ArticlePDF Available

The “Nemo Effect”: Perception and reality of Finding Nemo 's impact on marine aquarium fisheries

Authors:

Abstract

Global audiences are increasingly being exposed to digital media with fictitious storylines that draw on animal characters involuntarily entering wildlife trades. An understudied problem in wildlife trade is the potential for motion pictures to influence their audience's desire to become more acquainted, often via acquisition, with animals portrayed in the films. The 2003 Disney motion picture Finding Nemo connected audiences with a wildlife trade already commonplace: the marine aquarium trade. In this trade, fisheries supply live coral reef organisms to millions of public and private aquaria worldwide. Here, we examine the perception and reality of Finding Nemo's impact (coined the “Nemo Effect”) on the fisheries of the species complex representing the film's primary protagonist “Nemo” (Amphiprion ocellaris/percula). Import and export figures show little evidence for fan-based purchases of wild-caught fish immediately (within 1.5 years of release) following the film. We argue that the perceived impact on these species, driven by popular media with an emotive but scientifically uninformed approach to conserving coral reef ecosystems, can be more damaging to the cause of conservation than helpful. This perspective is intended to encourage marine aquarium trade stakeholders to consider the ecological and social repercussions of both media driven consumption and opposition to the trade. Using lessons learned from Finding Nemo, we discuss the likely impacts the sequel, Finding Dory, will have on wild populations of its protagonist “Dory” (Paracanthurus hepatus).
Fish and Fisheries 2017; 1–11 wileyonlinelibrary.com/journal/faf  
|
 1
© 2017 John Wiley & Sons Ltd
Received:8December2015 
|
  Accepted:1December2016
DOI: 10.1111/faf.12202
GHOTI
Finding Nemo’s

1|2

Ghoaimstoserveasaforumforsmulangandpernentideas.Ghopublishessuccinctcommentaryandopinionthat
addressesimportantareasinshandsheriesscience.Ghocontribuonswillbeinnovaveandhaveaperspecvethat
mayleadtofreshandproducveinsightofconcepts,issuesandresearchagendas.AllGhocontribuonswillbeselected
bytheeditorsandpeerreviewed.

GeorgeBernardShaw (1856–1950),polymath,playwright, Nobelprizewinner, andthemost prolicleerwriter inhis-
tory,wasanadvocateofEnglishspellingreform. Hewasreportedlyfondofpoinngoutits absurdiesbyprovingthat
‘sh’couldbespelt‘gho’.Thatis:‘gh’asin‘rough’,‘o’asin‘women’and‘’asinpalaal.
1CentreforSustainableTropicalFisheries
andAquaculture,CollegeofMarineand
EnvironmentalSciences,JamesCook
University,Townsville,Australia
2CentreforTropicalBiodiversityand
ClimateChange,CollegeofArts,Society&
Educaon,JamesCookUniversity,Townsville,
Australia

ThaneAMilitz,CentreforSustainableTropical
FisheriesandAquaculture,CollegeofMarine
andEnvironmentalSciences,JamesCook
University,Townsville,Australia.
Email:thane.militz@my.jcu.edu.au

JamesCookUniversity.

Globalaudiencesare increasingly beingexposedto digital mediawithcoussto-
rylinesthatdrawonanimalcharactersinvoluntarilyenteringwildlifetrades.Anunder-
studiedprobleminwildlifetradeisthepotenalformoonpicturestoinuencetheir
audience’sdesiretobecomemoreacquainted,oenviaacquision,withanimalspor-
trayedinthelms.The2003Disneymoonpicture Finding Nemo connected audi-
enceswith awildlife tradealreadycommonplace:themarineaquariumtrade. Inthis
trade,sheriessupplylivecoralreeforganismstomillionsofpublicandprivateaquaria
worldwide. Here, we examine the percepon and reality of Finding Nemo’s impact
(coinedthe “NemoEect”)on thesheriesof thespeciescomplex represenngthe
lm’sprimaryprotagonist“Nemo”(Amphiprion ocellaris/percula).Importandexportg-
ures show lile evidence for fan-based purchases of wild-caught sh immediately
(within1.5yearsofrelease)followingthelm.Wearguethattheperceivedimpacton
thesespecies,drivenbypopularmediawithanemovebutsciencallyuninformed
approachtoconservingcoralreefecosystems,canbemoredamagingtothecauseof
conservaonthanhelpful.Thisperspecveisintendedtoencouragemarineaquarium
tradestakeholderstoconsidertheecologicalandsocialrepercussionsof bothmedia
drivenconsumpon andopposiontothetrade. UsinglessonslearnedfromFinding
Nemo,wediscussthelikelyimpactsthesequel,Finding Dory,willhaveonwildpopula-
onsofitsprotagonist“Dory”(Paracanthurus hepatus).

aquariumshery,clownsh,digitalmedia,FindingDory,FindingNemo,marineaquariumtrade
2 
|
   MILITZ AND FOALE
|
Althoughcoralreefscoverless than1%of themarineenvironment,
theyareconsideredto beamongstthemostbiologicallyrichecosys-
temsonEarth(McAllister,1995).Thepresentcenturyisaictedwith
global declines in coral reef ecosystems, spurred by anthropogenic
stressorsofpoorwatershedmanagement,habitatdestrucon,global
climatechange,overshingandotherextracveacvies(Bellwood,
Hughes,Folke,&Nyström,2004;Hugheset al.,2003).Theimpactof
themarineaquariumtradeoncoralreefecosystemsinthepresentera
isacontenousissue.Asustainablymanagedmarine aquariumtrade
has potenal to incenvize conservaon of marine ecosystems by
increasingtheperceivedvalueofsourcehabitatstolocalinhabitants
andoeralternavestomoreenvironmentallydestrucvelivelihood
opportunies (Foale, Dyer, & Kinch, 2016; Tlusty, 2002; Wabnitz,
Taylor, Green, & Razak, 2003). Further,the global disseminaon of
marineorganismsintomorethantwomillionhomesandpublicaquar-
iumsworldwidecontributestoincreasedawareness,appreciaonand
understanding of the existence and plight ofcoral reef ecosystems
(Nijman, 2009; Teitelbaum, Yeeng, Kinch, & Ponia, 2010). In some
instancessherysupplyoforganismsforthetradecanfuelfurtherde-
clinesinreefhealththroughalossofbiodiversity(Ross,1984;Wabnitz
et al., 2003; Rhyne, Rotjan,Bruckner, & Tlusty,2009; Kniweis and
Wol2010;Thornhill, 2012),overshingassociatedwith removalof
shes(Kolm&Berglund,2003;Shuman,Hodgson,&Ambrose,2005;
Tissot&Hallacher,2003;Williams,Walsh,Classie,Tissot,&Stamoulis,
2009), introducons of non-indigenous species and/or diseases
(Semmens, Buhle, Salomon, & Paengill-Semmens, 2004; Holmberg
et al.,2015;Militz,Kinch, Foale, &Southgate2016), and the use of
environmentally destrucve shing pracces (Kinch, 2004b; MAC
2006;Mak,Yanase,&Renneberg,2005;Rubecet al.,2001;Thornhill,
2012).Theeectsofthe colleconandtradeinaquarium shesare
lessstudiedthanotherthreatstocoralreefsincludingclimatechange,
ocean acidicaon, overshing and nutrient polluon, oendue to
thecomplexityofthetrade(Dee,Horii,&Thornhill,2014).
Recently,theroleofdigitalmediahasbeensuggestedasapotenal
forcefordrivingconservaoneortsinliveanimaltradesandsheries.
Digitalmedia can raise thepublicprole ofcharismacspecies which
thentendtoreceiveincreasedresearcheort(Clark&May,2002),fund-
ing(Tisdell&Nantha,2007) and public popularity (Duarte, Dennison,
Orth,&Carruthers,2008).However,charismaisapoorpredictorofcon-
servaoneortsforagivenspeciesandtheimpactsthatmajormoon
picturereleases haveon theirfeaturedspeciesarepoorlyunderstood.
Byenhancingtheaesthecvalueofbiodiversehabitatsandtheirasso-
ciated fauna through moon pictures,this photographically mediated
aesthecfeshzsaonoforganismsmayevenbecounterproducveto
achievingoverallpreservaonofbiodiversity(Foaleet al.,2016).
Global audiences are increasingly being exposed to cous
storylines that draw on animal charactersinvoluntarily entering live
animaltrades(Table1).Whilemostofthefeaturedanimalshavehus-
bandryrequirements,availabilityandcoststhatlimitfrequentencoun-
terinwildlifetrades(e.g.orcasinFree Willy),theDisneyanimaonlm
Finding Nemo,releasedinMay2003,connectedpublicaudienceswith
pets already commonplace throughout theworld: aquarium shes.
Here,we discuss the realized and perceived impacts the release of
Finding Nemo had on the species representedby the lm’s primary
protagonist.Fromthesendings,we addressthepossibleimpactthe
recentreleaseofthesequel,Finding Dory,inJune 2016mayhaveon
marineaquariumsheries.
|FINDING
NEMO
Interestinmaintaininglivemarineorganismsfortheiraesthecappeal
tracesbacktothe1930swhencolleconandexportforthisindustry
TABLE1 Filmsdepicngwildlifetradeandtheirnancialsuccess.Theengagementofglobalaudiencescanbeseeninthedisparitybetween
USandworldwidegrossreturns.Sequelsprovedtobemoresuccessfulgloballythanoriginallmsinallcases
   
Animated
FindingNemo DisneyEnterprises 2003 380,843,261 936,743,261
Madagascar DreamWorks 2005 193,595,521 532,680,671
Rio TwenethCenturyFox 2011 143,619,809 487,519,809
Rango ParamountPictures 2011 123,477,607 245,724,603
Non-animated
FreeWilly WarnerBros. 1993 77,698,625 153,698,625
Paulie DreamWorks 1998 27,008,669 NA
TwoBrothers PathéRennProducon 2004 18,947,630 NA
Sequels
Madagascar:Escape2Africa DreamWorks 2008 180,010,950 603,900,354
Rio 2 TwenethCenturyFox 2014 131,538,435 500,188,435
FindingDory DisneyEnterprises 2016 485,684,472 1,024,018,426
aDataobtainedfromwww.imdb.com,accessedon1November2016.
    
