time, the outcomes of

extratemporal epilepsies are improving with new diagnos-

tic techniques. The mortality of surgery is around 0.1–0.5%

[151], similar to the annual rate of SUDEP in refractory

epilepsy [154], i.e. the mortality of ongoing refractory

epilepsy exceeds the post-operative risk after one year.

Complication rates have reduced [155] and are around 3%

for major and 7% for minor complications; one of the

commonest complications is a visual field defect after

temporal lobectomy [151, 156]. The treatment is cost-ef-

fective in the long term, with sustained remission and close

to half of adult patients and 86% of children may be able to

stop their AEDs. Two recent studies have found risk factors

for seizure recurrence after post-operative drug withdrawal

included pre-operative seizure frequency and post-opera-

tive EEG abnormalities [157, 158]. They also found about

one third of those relapsing will not come back under

control with re-introduction of medication, especially those

with early recurrence, perhaps reflecting a less complete

surgical remission.

Health-related quality of life often returns to normal in

those who become seizure free [159]. Negative prognostic

factors include high seizure frequency and long duration at

baseline [160, 161]. Those with lesions such as cavernomas

or benign tumours may achieve 77% seizure freedom at

two years, even if surgery is undertaken after a long seizure

history [162].

Advances in epilepsy surgery include alternative meth-

ods to resective surgery; improvements in techniques of

case selection for surgery and neurostimulation techniques.

Radiosurgery for arteriovenous malformations may give

excellent outcomes for associated epilepsy and positive

prognostic factors have been reported to be presentation
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with haemorrhage rather than epilepsy and the absence of

post-treatment haemorrhage [163–165]. A recent meta-

analysis of stereotactic radiosurgery for mesial temporal

sclerosis [166] showed that the total number of patients

reported remains low (\200) but that half became seizure

free at a median of 14 months after treatment with a

complication rate of around 8% (excluding headache which

was more common) and rates of visual field defects similar

to open surgery. MRI-guided laser thermocoagulation has

been undertaken in a few patient with initially promising

results. Procedural morbidity is low and patients may be

admitted for just one day. It has been suggested as appro-

priate particularly for older patients. [167–170]. The elec-

trodes inserted for stereotactic EEG recording may also be

used to deliver a thermocoagulation induced lesion to the

surrounding brain, with a diameter of 4.5–7 mm. This has

been undertaken in patients with hypothalamic hamartoma,

for whom surgery is difficult and with a high success in

remission of the gelastic seizures associated with these

lesions [171]. Early indications are that this may be an

approach which can be undertaken in cases of focal cortical

dysplasia.

The identification of patients who will benefit from

epilepsy surgery relies on the demonstration of a single

brain region responsible for the epilepsy, which can be

safely resectable. Identification of a responsible lesion has

been demonstrated in numerous studies to predict a better

outcome [172]. Even in those where imaging is normal,

resection on the basis of an intracranial EEG abnormality is

more likely to result in seizure freedom if the resected

tissue is pathologically abnormal [173]. Increasing pre-

operative identification of pathology through improved

MRI, through higher field strengths up to 7 T in vivo and

enhancing 3 T with automated measures of hippocampal

volumes potentially gives a greater chance of identifying

candidates who may benefit from surgery [174–176]. In

those whom structural imaging remains negative, then

FDG-PET can aid in the decision making, either in favour

of surgery, e.g. in those thought to have non-dominant TLE

or against surgery in more complex cases [177, 178].

Magnetoencephalography is not widely used [179], but a

recent study demonstrated that if all MEG abnormal areas

were resected, prognosis was improved and MEG can be

used to target SEEG more successfully [180]. Tight clus-

tering of MEG abnormalities predicted a better outcome

than more dispersed abnormalities. High density EEG

source imaging using increased electrode number may also

be valuable in predicting the outcome of surgery [181].

Intravascular stent EEG, shown to be safe in sheep may be

a non-invasive method of intracranial EEG recording in the

future [182].

Where resective surgery is not possible, palliative

stimulation techniques may be considered. The most

established and widely used is vagus nerve stimulation

which is safe, with a low risk of complications, such as

infection, haematoma and vocal cord palsy [183]. An

analysis from the VNS registry combined with pooled

study data totaling 8423 patients [184] found that respon-

der rate, defined by a 50% seizure reduction, was 47% at

0–14 months and 63% at 24–48 months with seizure free

rates rising from 5–10% over the same period. Quality of

life measures also improved with VNS [185], which may

relate to seizure reduction, reduced AED load in associa-

tion with successful antiepileptic treatment or putative

effects of VNS on mood [186]. Responsive stimulation

involves a closed circuit of intracranial electrodes with

electrical stimuli delivered to the brain according to a

seizure detection paradigm. The circuit is often installed

following electrode placement in an unsuccessful attempt

to identify a surgical target. In 191 patients there was a

37.9% responder rate compared to 17.3% in the sham

group. [187]. Electrodes placed in the thalamus have been

associated with a 69% median reduction in seizure fre-

quency and a 35% rate of serious adverse events, including

infection in 10% and lead misplacement in 8% [188]. Other

targets under investigation include the nucleus accumbens

[189] and the cerebellum [190]. Optogenetic methods

[191], successful in animals, have not yet been applied in

humans.

Summary

A new classification of epilepsies will support the inte-

gration of novel aetiological and genetic factors with the

existing electroclinical classification and help identify

when a single seizure might be considered epilepsy on the

basis of an abnormal EEG or imaging. Midazolam IM has

emerged as the benzodiazepine of choice in out-of-hospital

treatment of status epilepticus and a valid alternative in

hospital, but good clinical studies are lacking beyond this

early stage. Limbic encephalitis is increasingly diagnosed

and primary treatment is immunotherapy rather than AED.

The significance of antibodies more generally in epilepsy

remains unclear. Most epilepsy treatment remains without

a clear evidence base but ethosuximide and valproate have

been demonstrated to be the most efficacious AED in

absence epilepsy. Perampanel and lacosamide are new

drugs which are emerging as treatments for tonic–clonic

seizures in generalized epilepsy. A small number of

specific genetic epilepsies have allowed personalized

treatment in specific cases but this has not yet had broader

application. Epileptogenesis is a fertile area of research and

everolimus, an inhibitor of the mTor pathway, has

demonstrated efficacy in epilepsy associated with TS,

showing the clinical potential of this avenue of research for
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the first time. Epilepsy and pregnancy registers are con-

solidating data pointing to the use of lamotrigine, leve-

tiracetam, carbamazepine and/or oxcarbazepine as those

AED with the lowest risk of major congenital malforma-

tions. New evidence has associated topiramate and zon-

isamide with low birth weight. Clinicians can treat

comorbid depression with most modern antidepressants,

reassured that there is little evidence of an adverse effect

on their patient’s epilepsy. Surgical treatment of epilepsy

remains under-utilised and the selection of patients for

surgical treatment of epilepsy is becoming more refined

with the use of functional imaging to support structural

imaging. Alternative ablative treatments are being explored

but are not yet widespread. Stimulation techniques other

than VNS are areas of research, which remain to find their

place.

Overall, recent epilepsy research has started to change

our thinking and approach to patients, as we slowly move

towards a more rational basis by which to treat this com-

mon condition.
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