Article

Dark chocolate administration improves working memory in students

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Background Flavonoids have positive effects on health, including the nervous system. High flavonoid content can be found in chocolate, especially dark chocolate. Verbal working memory is important for reasoning, language comprehension, planning, and spatial processing. The purpose of this study was to evaluate the effect of a single dose of dark and white chocolate administration on verbal working memory in medical students. Methods A study of experimental pre-post test design with controls was conducted on 60 students. These were simply randomized into two groups: the first group was supplemented with white chocolate as control, and the second group received dark chocolate, at an identical single dose of 100 g. Working memory was measured with the digit span forwards (DSF) and the digit span backwards (DSB) tests, before, at 1 hour, and at 3 hours after intervention. Independent t and Mann-Whitney tests were used for data analysis. Results Scores for DSF and DSB in control and treatment groups were similar at baseline. At 1 hour after dark and white chocolate administration, DSF and DSB scores were not significantly different between the two groups (p=0.832; p=0.683). Supplementation of dark chocolate at 3 hours after intervention significantly increased DSB scores compared to white chocolate (p=0.041), but DSF scores were not significantly different between the two groups (p=0.204). Conclusions Dark chocolate as a single dose is capable of improving verbal working memory in students, 3 hours after its consumption. Since cocoa contains multiple bioactive compounds, one approach might be to examine the neurocognitive effects of combinations of potential functional ingredients.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Background: Flavonoids are polyphenolic compounds of plant origin with antioxidant effects. Flavonoids inhibit LDL oxidation and reduce thrombotic tendency in vitro. Little is known about how cocoa powder and dark chocolate, rich sources of polyphenols, affect these cardiovascular disease risk factors. Objective: We evaluated the effects of a diet high in cocoa powder and dark chocolate (CP-DC diet) on LDL oxidative susceptibility, serum total antioxidant capacity, and urinary prostaglandin concentrations. Design: We conducted a randomized, 2-period, crossover study in 23 healthy subjects fed 2 diets: an average American diet (AAD) controlled for fiber, caffeine, and theobromine and an AAD supplemented with 22 g cocoa powder and 16 g dark chocolate (CP-DC diet), providing ≈466 mg procyanidins/d. Results: LDL oxidation lag time was ≈8% greater (P = 0.01) after the CP-DC diet than after the AAD. Serum total antioxidant capacity measured by oxygen radical absorbance capacity was ≈4% greater (P = 0.04) after the CP-DC diet than after the AAD and was positively correlated with LDL oxidation lag time (r = 0.32, P = 0.03). HDL cholesterol was 4% greater after the CP-DC diet (P = 0.02) than after the AAD; however, LDL-HDL ratios were not significantly different. Twenty-four–hour urinary excretion of thromboxane B2 and 6-keto-prostaglandin F1α and the ratio of the 2 compounds were not significantly different between the 2 diets. Conclusion: Cocoa powder and dark chocolate may favorably affect cardiovascular disease risk status by modestly reducing LDL oxidation susceptibility, increasing serum total antioxidant capacity and HDL-cholesterol concentrations, and not adversely affecting prostaglandins.
Article
Full-text available
Recent evidence has indicated that flavanol consumption may have many health benefits in humans, including improved cognitive activities. The aim was to evaluate the effect of flavanol consumption on cognitive performance in cognitively intact elderly subjects. This was a double-blind, controlled, parallel-arm study conducted in 90 elderly individuals without clinical evidence of cognitive dysfunction who were randomly assigned to consume daily for 8 wk a drink containing 993 mg [high flavanol (HF)], 520 mg [intermediate flavanol (IF)], or 48 mg [low flavanol (LF)] cocoa flavanols (CFs). Cognitive function was assessed at baseline and after 8 wk by using the Mini-Mental State Examination (MMSE), the Trail Making Test (TMT) A and B, and the Verbal Fluency Test (VFT). The changes in MMSE score in response to the 3 different treatments were not different. In contrast, there was a positive impact of the intervention on specific aspects of cognitive function. Mean changes (±SEs) in the time required to complete the TMT A and B after consumption of the HF (-8.6 ± 0.4 and -16.5 ± 0.8 s, respectively) and IF (-6.7 ± 0.5 and -14.2 ± 0.5 s, respectively) drinks significantly (P < 0.0001) differed from that after consumption of the LF drinks (-0.8 ± 1.6 and -1.1 ± 0.7 s, respectively). Similarly, VFT scores significantly improved among all treatment groups, but the magnitude of improvement in the VFT score was significantly (P < 0.0001) greater in the HF group (7.7 ± 1.1 words/60 s) than in the IF (3.6 ± 1.2 words/60 s) and LF (1.3 ± 0.5 words/60 s) groups. Significantly different improvements in insulin resistance (P < 0.0001), blood pressure (P < 0.0001), and lipid peroxidation (P = 0.001) were also observed for the HF and IF groups in comparison with the LF group. Changes in insulin resistance explained ∼17% of changes in composite z score (partial r(2) = 0.1703, P < 0.0001). This dietary intervention study provides evidence that regular CF consumption can reduce some measures of age-related cognitive dysfunction, possibly through an improvement in insulin sensitivity. These data suggest that the habitual intake of flavanols can support healthy cognitive function with age. This trial was registered at www.controlled-trials.com as ISRCTN68970511. © 2015 American Society for Nutrition.