|
 3
MILITZ AND FOALE
began(Wijesekara&Yakupiyage,2001).Starngataverysmallscale
inSriLanka,tradeexpandedinthe1950s withcolleconsextending
to an increasing number of places (e.g. Hawaii and the Philippines;
Wood,2001).Rapidgrowthanddevelopmentofthetradebeganbe-
tween 1990 and 1999 with exports of reef organisms showing an-
nualgrowthof12–30percent(Bruckner,2001;Wabnitzet al.,2003).
RoughlyatthemeofFinding Nemo’srelease,anesmated1.5to 2
million people worldwide maintained marine aquaria (Green, 2003),
beingmostprevalentintheUnitedStates(US)(Wabnitzet al.,2003).
Theglobalvalueoftradeinmarineorganismsfortheaquariumtrade
wasbetweenUS$200and330millionperyearwithnearlyall ofthe
marineorganisms arisingfrom sheries(Chapman& Fitz-Coy,1997;
Larkin&Degner,2001).Itisesmated thatpre-Finding Nemo only 1
to10percentofmarineaquarium shescouldbecapvebred,with
lessthan1percentofthetotaltradeinhardcoralsbeingderivedfrom
culturedorigins(Wabnitzet al.,2003).
Depicngthejourneyfromreeftoaquarium,Finding Nemorep-
resentedmorethan1,500 speciesfrom16 familiesof well-known
marine organisms (McClenachan, Cooper, Carpenter, & Dulvy,
2012).Theprimaryprotagonistofthelm,“Nemo,”resembledtwo
species of clownshes with similarappearances, Amphiprion ocel-
laris(Pomacentridae)and Amphiprion percula(Pomacentridae).The
unique biology of clownshes,being shallow water, site-aached
species in obligatory relaonships with anemones, has endeared
theseshestomoviefansworldwidebutalsosubjectstheseshes
to a high risk of overshing (MAC 2006; Shuman et al., 2005).
Potenal local over-exploitaon of clownshes was raised as a
concern as early as 1992 (Edwards& Shepherd, 1992), well pre-
dangthelm.Theonlystudyaddressingthepopulaon-levelim-
pactsofcollecngmarineaquariumorganismsbeforeFinding Nemo
showsthat bothclownshesand anemonesexhibited signicantly
lowerdensiesatexploitedsitescomparedtounshedsitesinthe
Philippines(Shumanet al.,2005).
Itis alsoduringthe pre-Finding Nemoera thattheaquarium in-
dustrybecameatargetofpublic cricismgiventhehighvisibilityof
marineaquariumproductsasthetradeexpanded.Sustainabilitycon-
cerns wereraised with regard to destrucve collecon techniques
used,notablyin South-East Asia (Olivier,2003; Wood,1985).This
encompassedthe useofsodiumcyanideasa stunningagenttoaid
inthecolleconofsheswhichcandamageandkillbothtargetand
non-target organisms (Jones & Steven, 1997; Rubec et al., 2001).
Addionally,physicalreefdestruconto accesssheshidingwithin
livingcoralwasknowntooccurthroughouttheIndo-Pacic(Kinch,
2004b;Thornhill,2012).Furtherconcernsaddressedlocalizedover-
harvesng of target organisms (Andrews, 1990; Chan & Sadovy,
1998; Thornhill, 2012; Wijesekara& Yakupiyage,2001) and high
levelsofmortalityassociatedwithshippingandhusbandrypracces
along some supply chains (Balboa, 2003; Olivier,2003; Schmidt &
Kunzmann, 2005). However, evaluang the extent to which these
concernswerevalidatedacrosstheenretyofmarineaquariumsh-
eriesislimitedgiventhepaucityofdatacollectedontheindustryand
thelackofbiologicalknowledge(incl.populaonstatus)formanyof
theorganismstraded.
|
FINDING NEMO
|
An understudied problem in wildlife trade is the potenal for moon
picturestoinuencetheiraudience’sdesiretobecomemoreacquainted
(via acquision) with animals portrayed in the lms. The Jurassic Park
series and the animated televised series Teenage Mutant Ninja Turtles
weresuggestedtobelinkedwithanupsurgeofpublicinterestinkeeping
replesaspets(Ramsay,Ng,O’Riordan,&Chou,2007;Watson,1997).
Similarly, the suggeson that Harry Poer movies have accelerated
India’spet owltrade (BBC2010) furtherimplicates eitherperceived or
genuineinuenceofmediaproduconsonconsumerdrivenpettrades.
Finding Nemodiersgreatlyfromtheaboveexamplesin thatthe
lmdirectlylinkeditsanimal characterswith itsrespecvepettrade
(i.e. the marine aquarium trade). Despite this linkage, Finding Nemo
appears to have had lile immediate impact on US imports of the
speciescomplexrepresentedbythelm’sprimaryprotagonist,A. ocel-
laris/percula.Accredited as the largest importer of marine aquarium
shes, the proporon of the global trade made up by US imports
hasbeenesmated tobebetween 41% and80%(Larkin & Degner,
2001;Wabnitzet al.,2003).UsingUSimportdataderivedfromRhyne,
Tlusty,Holmberg,andSzczebak(2015),thelimitaonsandtabulaon
of which are discussed by Rhyne, Tlusty, Szczebak, and Holmberg
(2015),annual importsofA. ocellaris/perculainto theUSwerefound
torisebyonly2.0%between2000and2004despitea34.5%increase
in total sh imports over the same me frame according to their
FIGURE1 USimportsofA. ocellaris and A. perculaincomparison
withallfishimports.DashedverticallineidentifiestheUSreleaseof
Finding Nemoon30May2003.DataextractedfromRhyne,Tlusty,
Holmberg,et al.(2015)
5,000,000
5,500,000
6,000,000
6,500,000
7,000,000
7,500,000
8,000,000
8,500,000
9,000,000
0
50,000
100,000
150,000
200,000
250,000
300,000
350,000
2000 2002 2004 2006 2008 2010 2012 2014
Number of individuals
Year
A. ocellaris
A. percula
Both spp.
All fish
Finding
Nemo
4 
|
   MILITZ AND FOALE
models(Figure1).Relavetootherpopularshes,A. ocellariswasnot
importedanymoreorlessfrequently,remainingtheseventhmostim-
portedshforboth2000and2004whilethelessimportedA. percula
shiedinrankingfromtwelhtothetenthoverthismeframe.The
onlymeframeaerFinding Nemo’sreleasethatshowsanincreasein
USimportsisin2005whereimportsofA. ocellaris/perculawere10.3%
above2004imports,despiteonlya1.8%increaseintotalshimports
(Figure1).Followingthisincrease, USimportsof theA. ocellaris/per-
culaspeciescomplexconsistentlydeclinedtothepoint,thatby2009,
importswerelessthanpre-Finding Nemo(i.e.in2000).
GiventheglobalaudienceofFinding Nemo,itisplausiblethatde-
mandbytheglobalmarket foraquarium shes, ratherthan just the
US market, led to increases in wild-harvest of A. ocellaris/percula.
Globaltrends,inuencedbynon-US markets,maynotbeaccurately
reectedin theUS import datapresented above.Toexamine global
trends,the onlyreliabledatacurrentlyavailablearecountry-specic
collecon and export records. Examinaon of collecon data for
global exports from Marau Sound, Solomon Islands eleven months
beforeandaerthereleaseofFinding Nemoshowsthatcolleconsof
A. perculaonlyincreasedby0.9%oftheshery’stotalcatch(Figure2).
AtthepointofFinding Nemo’srelease,the SolomonIslandswerethe
largestexporterofA. perculawithinthisspecies’naturalrange(Rhyne
Tlusty,Holmberg et al., 2015). In the Philippines, collecon records
fromJanuarytoApril2002showthecatchofA. ocellaris/perculawas
only 2.2% of the totalcatch (>40,000 shes) (Shuman et al., 2005)
whilein2006lessthan1%oftotalcatch(1,167shes)onmonitored
shingtripswereA. ocellaris/percula(MAC, 2006).Itmust be noted
that while the authors ofthe previous menoned studies reported
on collecon of A. perculawithin the Philippines, only A. ocellaris is
knowntooccur there(Froese&Pauly, 2015),henceour useofthe
speciescomplexA. ocellaris/perculainthisinstance.
Othersourcesofcollecon/exportdataavailablepriorto2003for
comparison are restrictedto the Global Marine Aquarium Database
(GMAD; Wabnitz et al., 2003). Inaccuracies in this data have been
idened, being aributed to the nature ofvoluntary data submis-
sions(Murray,Watson,Giangrande,Licciano,&Bentley,2012;Rhyne,
Tlusty,Schoeld, et al.,2012).Exporter data indicateA. ocellaris was
reportedas themostexported specieswith A. percularankedfourth
foryears1997to2002(Wabnitzet al.,2003).Thiswouldfurthersug-
gestthepopularityofA. ocellaris/A. perculawaswellestablishedprior
toFinding Nemoandnotsolelyadirectresultofthelm.
As an alternave to sheries, any increase in the demand for
A. ocellaris/percula following Finding Nemo may have been buered
bya supply ofshthroughdomesc aquaculture. While the import
datafromRhyne,Tlusty,Holmberget al. (2015)are inclusiveofboth
wild-caught andaquaculturedsh, itdoesnot account fordomesc
aquacultureproducon. Priortothe release ofthe lm, aquaculture
operaons in the US and United Kingdom were already producing
several species ofclownshes (Wabnitz et al., 2003). The US-based
aquaculturefacilityOceans,Reefs,&Aquariums(ORA)indicatedsales
of aquacultured A. ocellaris rose 25% following release of the lm
while the demand for other clownsh species remained consistent
(Prosek, 2010). In requesngORA to substanate such claims with
salesdata,thecompanyhasremaineduncommunicave.Itisunclear
howrepresentavethisanecdotalreportfromasinglefacilitywasfor
alldomescaquacultureventuresattheme.Whatisclearisthisre-
portledtoseveralstudiessuggesngwildcolleconwas“fuelled”by
thehighproleexposureoftheaquariumtradebyFinding Nemo(see
McClenachanet al.,2012;Rhyne,Tlusty,Schoeldet al.,2012).
A boleneck in assessing the demand Finding Nemo placed on
domescaquaculture isthelack ofproduconinformaonavailable
from industry. Understandably, such data are valued as proprietary
informaonandsalesrecordsmaynot beretainedwhere businesses
transfer ownership. Both of these facets were encountered when
makingrequeststoindustrytoprovidesuchrecords.Dataweremade
availablebyoneUS-basedaquaculturefacility,ReefPropagaonsInc.,
that found sales of A. ocellaris/percula declined by 46.8% between
2002(17,489sh)and2004(9,302sh).Whilesalessawanincrease
in 2005 (15,799 sh), saleswere sll 9.7% below the 2002 volume
(Figure3).This indicates accountsofan increase insupplyfrom do-
mescaquaculturewerenotuniversalacrosstheindustry.Wherein-
stancesofincreasedsupplyarereported(aswithORA),suchincreases
maybe a result of companies outcompeng their competors fora
greatermarketshareratherthanreecngagreatermarketdemand.
FIGURE2 CollectionrecordsfromMarauSound,Solomon
Islandsmarineaquariumfishery.Totalnumberofindividualscollected
11monthsbeforeandaftertheUSreleaseofFinding Nemoon30
May2003.DatafromKinch(2004a)
0
2000
4000
6000
8000
10,000
12,000
14,000
Number of Individuals
Jul02 -May 03
Jun03 -Apr 04
A. perculaP. hepatus
Total Fish
FIGURE3 SalesofculturedA. ocellaris/perculaincomparisonwith
allculturedfishessoldbyReefPropagationInc.,aUS-basedmarine
aquariumaquaculturecompany.DashedverticallineidentifiestheUS
releaseofFinding Nemoon30May2003
Finding
Nemo
0
5000
10,000
15,000
20,000
25,000
20002001 2002 2003 20042005
Number of individuals
Year
A. ocellaris/percula
All fish
    
|
 5
MILITZ AND FOALE
|

ClaimsthatFinding Nemocreatedanupsurgeinconsumponofwild-
caughtA. ocellaris/percula(Table2)areincontradiconwiththepre-
senteddata.Whileincreasesinimportsandcolleconwerereported
for A. ocellaris/percula seven months aer the lm (i.e. 2004) these
increases were small (≤2%) and had minimal impact on the relave
ranking of these species. While lack of growth in a shery despite
increasingdemandcanbearesultof overshing (Pauly, Watson, &
Alder,2005),thisisnotthecasehere. A. perculaimportsintotheUS
declinedconsistentlysince2004(Figure1)yetconservaveesmates
suggestonly0.0076%oftheglobalpopulaonofthisspeciesarehar-
vestedannually(Maison&Graham,2015).A2015assessmentfound
A. perculainnodangerofover-exploitaonthroughoutitsrangewith
thespeciesnotwarrannginclusionundertheUSEndangeredSpecies
Act (Maison & Graham, 2015). While similar assessment of A. ocel-
laris is unavailable, this species covers a much greater geographical
range than A. percula with some locaons (e.g. Australia) exporng
minimalnumbers(Rhyne,Tlusty, Holmberg, et al., 2015), suggesng
over-exploitaon is localized where reported to occur (Madduppa,
Juterzenka,Syakir,&Kockzius,2014;Shumanet al.,2005). Farmore
substanang evidence persists that global economic trends and
aquarium life-support technology are the main drivers of trends in
marineaquariumsheries(Rhyne&Tlusty,2012).
Asmanycoastalregionsinthetropicsareexperiencingashiaway
fromextracvemarine economies towards ecotourism,compeon
foroceanspaceandresourcesisoccurringbetweensheriesandthe
tourismsector.Social conict isnotunique to the marine aquarium
trade,with conictarising between foodsheries andtourismglob-
ally (Benne et al., 2001; Fabinyi, 2010; Majanen, 2007). Australia
(Wabnitzet al., 2003), Fiji(Wabnitzet al., 2003),Vanuatu (Yeeng&
Pakoa, 2005), Maldives (Wood, 2001) and Hawaii (Capini, Tissot,
Carroll,Walsh, &Peck,2004) all havedocumentedcases of conict
betweenaquarium shersand thetourismsector.The riseofpoorly
informed environmental acvism has been a leading explanaonin
the misplaced percepon within the tourism sector that aquarium
shing is the primary threat to Hawaiian coral reefs, taking prece-
dence over poor management, land-based development/polluon,
invasivespecies,andotherformsofrecreaonalandcommercialsh-
ing(Stevenson&Tissot,2013).Thesocialramicaonsofaperceived
impact on wild populaons due to Finding Nemo have engendered
increased social conict between ecotourismindustries and marine
aquariumsheries(Yeeng&Pakoa,2005).FollowinganarcleinThe
Guardian (Fickling, 2003) stang “abooming trade in aquarium sh,
sparkedbyFinding Nemo[…]isendangering thewildlifeofVanuatu,”
thelocal tour anddive operators’associaonpressuredgovernment
authoriestoban thetrade.Abanwasenacted,butwas liedafew
weekslaterforlegalreasons, andtheVanuatuFisheries Department
wasgiventheurgenttaskofmediangsocialconictbetweenstake-
holders (Yeeng & Pakoa, 2005). Vanuatu marine aquarium export
recordsrevealedA. ocellaris/perculawerenotcollectedbythe shery
(GrantNortonpers.comm.),whichisalsoconrmedbyUSimportdata
(Rhyne,Tlusty,Holmberg, et al.,2015), despiteVanuatubeing within
A. perculadistribuonrange(Allen,1973;Faun&Allen,1997).While
empirical studies quantavelydemonstrang increased social con-
ict following the releaseof the lm are lacking, the use of Finding
Nemo to further emovebut sciencally uninformed conservaon
agendasinantradedirectedpopularmediaarclescannotbedenied
(Table2).Suchpopularmediaarcles(seeTable2)makeunsubstan-
atedclaimsthatignoretheprocessofsciencresearch.
Antradepopularmediadepicngtherarityofclownshescould,
initself,explaintheincreaseinUSimportsofA. ocellaris/perculathat
occurred in 2005 (~1.5yearsaer Finding Nemo’s release). Manyof
therstpopular media arcles implicang Finding Nemoin inducing
rarity of clownshes began circulang the Internet in late 2003 to
2004 (Table2). Hall, Milner-Gulland, and Courchamp (2008) explain
thepotenalforperceivedraritytofuelincreasingconsumerdemand,
akin to a “limited edion” product.This can be seen in the marine
aquarium trade where publicized closureof shing grounds for the
yellowtang (Zebrasoma avescens,Acanthuridae)inHawaiito create
marineprotectedareasledtoa33%increaseinpricedespiteresulng
increasesincatch(Tissot,Walsh,& Hixon,2009).The impactofper-
ceivedrarityondemandhasalsobeenestablishedintheUSlivecoral
trade with price depending more on perceived market abundance
ratherthanactualsupply(Rhyne,Tlusty,&Kaufman,2012).Inatrade
parallygovernedbyacollector’smentality,raritycanfueldemandei-
therthroughthebeliefthatthisisthelastchancetoobtainaspecimen
beforecolleconisbanned/restrictedorifitisbelievedownershipsig-
niessocialstatus,auenceandpresge(Hallet al.,2008).
Whiletheendgoalofsuchpopularmediaisoentopreservecoral
reefecosystems,thefactisthisconservaonideologyislargelydriven
byauent, sciencally educated individuals who tend to privilege
abstractintrinsicandaesthecvaluesofcoralreefsovertheulitarian
economicvalueassociatedwithextracngcertainspecies(evenwhen
thisisperfectlysustainable),whichiscricalforthelivelihoodsofthe
relavelypoorcustodiansofthosereefs(Adamset al.,2004;Foale&
Macintyre,2005;Foaleet al.,2016;VanHelden,1998).The intrinsic
  
The Guardian ReefsatriskaerDisneylm November2003
VICE StunningNemo November2003
Natural History Magazine SavingNemo March2004
Independent “FindingNemo”petsharmocean
ecology
July2004
ABCForeignCorrespondent Vanuatu—SavingNemo November2004
TABLE2 Examplesofpopularmedia
arclesimplicangnegaveenvironmental
impactsandclownshrarityfollowingthe
releaseofFinding Nemo
6 
|
   MILITZ AND FOALE
valueplaceduponaspeciesforsimplyexisng,perpetuatedbymedia
in wealthy countries, is oen at odds with ecological importance
(Foale&Macintyre,2005;Foaleet al.,2016).Thereisnoevidencethat
clownshesoranemonesplayapivotalorkeystoneroleinmaintaining
coral reefecosystem funcon or resilience.Anemones are naturally
foundatlowdensiesinmarineprotectedareas(<1per100m2)and,
whereover-exploited,theirfunconalroleismaderedundantbyother
cnidarians (Shuman et al., 2005). However, substanal evidence ex-
ists for the ecological importanceof sh species targeted for food,
parcularly giventhe size at which they are targeted in contrastto
aquariumshes (Bellwoodet al., 2004),which istheonlyalternave
livelihoodformanymarineaquariumshers(Ferse,Kniweis,Krause,
Maddusila, & Glaser, 2013; Madduppa et al., 2014; Schwerdtner
Máñez,Dandava,&Ekau, 2014).The capacityforaquariumsh col-
lecngtoreplacemoreenvironmentallydestrucveincomegenerat-
ing acvies is parcularly true for colleconof A. ocellaris/percula
whichistheprimaryincomegenerangspeciesinmanyvillage-based
aquariumsheries(Kinch,2004b;MAC2006;Madduppaet al.,2014;
Schwerdtner Máñez et al., 2014).The ease of collecng A. ocellar-
is/perculafromthesossuesofahostanemoneeliminatestheneed
forsodium cyanideor physicaldamage toreefstructureto facilitate
captureforthesespecies(MAC2006).Thus,theimpact ofcollecng
A. ocellaris/perculaislimitedtotheshandhostanemonewherethe
colleconoccurs.
The economic value placed on clownshes by coastal people
in developing countries is largely a product of and dependent on
the aquarium trade. In areas ofPapua New Guinea with no history
ofaquarium sheries, thereareno names inthelocal languages for
clownshesemphasizingthelackoftradionalsaliencethesespecies
haveforlocal people(Cohenet al.,2014;Foale,1998; Ross,Pawley,
&Osmond, 2011).While ecotourismin theformofdivingandsnor-
kellingisoenproposedasanalternavetoaquariumsheries asa
meansofbringing valuetocoralreef resources,the scale ofinvest-
mentandmanagement demands keepsuch operaons outofreach
from local entrepreneurs (reviewed in Foale & Macintyre, 2005).
Only a minute fracon ofrevenue generated by such ventureswill
ow into local communies through employment, reef access fees
and purchase of produce.Smaller village-based ecotourism catered
towards an “authenc” local experience is oen run by locals but
onlyexperiencesverysmallreturnsoninvestment(Hviding&Bayliss-
Smith,2000).Incontrast,themarineaquariumtradeprovidesincome
to thousands of shers throughout the Pacic (Ferse et al., 2013;
MAC2006;Madduppaet al.,2014;SchwerdtnerMáñezet al.,2014;
Wabnitzet al.,2003).
|
The benets accrued through pet ownership encompass a beer
understanding of animal physiology and behaviour (Inagaki, 1990;
Prokop, Prokop, & Tunniclie, 2008), more posive atudes to-
wardswildanimals (Prokop&Tunniclie,2010)andgreaterconcern
about the welfare of wild animals (Paul & Serpell, 1993). Keeping
marineaquariumorganisms oers anopportunity for globalcizens
disconnectedfromcoralreefecosystemstoevoketheirowndesireto
preservesuchhabitatsfortheenjoymentoffuturegeneraons.
Theknowledgegleanedfromtheseend-consumers(i.e.hobbyists)
ofmarineaquariumorganismsandtheircontribuonstoscienceare
oen underrepresented. The disseminaon of collected knowledge
betweenprofessionalacademicsandhobbyistsinthemarineaquarium
tradehas allowedforsignicantadvances incapvehusbandry,cul-
tureandunderstandingofanimal biology(Rhyne,2010).Thecapve
cultureofseveralspeciesofmarineaquariumshesnowproducedby
aquaculturewasoriginallypioneeredbyhomehobbyists(Rhyne,2010;
butseeSweet,2013,2014).Thisworklaysthefundamentalsforsci-
encunderstandingoftheearlylifehistoryofreefspeciesandcanbe
takentoinformbothcommercialaquaculturedevelopmentandsher-
iesmanagement.Aquaculturehaspotenaltoreducepressureonwild
stocksand,asalludedtopreviously,mayhavebueredanyincreasein
demand for A. ocellaris/perculafollowingthereleaseofFinding Nemo.
However,foraquacultureofmarineaquariumshestobeeecvein
aidingconservaonof the sourcehabitats, much work isneededto
transionaquaculturedevelopmentfromdevelopedcountriestothe
economicallymarginalizedcommuniesthatarecustodiansofsource
habitatstoavoidashiineconomicbase(Tlusty,2002).
As parcipants in the marine aquarium trade, public aquariums
present a unique opportunity to facilitate research, supply the ma-
rine aquarium trade (Cassiano et al., 2015) and educate the general
populaceontheanthropogenicstressorsfacingcoralreefecosystems
through their displays oflive organisms (Tlusty et al., 2013). Public
aquariumscanhaveconservaon(Hutchins&Conway,1995),educa-
onalandscienc(Falk&Dierking,2010)impactsonvisitors.Given
thehigherconcentraonofaquariumhobbyistsinaendanceatpub-
licaquariums,comparedtootherpublicspaces,andthelargeoverlap
betweenmarinespeciesonexhibitatpublicaquariumsandthosespe-
ciesinthetrade(Tlustyet al.,2013),publicaquariumshaveanoppor-
tunityto directlyengagevisitorson sustainabilityas itrelatesto the
tradeinliveaquariumorganisms.Such“consumerdriven”approaches
areviewedwithpotenaltotransformtheaquariumtradeintoapos-
iveconservaonforce(Marliave,Mulligan,&Andrews,1995;Tlusty
et al., 2013), and these benets need careful consideraonby an-
tradedirectedpopularmediacampaigns.
|FINDING DORY
Withthe recentreleaseof asequelto Finding Nemooccurringglob-
allyin June2016,it isimportant toconsiderthe potenalrepercus-
sions arising from its release and strategically document its impact
onthetrade. The sequel,Finding Dory,features “Dory” alook-a-like
Paracanthurus hepatus(Acanthuridae)astheprimaryprotagonist.The
sequelstootheranimatedlmsfeaturingthewildlifetradeasamof
havedoneexceponallywell,farexceedingtheglobalsuccessofthe
originallm,andFinding Doryhassimilarlyaractedworldwideview-
ership(Table1).Priortothe lm’srelease,therewerealreadyclaims
inthepopularmediaindicangstocksofP. hepatuswereinevitability
atrisk(Adams,2013).
    
|
 7
MILITZ AND FOALE
Such claims are in contrast with market demand for P. hepatus
following Finding Nemo wherethis species performed a supporng
characterrole toA. ocellaris/percula inthelm. Intheyearfollowing
thelm’srelease(2004),P. hepatusimports into theUSwere25.4%
lowerthantheywerein2000despiteoveralltradeinmarineaquarium
shesincreasingby34.5%(Figure4).In2005,importsdeclinedeven
further to 63.2% ofyear 2000 trade levels as did the sh’srelave
rank which fellfrom tenth, in 2000, to the eenth most imported
shspeciesin2005(Rhyne,Tlusty,Holmberg,et al.,2015).Themost
recentdataavailable(2011)shows~100,000individualsareimported
annuallyintothe US(Figure4).IncontrasttoA. ocellaris/percula,itis
notpossiblethatforeignorunreporteddomescaquaculturebuered
thedemandfromwild-harvestas thetechnologiesforP. hepatus cul-
turehaveyettobedevelopedatacommercialscale.
Shouldthesequelresultinanunexpectedincreaseindemandfor
P. hepatus,theremaybesomeriskposedtothespecies.P. hepatushas
anenrelydierentsuiteoflife-historycharacteriscsfromA. ocellar-
is/perculathatmakesitlessresilienttoshing(Roelofs,2008)andless
amenabletoaquaculture(Moorhead&Zeng,2010).Negaveimpacts
of marine aquarium collecon on P. hepatus populaons have been
suggestedfortheSeribuIslands,IndonesiaandinthePhilippinesprior
toFinding Nemo(Thornhill, 2012).A longlifespanand the lownatu-
ralmortalityfacingacanthurids(Choat&Axe,1996)areatoddswith
removal rates ofjuvenile P. hepatus for the marine aquarium trade.
TheschoolingbehaviourandsiteaachmentofjuvenileP. hepatusto
Acroporaspp.coralsfacilitatethecaptureoflargenumbersofindivid-
ualswheretheyoccur.IntheSolomonIslands,catchperuniteorthas
beenreportedinexcessofoneP. hepatusperminute,colleconbeing
coupled with environmentally destrucve shing pracces (Kinch,
2004b).These praccesencompassscaring P. hepatusdeep into the
branches of an Acropora spp. colonyand extracng the enre coral
colony fromthe reef. On the boat, these coral colonies are broken
apart to extract the hiding P. hepatus juveniles. Such acons subse-
quentlylimittheavailabilityofsuitablehabitatforP. hepatusrecruits
infuturegeneraons. Whileitislaudable that the marine aquarium
tradetargetsjuvenileP. hepatus(Kinch,2004b)leavingthespawning
biomass of adult populaons intact, this can be renderedirrelevant
ifessenaljuvenilehabitatislostorrecruitmentovershingoccurs.
While eorts have been made to reform the sustainability of
the trade to abolish such destrucve shing pracces (e.g. Marine
AquariumCouncil),thedegreetowhichsuchshingmethodsaresll
usedisunknown,andcapacityforenforcementisnotoriouslyweakin
mostsourcecountries(Deeet al.,2014).Inlow-incomecountries,the
highercatch valueassociated withP. hepatus comparedtoA. percula
(SchwerdtnerMáñez et al., 2014) would certainly incenvize shers
tocapturethisspeciestomeetanincreasingdemandandcouldfuela
resurgenceofdestrucveshingpracces.Wildstocksarealsosimul-
taneouslyunder pressurefromsubsistence food sheriesovermost
of P. hepatusgeographicaldistribuon.UnlikeA. ocellaris/percula, the
largeradult size ofP. hepatus makes adultspecimensofthis species
alsosuscepbletocatchforprotein(SchwerdtnerMáñezet al.,2014).
The capacity to assess the sustainabilityof exploing P. hepatus
forboth the food and aquarium sheries is hindered by the lack of
researchonthisspecies.Thepronouncedlackofknowledgeis easily
exemplied bythe comparavely small number of primaryresearch
publicaonsonP. hepatus(Figure5).WiththereleaseofFinding Nemo,
muchwasalreadyknownaboutA. ocellaris/percula,althoughthesame
was not true for P. hepatus with the release of Finding Dory. Most
priorresearchonP. hepatus hasfocusedonaspectsofthesh’sblue
pigmentaon rather than its ecology, life history,populaon status,
exploitaonratesorcapvepropagaon.
FIGURE4 USimportsofP. hepatusincomparisonwithall
fishimports.DashedverticallineidentifiestheUSreleaseof
Finding Nemoon30May2003.DataextractedfromRhyne,Tlusty,
Holmberg,et al.(2015)
5,000,000
5,500,000
6,000,000
6,500,000
7,000,000
7,500,000
8,000,000
8,500,000
9,000,000
0
20,000
40,000
60,000
80,000
100,000
120,000
140,000
160,000
180,000
2000 2002 2004 2006 2008 2010 20122014
Number of individuals
Year
P. hepatu
s
Allfish
Finding
Nemo
FIGURE5 RelativeresearchknowledgebeforeFinding Nemo
(≤2003)andFinding Dory(June2016).Thenumberofresearch
papersreturnedfromtopicsearchesontheWebofScience™fromall
databasesinJune2016usingtheindicatedsearchterms.Onlyresults
withsearchtermsinthepaper’stitleorabstractofrelevancetothe
topicareincluded.SearchesforA. ocellaris and A. perculatermswere
conductedseparatelyandcombined
0
20
40
60
80
100
120
140
160
180
Number of publications
Search terms
Current(June 2016)
≤ 2003
hepatus
aquaculture
Paracanthu
rus
hepatus
ocellari
s/percula
aquacult
ure
Amphiprion
ocellari
s/percula
Marine
Aqua
rium Trade
8 
|
   MILITZ AND FOALE
While domesc aquaculture may havebuered the demand for
wild-caughtA. ocellaris/percula,a similarscenario is highlyunlikelyto
occurwithP. hepatusin theimmediate future.Thereis nolarge-scale
commercial aquacultureproducon of P. hepatusto date despite re-
centresearcheortsclaimingsuccessinculturingthisspecies(Ho,Lee,
Cheng,Jiang, &Chen, 2013;Talbot, 2016).The cultureofcloselyre-
latedspecieshasbeenfraughtwithdicules (Cassianoet al.,2015),
and commercial producon is likely to incur high producon costs
giventhe long larval periodduraon.As analternaveto tradional
aquaculture,post-larvalcaptureandcultureofP. hepatusmaysupple-
mentsupplyfromsherieswhereshrecruingtoreefenvironments
aretrapped(vialighttrapsandcrestnets)andgrowntocommercialsize
ex situ(reviewedinBell,Clua,Hair,Galzin,&Doherty,2009).However,
thecontribuon ofshsupplied throughthismethod tothetrade is
unlikelytoeveramounttosignicantquanesgiventhelownumber
of acanthurids collected bythis method and the high proporon of
thosecollectedprovingtobespeciesoflileinteresttotheaquarium
trade(Bellet al.,2009;Malpot,Teitelbaum,Raumea,&Story,2008).
AfurtherethicalquandaryofpopularizingP. hepatusrelatestoits
suitabilityto lifein capvity.While coralreefshesmostcommonly
collectedforthemarineaquariumtrade(i.e.Pomacentridae)aretypi-
callysite-aachedwithhomerangesofafewmetresorless(Chapman
&Kramer,2000;Jones,2007), thehome rangesofacanthuridshave
been reported to range from 58m to 5km (Claisse et al., 2011;
Claydon,McCormick, & Jones,2012;Green et al., 2015; Mazeroll&
Montgomery,1998). Suchhomeranges arewellin excess oftypical
home aquaria, with 50% of marine aquarium hobbyists maintaining
aquariawithacapacityoflessthan400L(Alencastro,2004).Theas-
ymptocgrowthcurvecharacteriscofacanthuridsisalso problem-
acinthatjuvenilesh,whicharemostcommoninthetrade(Wabnitz
et al.,2003),willquicklyreachtheiradultsizewithintwotofouryears
ofage(Choat&Axe,1996).WiththeadultsizeofP. hepatusreaching
31cm length (Froese& Pauly, 2015), this can be parcularly prob-
lemac whereconsumers purchase juvenile sh without knowledge
ofthese characteriscs. Fishoutgrowingthe connesoftheir home
aquariumisadrivingfactorinthereleaseofcapvemarineaquarium
shesintowaterwayswhichhasthepotenaltoleadtotheestablish-
mentofinvasivespecies(Holmberget al.,2015).
|
TheperceivedimpactofFinding Nemosllaainspublicmediaaen-
on(ABC2016;Dengate,2016)morethanadecadeaeritsrelease.
Thehistoricallack ofdatapertaining tothemarineaquariumtradeis
largelyatfault fortheinabilitytoquantavelyevaluatesuchclaims
unl now. Thanks to new sources of publically available data (i.e.
Rhyne,Tlusty,Holmberg,et al.,2015),amorequantaveanalysisof
the popular media claims has been achieved here. While data gaps
remain(mainlysherycatchexportedtonon-USmarkets),obstrucng
absolutecertainty,the availableevidenceindicates thattheassumed
increasein sheries’catchof A. ocellaris/perculaimmediately follow-
ingthelmdoesnotreectreality.
Finding Dory marks the dawn of new era for the global marine
aquariumtrade.Scienc and aquarium trade communiesarepre-
sentedwithan opportunitytocollaborateandquantavelyaddress
the impact of digital media on an economically signicant wildlife
trade.Evaluangchanges insheries’catch, assessing theextentto
whichdestrucveshing praccesareoccurringand establishinges-
matesofpopulaonstatusforP. hepatusshouldbegiventheutmost
prioritytodeterminewhetherFinding Dorydoesinfactlegimateany
oftheecologicalconcernswehavediscussedinthisperspecve.
The marine aquarium trade oers an opportunityfor global cit-
izens disconnected from coral reef ecosystems to evoke their own
desiretopreserve such habitats fortheenjoyment of futuregener-
aons.Wechallengethoseworkingtowards thepreservaon ofna-
turetoenvision strategiesthatdonotplace theeconomicburdenof
conservaononalreadyeconomicallydisadvantagedshers(aswould
a closure of aquarium sheries). More epistemologically aware and
lesshubriscapproachestobiodiversityconservaoncanbeachieved
by further educang both consumers and opponents of the trade
aboutthesocialandeconomicrealiesofsustainabledevelopmentin
economicallymarginalizedcommunies.

TheauthorswouldliketothankthefoundersofAquariumtradedata.org
forallowingopenaccesstotheirrepositoryofUSimportdata.Asincere
“thankyou”isextendedtoJ.Lichtenbert ofReefPropagaonsInc.,for
provisionofsalesdata presentedinthis study.WealsothankS.Moore
ofSegrestFarms,E.WagnerofProAquaxandG.NortonofSustainable
Reef SuppliersVanuatu for providing accounts on howFinding Nemo
impacted company sales of A. ocellaris/percula. J.Kinch, M. Lane, R.
Talbotandveanonymousreviewersarethankedforhelpfulcomments
andsuggesonsonearlierversionsofthismanuscript.Thisresearchwas
fundedbyaninternalJamesCookUniversitygrant.

ABC(2016)FindingDory:lmreleasesparksconcernforimpactondwin-
dlingglobalclownshpopulaon.Retrievedfromhp://www.abc.net.
au/news/2016-05-17/why-it-might-be-harmful-to-take-your-own-
nemo-or-dory-home/7423120.AccessedonNovember1,2016.
Adams,J.(2013)“Finding Dory”sure tohave hugeimpact on bluehippo
tangs, aquarium hobby at large. Retrieved from hp://reeuilders.
com/2013/05/09/finding-dory-huge-effects-blue-hippo-tangs-
aquarium-hobby-large/.AccessedonJuly1,2015.
Adams,W.M.,Aveling,R.,Brockington,D.,Dickson,B.,Ellio,J.,Huon,J.,
…Wolmer,W.(2004).Biodiversityconservaonandtheeradicaonof
poverty.Science,306,1146–1149.
Alencastro,L.A. (2004)Hobbyists’ preferences for marine ornamental sh: a
discrete choice analysis of source, price, guarantee and ecolabeling ari-
butes.PhDthesis,UniversityofFlorida,Gainesville.110pages.
Allen, G. R. (1973). The anemoneshes: Their classicaon and biology.
NeptuneCity:TFHPublicaonsInc.,Ltd.
Andrews, C. (1990). The ornamental sh trade and sh conservaon.
Journal of Fish Biology,37,53–59.
Balboa,C.(2003).TheconsumponofmarineornamentalshintheUnited
States:AdescriponfromUSimportdata.InJ.Cato,&C.Brown(Eds.),
Marine ornamental species: Collecon, culture and conservaon(pp.65–
76).Ames:IowaStatePress.
    
|
 9
MILITZ AND FOALE
BBC(2010)Harry Poerblamedfor fuelling Indiaowls’demise. Retrieved
fromhp://www.bbc.com/news/world-south-asia-11673226.Accessed
onJuly1,2015.
Bell,J.D.,Clua,E.,Hair,C.A.,Galzin,R.,&Doherty,P.J.(2009).Thecapture
andculture ofpost-larvalshand invertebratesforthemarine orna-
mentaltrade.Reviews in Fisheries Science,17,223–240.
Bellwood,D.R.,Hughes,T.P.,Folke,C.,&Nyström,M.(2004).Confronng
thecoralreefcrisis.Nature,429,827–833.
Benne,E.,Neiland,A.,Anang,E.,Bannerman,P.,Rahman,A.A.,Huq,S.,…
Clerveaux,W.(2001).Towardsabeerunderstandingofconictman-
agement in tropical sheries: Evidencefrom Ghana, Bangladesh and
theCaribbean.Marine Policy,25,365–376.
Bruckner,A.(2001).Trackingthetradeinornamentalcoralreeforganisms:
The importance of CITES and its limitaons. Aquarium Science and
Conservaon,31,79–94.
Capini,C.A.,Tissot,B.N., Carroll,M.S., Walsh,W.J.,&Peck,S. (2004).
Compeng perspecves in resource protecon: The case of ma-
rineprotectedareas inWest Hawaii.Society & Natural Resources,17,
763–778.
Cassiano,E.J.,Wienrich,M.L.,Waltzek,T.B.,Steckler,N.K.,Barden,K.
P., & Watson,C. A. (2015). Ulizing public aquariums and molecular
idencaontechniquestoaddressthelarviculturepotenalofPacic
bluetangs(Paracanthurus hepatus),semicircleangelsh (Pomacanthus
semicirulatus),andbannersh(Heniochussp.).Aquaculture Internaonal,
23,253–265.
Chan,T.,&Sadovy,Y.(1998).Proleofthemarineaquariumshtrade in
HongKong.Aquarium Science and Conservaon,2,197–213.
Chapman,F.,&Fitz-Coy,S.(1997).UnitedStatesofAmericatradeinorna-
mentalsh.Journal of the World Aquaculture Society,28,1–10.
Chapman, M. R., & Kramer, D.(2000). Movements of shes within and
amongfringingcoralreefsinBarbados.Environmental Biology of Fishes,
57,11–24.
Choat,J.H.,&Axe,L.M.(1996).Growthandlongevityinacanthuridshes;
ananalysisof otolithincrements.Marine Ecology Progress Series,134,
15–26.
Claisse,J.T.,Clark,T.B., Schumacher,B.D., McTee,S.A.,Bushnell,M.E.,
Callan,C.K.,…Parrish,J.D.(2011).Convenonaltaggingandacousc
telemetryofasmallsurgeonsh,Zebrasoma avescens,inastructurally
complex coral reef environment. Environmental Biology of Fishes, 91,
185–201.
Clark,J.A.,&May,R.M.(2002).Taxonomicbiasinconservaonresearch.
Science,297,191–192.
Claydon,J.A. B.,McCormick,M.I., &Jones,G.P.(2012).Paernsofmi-
graonbetweenfeedingandspawningsitesinacoralreefsurgeonsh.
Coral Reefs,31,77–87.
Cohen,P.,Tapala,S.,Rikio,A.,Kuki,E.,Sori,F.,Hilly,Z.,…Foale,S.(2014).
Developinga commonunderstanding oftaxonomyforsheriesman-
agementinnorthVellaLavella,SolomonIslands.SPC Tradional Marine
Resource Management and Knowledge Informaon Bullen,33,3–12.
Dee,L.E.,Horii,S.S.,&Thornhill,D.J.(2014).Conservaonandmanage-
mentofornamental coralreefwildlife: Successes,shortcomings, and
futuredirecons.Biological Conservaon,169,225–237.
Dengate, C. (2016) The ‘Finding Nemo Eect’ is plundering wild
clown sh stocks. Retrieved from hp://www.hungtonpost.com.
au/2016/05/10/the-nding-nemo-eect-is-plundering-wild-clown-
sh-stocks/.AccessedonNovember1,2016.
Duarte,C.M.,Dennison,W.C.,Orth,R.J.W.,&Carruthers,T.J.B.(2008).
The charisma of coastal ecosystems: Addressing the imbalance.
Estuaries and Coasts,31,233–238.
Edwards, A., & Shepherd, A. (1992). Environmental implicaons of
aquarium-shcolleconintheMaldives,withproposalsforregulaon.
Environmental Conservaon,19,61–72.
Fabinyi,M. (2010).Theintensicaon of shingandtherise of tourism:
Compeng coastal livelihoodsin the Calamianes islands, Philippines.
Human Ecology,38,415–427.
Faun,D.G.,& Allen,G.R. (1997). Field guide to anemoneshes and their
host sea anemones.Perth:WesternAustralianMuseum.160pp.
Falk,J.H.,&Dierking,L.D.(2010).The95percentsoluon:Schoolisnot
wheremostAmericanslearn mostoftheirscience.American Scienst,
98,486–501.
Ferse,S.C.A.,Kniweis,L.,Krause,G.,Maddusila,A.,&Glaser,M.(2013).
LivelihoodsofornamentalcoralshermeninsouthSulawesi/Indonesia:
Implicaonsformanagement.Coastal Management,40,525–555.
Fickling,D. (2003)Reefsat riskaer Disneylm. Retrievedfrom hps://
www.theguardian.com/world/2003/nov/21/environment.film.
AccessedonNovember1,2016.
Foale,S.(1998).What’sinaname?AnanalysisoftheWestNggela(Solomon
Islands) sh taxonomy. SPC Tradional Marine Resource Management
and Knowledge Informaon Bullen,9,2–19.
Foale,S.,Dyer,M.,& Kinch,J.(2016).Thevalueoftropicalbiodiversityin
ruralMelanesia.Valuaon Studies,4,11–39.
Foale,S.,&Macintyre,M.(2005).Greenfantasies:Photographicrepresen-
taonsofbiodiversityandecotourismintheWesternPacic.Journal of
Polical Ecology,13,1–21.
Froese,R.,&Pauly,D.(2015)FishBase.Retrievedfromwww.shbase.org.
AccessedonAugust18,2015.
Green,E.(2003).Internaonaltradeinmarineaquariumspecies:Usingthe
GlobalMarineAquariumDatabase.InJ.Cato,&C.Brown(Eds.),Marine
ornamental species: Collecon, culture, and conservaon (pp. 31–48).
Ames:IowaStatePress.
Green,A.L.,Maypa,A.P.,Almany,G.R.,Rhodes,K.L.,Weeks,R.,Abesamis,
R.A.,…White,A.T.(2015).Larvaldispersalandmovementpaernsof
coralreefshes, andimplicaonsformarine reservenetwork design.
Biological Reviews,90,1215–1247.
Hall,R.J.,Milner-Gulland,E.J.,&Courchamp,F.(2008).Endangeringthe
endangered: The eectsof perceived rarity on species exploitaon.
Conservaon Leers,1,75–81.
Ho,Y.S.,Lee,P.S.,Cheng,M.J.,Jiang,Y.Y.,&Chen,W.Y.(2013).Arcial
propagaonof paleesurgeonsh (Paracanthurus hepatus).Journal of
Taiwan Fisheries Research,21,83–95.
Holmberg,R.J.,Tlusty,M.F.,Futoma,E.,Kaufman,L.,Morris,J.A.,&Rhyne,
A.L.(2015).The800-poundgrouperintheroom:Asymptocbodysize
andinvasivenessofmarineaquariumshes.Marine Policy,53,7–12.
Hughes,T.P.,Baird,A.H.,Bellwood,D.R.,Card,M.,Connolly,S.R.,Folke,
C.,…Roughgarden,J.(2003).Climatechange,humanimpacts,andthe
resilienceofcoralreefs.Science,301,929–933.
Hutchins,M., &Conway,W.G.(1995). BeyondNoah’sArk: Theevolving
roleof modern zoologicalparks and aquariums ineldconservaon.
Internaonal Zoo Yearbook,34,117–130.
Hviding,E.,&Bayliss-Smith,T.(2000).Islands of rainforest: Agroforestry, log-
ging and eco-tourism in Solomon Islands.Aldershot:Ashgate.
Inagaki, K. (1990). The eectsof raising animals on children’s biological
knowledge.Brish Journal of Developmental Psychology,8,119–129.
Jones, K. M. M. (2007). Distribuon of behavioursand species interac-
onswithin homerange contoursin veCaribbean reefsh species.
Environmental Biology of Fishes,80,35–49.
Jones,R.J.,&Steven,A.L.(1997).Eectsofcyanideoncoralsinrelaonto
cyanideshingonreefs.Marine and Freshwater Research,48,517–522.
Kinch, J. (2004a) MAQTRAC and reef ecology survey results for the Marau
Sound, Guadalcanal, the Solomon Islands. Suva: Marine Aquarium
Council.55pp.
Kinch, J. (2004b).The marine aquarium trade in the Solomon Islands, with
specic notes on Marau Sound, Guadalcanal. Suva: Marine Aquarium
Council.38pp.
Kniweis,L.,&Wol,M.(2010).Livecoraltradeimpactsonthemushroom
coral Heliofungia acniformis in Indonesia: Potenal future manage-
mentapproaches.Biological Conservaon,143,2722–2729.
Kolm,N.,&Berglund,A.(2003).Wildpopulaonsofareefshsuerfrom
the“nondestrucve”aquarium tradeshery.Conservaon Biology,17,
910–914.
10 
|
   MILITZ AND FOALE
Larkin,S.,&Degner,R.(2001).TheUSwholesalemarketformarineorna-
mentals.Aquarium Science and Conservaon,3,13–24.
MAC(2006)Report on roving collectors: Case studies from Indonesia and the
Philippines.Maka:MarineAquariumCouncil.100pp.
Madduppa,H.H.,Juterzenka,K.,Syakir,M.,&Kockzius,M.(2014).Socio-
economyofmarine ornamentalshery andits impactonthepopula-
on structure ofthe clown anemonesh Amphiprion ocellaris and its
hostanemonesinSpermondeArchipelago,Indonesia.Ocean & Coastal
Management,100,41–50.
Maison, K.A., & Graham, K.S. (2015) Status review report: Orange clown-
sh (Amphiprion percula). Naonal Oceanic and Atmospheric
Administraon.67pp.
Majanen, T. (2007). Resource use conicts in Mabini and Tingloy, the
Philippines.Marine Policy,31,480–487.
Mak,K.K.W.,Yanase,H.,&Renneberg,R.(2005).Cyanideshingandcy-
anidedeteconincoralreefshusingchemicaltests andbiosensors.
Biosensors and Bioelectronics,20,2581–2593.
Malpot,E.,Teitelbaum,A.,Raumea,K.,&Story,R.(2008).Preliminary assess-
ment of the potenal for post-larval sh capture and culture Aitutaki, Cook
Islands.Noumea:SecretariatofthePacicCommunity.45pp.
Marliave,J., Mulligan, M., & Andrews, C. (1995).Advisory logos for pet-
trade shes in public aquariums. Internaonal Zoo Yearbook, 34,
101–104.
Mazeroll,A.I.,&Montgomery,W.L.(1998).Dailymigraonsofacoralreef
sh in the RedSea (Gulf of Aqaba, Israel):Iniaon and orientaon.
Copeia,1998,893–905.
McAllister,D.(1995).Status oftheworld’socean anditsbiodiversity.Sea
Wind,9,1–72.
McClenachan, L., Cooper,A. B., Carpenter, K. E., & Dulvy,N. K. (2012).
Exnconriskandbolenecksintheconservaonofcharismacma-
rinespecies.Conservaon Leets,5,73–80.
Militz,T.A., Kinch,J., Foale,S., &Southgate, P.C.(2016).Fish rejecons
inthe marineaquariumtrade: aninial casestudyraisesconcernfor
village-basedsheries.PLoS ONE,11,e0151624.
Moorhead, J. A., & Zeng, C. (2010). Development of capve breeding
techniques formarine ornamental sh: A review.Reviews in Fisheries
Science,18,315–343.
Murray,J.M.,Watson,G.J.,Giangrande,A.,Licciano,M.,&Bentley,M.G.
(2012).Managingthemarineaquariumtrade:Revealingthedatagaps
usingornamentalpolychaetes.PLoS One,7,e29543.
Nijman, V. (2009). An overview of internaonal wildlife trade from
SoutheastAsia.Biodiversity Conservaon,19,1101–1114.
Olivier,K.(2003).Worldtradeinornamentalspecies.InJ.Cato,&C.Brown
(Eds.), Marine ornamental species: Collecon, culture and conservaon
(pp.141–166).Ames:IowaStatePress.
Paul,E.S.,&Serpell,J.A.(1993).Childhoodpetkeepingandhumanea-
tudesinyoungadulthood.Animal Welfare,2,321–337.
Pauly, D., Watson, R., & Alder, J. (2005). Global trends in word sher-
ies: Impacts on marine ecosystems and food security. Philosophical
Transacons of the Royal Society B: Biological Sciences,360,5–12.
Prokop,P.,Prokop,M., &Tunniclie,S.D.(2008).Eectsofkeeping ani-
malsas pets onchildren’sconceptsof vertebratesand invertebrates.
Internaonal Journal of Science Educaon,30,431–449.
Prokop,P.,&Tunniclie,S.D.(2010).Eectsofhavingpetsathomeonchil-
dren’satudes towards popular and unpopular animals. Anthrozoös,
23,21–35.
Prosek,J.(2010).BeaufulFriendship.Naonal Geographic Magazine,217,
120–124.
Ramsay,N.F.,Ng,P.K.A.,O’Riordan,R.M.,&Chou,L.M.(2007).Thered-
earedslider(Trachemysscripta elegans)inAsia:Areview.InF.Gherardi
(Ed.),Biological invaders in inland waters: Proles, distribuon, and threats
(pp.161–174).Netherlands:Springer.
Rhyne,A.L.(2010).Theimportanceofopenaccessintechnologytransfer
formarineornamentalaquaculture:Thecaseofhobbyist-ledbreeding
iniaves.AACL Bioux,3,269–272.
Rhyne,A.,Rotjan,R.,Bruckner,A.,&Tlusty,M.(2009).Crawlingtocollapse:
Ecologicallyunsound ornamental invertebrate sheries. PLoS One, 4,
e8413.
Rhyne,A.L., &Tlusty,M. F.(2012).Trendsinthe marineaquarium trade:
The inuence of global economics and technology.AACL Bioux, 5,
99–102.
Rhyne, A. L., Tlusty, M. F., Holmberg, R. J., & Szczebak, J. (2015)
Aquariumtradedata.org.Accessedon24November,2015.
Rhyne,A.L.,Tlusty,M.F.,&Kaufman,L.(2012).Long-termtrendsofcoral
importsintotheUnitedStatesindicatefutureopportuniesforecosys-
temandsocietalbenets.Conservaon Leers,5,478–485.
Rhyne,A. L.,Tlusty, M.F., Schoeld, P.J., Kaufman, L.,Morris, J.A. Jr,&
Bruckner,A.W.(2012).Revealingtheappeteofthemarineaquarium
shtrade:ThevolumeandbiodiversityofshimportedintotheUnited
States.PLoS One,7,e35808.
Rhyne,A. L., Tlusty, M. F.,Szczebak, J., & Holmberg,R. J. (2015). When
onecode=2,300species:Expandingourunderstandingofthetradein
aquacmarinewildlife.PeerJ PrePrints,3,e1447.
Roelofs, A. (2008) Ecological risk assessment of the Queensland marine
aquarium sh shery.Brisbane:Department ofPrimary Industriesand
Fisheries.18pp.
Ross,M.A.(1984).AquantavestudyofthestonycoralsheryinCebu,
Philippines.Marine Ecology,5,75–91.
Ross,M.,Pawley,A.,&Osmond,M.(2011).The lexicon of Proto Oceanic: The
culture and environment of ancestral Oceanic society. 4. Animals(Vol.4).
Canberra:PacicLinguiscs,AustralianNaonalUniversity.
Rubec,P.J.,Cruz,F.,Pra,V.,Oellers,R.,McCullough,B.,&Lallo,F.(2001).
Cyanide-freenet-caughtshforthemarineaquariumtrade.Aquarium
Science and Conservaon,3,253–263.
Schmidt,C., &Kunzmann,A.(2005).Post-harvest mortalityinthe marine
aquariumtrade:AcasestudyofanIndonesianexportfacility.SPC Live
Reef Fish Informaon Bullen,13,3–12.
SchwerdtnerMáñez, K., Dandava,L., & Ekau,W. (2014). Fishingthe last
froner:Theintroduconofthemarineaquariumtradeanditsimpact
onlocal shingcommuniesinPapuaNewGuinea.Marine Policy,44,
279–286.
Semmens,B.X.,Buhle,E.R.,Salomon,A.K.,&Paengill-Semmens,C.V.(2004).
Ahotspotofnon-navemarineshes:Evidencefortheaquariumtradeas
aninvasionpathway.Marine Ecology Progress Series,266,239–244.
Shuman,C. S.,Hodgson,G., &Ambrose,R.F.(2005). Populaonimpacts
ofcollecngseaanemonesandanemoneshforthemarineaquarium
tradeinthePhilippines.Coral Reefs,24,564–573.
Stevenson,T.C.,&Tissot,B.N.(2013).Evaluangmarineprotectedareas
for managing marine resource conict in Hawaii. Marine Policy, 39,
215–223.
Sweet,T.(2013).Capve-breeding:Stateoftheart2013.CORAL Magazine,
10,54–57.
Sweet,T.(2014).Capve-breeding:Stateoftheart2014.CORAL Magazine,
11,43–45.
Talbot,R.(2016)‘Dory’bredincapvityforrstme.Retrievedfromhp://
news.naonalgeographic.com/2016/07/wildlife-blue-tang-aquarium-
trade/.AccessedNovember1,2016.
Teitelbaum,A.,Yeeng,B.,Kinch,J.,&Ponia,B. (2010).Aquariumtradein
thePacic.SPC Live Reef Fish Informaon Bullen,19,3–6.
Thornhill,D.J.(2012).Ecological impacts and pracces of the Coral Reef wild-
life trade.Washington:DefendersofWildlife.
Tisdell,C.,&Nantha,H.S.(2007).Comparisonoffundinganddemandfor
theconservaonofthecharismac koalawith thoseforthe crically
endangered wombat Lasiorhinus kreii. Vertebrate Conservaon and
Biodiversity,16,435–455.
Tissot,B.N.,&Hallacher,L.E.(2003).Eectsofaquariumcollectorsonreef
shesinKona,Hawaii.Conservaon Biology,17,1759–1768.
Tissot,B.N.,Walsh,W.J.,&Hixon,M.A.(2009).Hawaiianislandsmarine
ecosystemcasestudy:Ecosystem-andcommunity-basedmanagement
inHawaii.Coastal Management,37,255–273.
    
|
 11
MILITZ AND FOALE
Tlusty,M.(2002).Thebenetsandrisksofaquaculturalproduconforthe
aquariumtrade.Aquaculture,205,203–219.
Tlusty, M. R., Rhyne, A. L., Kaufman, L., Hutchins, M., Reid, G. M.,
Andrews,C.,…Dowd,S. (2013).Opportuniesforpublicaquariums
toincreasethesustainabilityoftheaquacanimaltrade.Zoo Biology,
32,1–12.
VanHelden, F. (1998). Between cash and convicon. The social context of
the Bismarck-ramu integrated conservaon and development project.Port
Moresby:NaonalResearchInstute.
Wabnitz,C.,Taylor,M.,Green,E.,&Razak,T.(2003).From ocean to aquar-
ium.Cambridge:UNEP-WCMC.
Watson,T.(1997)Theiguananextdoor.Retrievedfromhp://www.anap-
sid.org/usnews.html.AccessedJuly1,2015.
Wijesekara, R., & Yakupiyage, A. (2001). Ornamental sh industry in
Sri Lanka: Present status and future trends. Aquarium Science and
Conservaon,3,241–252.
Williams,I. D.,Walsh,W.J., Classie,J.T.,Tissot,B.N., &Stamoulis, K.A.
(2009).Impacts ofa Hawaiianmarine protectedareanetworkonthe
abundance and shery sustainability of theyellow tang, Zebrasoma
avescens. Biological Conservaon,142,1066–1073.
Wood,E.(1985).Exploitaon of Coral Reef shes for the aquarium trade.Ross
onWye:MarineConservaonSociety.
Wood, E. (2001). Global advances in conservaon and management of
marine ornamental resources. Aquarium Science and Conservaon, 3,
65–77.
Yeeng, B.,& Pakoa,K. (2005).ThemanagementchallengesofVanuatu’s
developingmarine aquariumsh trade. SPC Live Reef Fish Informaon
Bullen,13,30–31.
MilitzTAandFoaleS.The“Nemo
Eect”:PerceponandrealityofFinding Nemo’simpactonthe
marineaquariumsheries.Fish Fish. 2017;00:1–11. doi:
10.1111/faf.12202.
... While the large fish surveyed in the study attracted little interest from zoo visitors, clownfish showed high attracting power for visitors. It is possible that prior exposure to the species in media resulted in zoo visitors being more interested in this relatively small fish (Ward et al., 1998;Militz & Foale, 2017) We encourage zoos and aquaria to view this cultural influence as an opportunity to increase conservation awareness and output. Zoo visitors may not yet be aware of the plight of many amphibian, fish and invertebrate species, but with sufficient exposure they may become interested, and even champion the species (Militz & Foale, 2017). ...
... It is possible that prior exposure to the species in media resulted in zoo visitors being more interested in this relatively small fish (Ward et al., 1998;Militz & Foale, 2017) We encourage zoos and aquaria to view this cultural influence as an opportunity to increase conservation awareness and output. Zoo visitors may not yet be aware of the plight of many amphibian, fish and invertebrate species, but with sufficient exposure they may become interested, and even champion the species (Militz & Foale, 2017). Zoos should aim not only to market large, charismatic animals, but also to showcase smaller, threatened species from speciose taxonomic groups (Maple, 2003). ...
Article
Full-text available
There is evidence to suggest that visitors to zoological collections prefer to see large, active mammals. To attract visitors, zoos and aquariums might be tempted to select for mammal species in their collection plans to maintain visitor interest. However, collections also play a role in endangered species breeding, many of which are not mammals. Using International Zoo Yearbook data, we explored the number of species of mammals, birds, reptiles, amphibians, fish and invertebrates housed in collections across the globe. These data were compared against three hypothetical collection plan strategies: a) marketing, as shown by the prevalence of each taxon in toy retail; b) biodiversity, in which taxa in proportions that reflect their wild abundance, and c) in which all six taxa are represented equally. The global zoological collection plan indicated that on average, collections contain more bird species than other taxonomic groups, followed by fish, mammals, invertebrates, reptiles and amphibians.
... While the large fish surveyed in the study attracted little interest from zoo visitors, clownfish showed high attracting power for visitors. It is possible that prior exposure to the species in media resulted in zoo visitors being more interested in this relatively small fish (Ward et al., 1998;Militz & Foale, 2017) We encourage zoos and aquaria to view this cultural influence as an opportunity to increase conservation awareness and output. Zoo visitors may not yet be aware of the plight of many amphibian, fish and invertebrate species, but with sufficient exposure they may become interested, and even champion the species (Militz & Foale, 2017). ...
... It is possible that prior exposure to the species in media resulted in zoo visitors being more interested in this relatively small fish (Ward et al., 1998;Militz & Foale, 2017) We encourage zoos and aquaria to view this cultural influence as an opportunity to increase conservation awareness and output. Zoo visitors may not yet be aware of the plight of many amphibian, fish and invertebrate species, but with sufficient exposure they may become interested, and even champion the species (Militz & Foale, 2017). Zoos should aim not only to market large, charismatic animals, but also to showcase smaller, threatened species from speciose taxonomic groups (Maple, 2003). ...
Article
Mixed-species exhibits (MSE) are a common occurrence within zoological collections. They increase species diversity and provide immersive yet naturalistic experiences for both species and visitors. Although mixed-species exhibits are a common housing method for animals in zoological collections, the literature on these enclosures is limited. Animals, keepers, and visitors have the potential to benefit, or be challenged MSE, so investigations of the benefits and limitations of this practice is necessary. This study investigated the presence of MSE in a range of England zoological collections and in zoo and aquarium-based literature. Additionally, zoo professional perception of MSE was investigated using online questionnaires. The study identified a mismatch between the types of species that feature in zoo and aquarium MSE, versus those that appear in the MSE literature. MSEs were identified as being enriching from both an animal and visitor perspective, yet there was sometimes limited information on the research output to support these statements. There is scope for zoo and aquarium professionals to widen the diversity of MSE projects, to ensure that the risks and benefits of this housing method are fully investigated.
... Motion pictures are increasingly important in shaping our perceptions and understanding of the natural world as well as creating strong emotional connections with individual species (Visch et al. 2010;Sandbrook et al. 2015;Militz and Foale 2017). The film Bambi (1942) is an early example of how emotive films can be in shaping an audience's perceptions and changing views, with strong attitudinal changes towards deer hunting witnessed after its release (Hastings 1996). ...
... Following the release of the Disney film Finding Nemo in 2003, several members of the aquarium trade suggested that the consumer demand for clownfish increased (McClenachan et al. 2012), yet, other evidence indicates no clear global increase in fishery catches of A. ocellaris and A. percula after the movie (Militz and Foale 2017). The same finding occurred with the Pixar character, Dory, the blue tang (Paracanthurus hepatus) featured in Finding Dory. ...
... Silk et al. (2017) noted that animated animal-focused movies affect public awareness about featured species (e.g., fossa Cryptoprocta ferox featured in the movie "Madagascar", Spix's macaw Cyanopsitta spixii in "Rio" and blue tang Paracanthurus hepatus in "Finding Dory"). A possible down side is that such films could spur an upsurge in the pet trade (Militz & Foale 2017). ...
Book
Full-text available
The book, written by an international team of interdisciplinary researchers, is composed of a series of scientific essays touching on themes of roots of the idea of primeval forest in the connection with Białowieża Primeval Forest (BPF) and scientific recognition of BPF and European bison in European research. We trace specimens of European bison from BPF in European nature museums and show their significance in building the iconic status of the species, we follow the perception of BPF in popular writings and collect information on initiatives to reintroduce wild animals as an attempt to re-create the fauna of a primeval forest. We also attempt to describe the evolution of the visons of European bison in art and its connection with the development of knowledge on the species. Lastly, we conclude that contemporary conservation needs a new definition of primeval forest, taking into account the history of this term in the context of BPF.
... Fish of the genus Amphiprion, commonly known as clownfish or anemonefish, belong to the Pomacentridae family and account for approximately 43% of the total traded species [30]. In particular, ocellaris clownfish are the most popular fish among aquarists thanks to their behaviour and beautiful colours, especially since the release of the movie Finding Nemo (Nemo is an ocellaris clownfish) by Disney and Pixar in 2003, the so-called "Nemo effect" [31]. ...
Article
Full-text available
This paper is part of a series of studies aimed at understanding the potential exploitation of the biomass of the polychaete worm Sabella spallanzanii (Gmelin, 1791), which is obtained as a by-product of an innovative Integrated Multi-Trophic Aquaculture (IMTA) system. IMTA systems are designed according to an ecosystem approach with the aim to reduce marine monoculture impact while further increasing production via exploitation of valuable by-products. S. spallanzanii can remove large amounts of suspended matter by filtering large volumes of water per hour and performs well as an extractive organism under IMTA; however, it currently lacks any economic value, thus hindering its sustainable large-scale implementation. However, S. spallazanii has the potential to become competitive as a newcomer in fish bait, as an ornamental organism, and in fish feed markets. Notably, sabella meal has already been successfully tested as an attractant in an innovative fish feed. Here, we refer to the use of sabella meal as the main component (60%) in the formulation of a novel aquarium fish feed. Following the biochemical analysis of farmed sabella meal, the experimental feed was formulated by adding spirulina (25%) and dry garlic (15%) in such proportion as to be isoproteic and isoenergetic to the commercial control feed. After preliminary observations of the palatability of sabella meal for several tropical fish species, the novel experimental feed was tested on ocellaris clownfish, Amphiprion ocellaris (Cuvier, 1830), by evaluating their growth response in a 70-day feeding trial. The fish seemed to enjoy the experimental feed at least as much as the control, and both the control and treatment groups showed no significant differences in weight gain (p = 0.46), specific growth rate (p = 0.76), and feed conversion ratio (p = 0.48), reinforcing the suitability of S. spallanzanii as a viable source of animal proteins to be employed in the fish feed industry in a circular economy perspective.
... However, children as young as five years are able to distinguish between fantasy and reality in films [54], as well as to distinguish animations as not 'real' [55]. This may help explain why major animated films have been shown to generate interest in different species [14], but do not significantly influence the pet trade [24]. ...
Article
Full-text available
For over 100 years, non-human primates (primates) have been a part of the now hundred-billion-dollar global film industry in a variety of capacities. Their use in the film industry is of concern due to the negative welfare effects on individuals, the potential for increased pet trade, and the conservation impacts of public perception. While the effects on human perception of using live primates in film have been studied, little research has been performed on their appearance in animation and none in computer-generated imagery (CGI). We aimed to investigate how the portrayal of primates varied between depiction medium types and how this related to the films’ performance with critics and in the box office. We observed 151 primates in 101 different English-speaking films that debuted between 2000 and 2019. For each appearance we recorded aspects of primate portrayals based on accuracy, anthropomorphism, environment, and agency displayed, along with the depiction medium. We used structural equation models to depict the highest likelihood of the portrayal aspects on the medium’s relationship to the films gross profit worldwide and film critic consensus scores. We found that over the 20-year time frame, use of live primates has decreased, CGI has increased, and animations have remained relatively steady. While animation had no significant relationship to gross profit or critic consensus, both were significantly lower for films that used live primates and were significantly higher for films that used CGI primates. Due to the steady increase in the use of the CGI medium and its positive relationship with gross profit and critic consensus, it could have great effects on people’s perceptions of primates and implications for conservation efforts.
Preprint
Full-text available
The global marine aquarium trade has created new local markets across the planet, including in Indonesia, now the second largest exporting country of marine aquarium fish in the world. Participating in the global aquarium trade has been touted as a potentially sustainable addition to fisher livelihoods, but scant data exist showing the numbers of fish coming off the reef and how those fish contribute to income. To determine how small-scale fishers and traders incorporate aquarium species in their livelihoods, we examine source-level aquarium fish collecting and trading data in the Banggai Archipelago, a region in Central Sulawesi that has become a significant source for popular aquarium fishes. From one year of buying and selling data at the fisher, intermediary buyer, and regional trader levels we show that catching and selling fish for the aquarium trade represents an average of nearly 20% of annual income and provides added diversity and flexibility to fisher and trader livelihoods in the region, especially during seasons of rough weather.
Article
Full-text available
Anemonefishes are an iconic group of coral reef fish particularly known for their mutualistic relationship with sea anemones. This mutualism is especially intriguing as it likely prompted the rapid diversification of anemonefish. Understanding the genomic architecture underlying this process has indeed become one of the holy grails of evolutionary research in these fishes. Recently, anemonefishes have also been used as a model system to study the molecular basis of highly complex traits such as color patterning, social sex change, larval dispersal and life span. Extensive genomic resources including several high-quality reference genomes, a linkage map, and various genetic tools have indeed enabled the identification of genomic features controlling some of these fascinating attributes, but also provided insights into the molecular mechanisms underlying adaptive responses to changing environments. Here, we review the latest findings and new avenues of research that have led to this group of fish being regarded as a model for evolutionary genomics.
Article
Biosensor technology represents a novel tool with several areas of application, such as biomedical and physicochemical ones. In this review, we considered this technology's application to physiological analyses in the area of biological response to climate change and environmental monitoring, with particular attention to the coral reefs. For their peculiar biology and sensitivity, coral reefs are considered nowadays as one of the most endangered marine ecosystems. Because of their natural and economical importance, analytical methods for evaluating the reef's health status are highly required to improve their protection. Several techniques based on different approaches are applied to coral reef research, mostly represented by remote surveys, in situ morphological observations, and laboratory-bound approaches. Only lately, some physiological in situ techniques have been proposed. The development of de-centralized biosensors could represent a terrific enhancement towards a real-time comprehension of coral reef health, especially in those areas that are scarcely accessible and/or with a low amount of sample to test. Here we provide a detailed discussion about morphological and physiological aspects of the coral reef in situ analyses, providing the readers a critical overview of the advantages and limitations of current methodologies for coral reef monitoring. The desirable role of biosensors along the critical field of coral reefs’ assessment is highlighted and analyzed as a potential scenario for overcoming current limitations in climate change and local anthropogenic stressors monitoring.
Book
Full-text available
See website: https://sites.google.com/site/theoceaniclexiconproject/
Article
Full-text available
In this paper we discuss differences in the ways transnational conservationists and Melanesian farmers, hunters and fishers value 'biodiversity'. The money for conservation projects in developing countries originates from people who are embedded in a capitalist system, which allows engagement with nature as an abstract entity. Their western education has given them a scientific/ evolutionary-based worldview, which attributes intrinsic value to all species (and particular arrangements of species, e.g. rainforests and coral reefs), irrespective of economic value or ecosystem function. Because this value system is mostly not shared by the custodians of the biodiversity that conservationists want to save, alternative tactics and arguments are utilised. These inevitably take the form of so-called 'win-win' economic rationales for preserving biodiversity, most of which do not work well (e.g. bioprospecting, ecotourism, non-timber forest products, environmental certification schemes, payments for ecosystem services, etc.), for reasons which we detail. Agriculture-and aquaculture-based livelihoods appear to enjoy more success than the 'win-win' options but do not necessarily obviate or deter further biodiversity loss. Artisanal use of species-poor but productive and resilient pelagic fisheries is increasing. These ecological and economic realities bring into sharp focus the importance of understanding differences in value systems for successful biodiversity conservation in the tropics.
Article
Full-text available
The trade of marine ornamental animals for home and public aquariums has grown into a major global industry. Since the 1990s, the aquarium hobby has shifted focus from fish to miniature reef ecosystems. Millions of marine fish and invertebrates are removed from coral reefs and associated habitats each year, and the majority are imported into the United States, with the remainder imported by Europe, Japan, and a handful of other countries. This shift in aquarium complexity demands increases in not only the volume but also the diversity of species harvested by collectors, who now must supply the trade with species sought for both aesthetics as well as ecosystem services (e.g., species that benefit the life support services of aquariums). Despite the recent growth and diversification of the aquarium trade, to date, data collection is not mandatory, and hence comprehensive information on species volume or diversity is wanting. The lack of this information makes it impossible to study trade pathways. Without species-specific volume and diversity data, it is unclear how importing and exporting governments can oversee this industry effectively. It is also unclear how sustainability should be encouraged given the paucity of data. To expand our knowledge and understanding of this trade, and to be able to effectively communicate this new understanding, we introduce the Marine Aquarium Biodiversity and Trade Flow online database (https://www.aquariumtradedata.org/). This tool was created as a means to assess the volume and diversity of marine fishes and/or invertebrates imported into the US over four years (2005, 2008, 2009, and 2011) and one month of additional data in 2000. It is available online for perusal by the public which will help communicate this new understanding in the trade of aquatic wildlife. To create this online tool, invoices pertaining to shipments of live marine fish and invertebrates were scanned and analyzed for species name, quantity, country of origin, and city of import destination. The results for October 2000 as well as the year between June 2004 and May 2005 have been published (Rhyne et al. 2012, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035808; Balboa 2003). Here we focus on the later three years of data and also produce an estimate of fish to create complete calendar years for 2000, 2004, and 2005. The three-year aggregate totals indicate that just under 2,300 fish and 725 invertebrate species were imported into the US, even though each year, just shy of 1,800 fish and 550 invertebrate species were traded. Overall, the total number of live marine animals decreased between 2008 and 2011. In 2008, 2009, and 2011, the total number of individual fish (8.2, 7.3, and 6.9 million) and invertebrates (4.2, 3.7, and 3.6 million) assessed by analyzing the invoice data are roughly 60% of the total volumes recorded through the LEMIS dataset.
Article
Full-text available
The trade of marine ornamental animals for home and public aquariums has grown into a major global industry. Since the 1990s, the aquarium hobby has shifted focus from fish to miniature reef ecosystems. Millions of marine fish and invertebrates are removed from coral reefs and associated habitats each year, and the majority are imported into the United States, with the remainder imported by Europe, Japan, and a handful of other countries. This shift in aquarium complexity demands increases in not only the volume but also the diversity of species harvested by collectors, who now must supply the trade with species sought for both aesthetics as well as ecosystem services (e.g., species that benefit the life support services of aquariums). Despite the recent growth and diversification of the aquarium trade, to date, data collection is not mandatory, and hence comprehensive information on species volume or diversity is wanting. The lack of this information makes it impossible to study trade pathways. Without species-specific volume and diversity data, it is unclear how importing and exporting governments can oversee this industry effectively. It is also unclear how sustainability should be encouraged given the paucity of data. To expand our knowledge and understanding of this trade, and to be able to effectively communicate this new understanding, we introduce the Marine Aquarium Biodiversity and Trade Flow online database (https://www.aquariumtradedata.org/). This tool was created as a means to assess the volume and diversity of marine fishes and/or invertebrates imported into the US over four years (2005, 2008, 2009, and 2011) and one month of additional data in 2000. It is available online for perusal by the public which will help communicate this new understanding in the trade of aquatic wildlife. To create this online tool, invoices pertaining to shipments of live marine fish and invertebrates were scanned and analyzed for species name, quantity, country of origin, and city of import destination. The results for October 2000 as well as the year between June 2004 and May 2005 have been published (Rhyne et al. 2012, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035808; Balboa 2003). Here we focus on the later three years of data and also produce an estimate of fish to create complete calendar years for 2000, 2004, and 2005. The three-year aggregate totals indicate that just under 2,300 fish and 725 invertebrate species were imported into the US, even though each year, just shy of 1,800 fish and 550 invertebrate species were traded. Overall, the total number of live marine animals decreased between 2008 and 2011. In 2008, 2009, and 2011, the total number of individual fish (8.2, 7.3, and 6.9 million) and invertebrates (4.2, 3.7, and 3.6 million) assessed by analyzing the invoice data are roughly 60% of the total volumes recorded through the LEMIS dataset.
Article
Full-text available
The scientific research and education communities have long had a goal of advancing the public's understanding of science. Another emerging area of research investigates science-related hobbies. Research conducted by Marni Berendsen, education researcher and project director of the NASA Night Sky Network, showed that amateur astronomy club members lacking college-level astronomy training often knew more general astronomy than did undergraduate astronomy majors. Supporting evidence for the important role that out-of-school experiences have on children's learning is emerging from a variety of fronts. For example, a recent meta-analysis of experimental and quasi-experimental evaluation findings for after-school programs showed that such programs need not be academically focused in order to have academic impact. It seems reasonable to assume that out-of-school science-learning experiences are fundamental to supporting and facilitating lifelong science learning. The dominant assumption behind much current educational policy and practice is that school is the only place where and when children learn.
Article
Full-text available
A major difficulty in managing wildlife trade is the reliance on trade data (rather than capture data) to monitor exploitation of wild populations. Collected organisms that die or are rejected before a point of sale often go unreported. For the global marine aquarium trade, identifying the loss of collected fish from rejection, prior to export, is a first step in assessing true collection levels. This study takes a detailed look at fish rejections by buyers before export using the Papua New Guinea marine aquarium fishery as a case study. Utilizing collection invoices detailing the species and quantity of fish (Actinopteri and Elasmobranchii) accepted or rejected by the exporting company it was determined that, over a six month period, 24.2% of the total fish catch reported (n = 13,886) was rejected. Of the ten most collected fish families, rejection frequency was highest for the Apogonidae (54.2%), Chaetodontidae (26.3%), and Acanthuridae (18.2%) and lowest for Labridae (6.6%) and Hemiscylliidae (0.7%). The most frequently cited reasons for rejection were fin damage (45.6% of cases), undersized fish (21.8%), and fish deemed too thin (11.1%). Despite fishers receiving feedback on invoices explaining rejections, there was no improvement in rejection frequencies over time (r = -0.33, P = 0.15) with weekly rejection frequencies being highly inconsistent (range: 2.8% to 79.4%; s = 16.3%). These findings suggest that export/import statistics can greatly underestimate collection for the marine aquarium trade as additional factors such as fisher discards, escapees, post-collection mortalities, and unregulated domestic trade would further contribute to this disparity.
Article
Full-text available
The marine aquarium hobby is a global industry with trade chains on six continents. This industry is undergoing rapid changes in hobbyistpreferences that are in part driven by global economies and technology. In an effort to better assess the past trends and help provide insightinto future growth and demand, we assessed three different trade data sources, the United States-State of Florida Marine Life Landings, CITESstony coral imports, and United States Fish and Wildlife Service’s Law Enforcement Information Systems import data for ‘live rock’. Data forthe past 10 years were analyzed and a clear trend of growth followed by decline was observed with the peak and degree of decline varying forthe different trade categories. While the global economic downturn decreased trade volumes across the board other forces have dramatically affectedthe importation of coral reef products. ‘Live Rock’ and Florida produced ‘live sand’ dramatically decreased two years prior to the globaleconomic recession. The decline of these trade categories coincides with rapid changes in technology used to maintain captive reef aquariumswhich allowed for the advent of the smaller “nano” reef tanks. Importing and exporting countries, CITES and other international governmentbodies, concerned Non-Governmental Organizations and scientist would greatly benefit from a deeper understanding of this industry from aproducer and consumer standpoint in order to better predict how the marine aquarium hobby will be shaped by external forces in the future.