Article
Full-text available
The purpose of this study was to explore the effect of demographic variables on Digit Span test (DS) performance in an educationally diverse elderly population and to provide normative information. The DS was administered to 784 community-dwelling volunteers aged 60-90 years with an educational history of from zero to 25 years of full-time education. People with serious neurological, medical and psychiatric disorders (including dementia) were excluded. Age, education and gender were found to be significantly associated with performance on the DS. Based on the results obtained, DS norms were stratified by age (2 strata), education (3 strata), and gender (2 strata). Our results on DS performance suggest that both attention and working memory are influenced by age, education and gender. The present study provides reasonably comprehensive normative information on the DS for an educationally diverse elderly population.
Article
Full-text available
There is considerable interest in the potential of a group of dietary-derived phytochemicals known as flavonoids in modulating neuronal function and thereby influencing memory, learning and cognitive function. The present review begins by detailing the molecular events that underlie the acquisition and consolidation of new memories in the brain in order to provide a critical background to understanding the impact of flavonoid-rich diets or pure flavonoids on memory. Data suggests that despite limited brain bioavailability, dietary supplementation with flavonoid-rich foods, such as blueberry, green tea and Ginkgo biloba lead to significant reversals of age-related deficits on spatial memory and learning. Furthermore, animal and cellular studies suggest that the mechanisms underpinning their ability to induce improvements in memory are linked to the potential of absorbed flavonoids and their metabolites to interact with and modulate critical signalling pathways, transcription factors and gene and/or protein expression which control memory and learning processes in the hippocampus; the brain structure where spatial learning occurs. Overall, current evidence suggests that human translation of these animal investigations are warranted, as are further studies, to better understand the precise cause-and-effect relationship between flavonoid intake and cognitive outputs.
Article
Full-text available
Cocoa flavanols (CF) influence physiological processes in ways that suggest their consumption may improve aspects of neural function, and previous studies have found positive influences of CF on cognitive performance. In this preliminary study we investigated whether visual, as well as cognitive, function is influenced by an acute dose of CF in young adults. We employed a randomized, single-blinded, order counterbalanced, crossover design in which 30 healthy adults consumed both dark chocolate containing 720mg CF and a matched quantity of white chocolate, with a one week interval between testing sessions. Visual contrast sensitivity was assessed by reading numbers that became progressively more similar in luminance to their background. Motion sensitivity was assessed firstly by measuring the threshold proportion of coherently moving signal dots that could be detected against a background of random motion, and secondly by determining the minimum time required to detect motion direction in a display containing a high proportion of coherent motion. Cognitive performance was assessed using a visual spatial working memory for location task and a choice reaction time task designed to engage processes of sustained attention and inhibition. Relative to the control condition, CF improved visual contrast sensitivity and reduced the time required to detect motion direction, but had no statistically reliable effect on the minimum proportion of coherent motion that could be detected. In terms of cognitive performance, CF improved spatial memory and performance on some aspects of the choice reaction time task. As well as extending the range of cognitive tasks that are known to be influenced by CF consumption, this is the first report of acute effects of CF on the efficiency of visual function. These acute effects can be explained by increased cerebral blood flow caused by CF, although in the case of contrast sensitivity there may be an additional contribution from CF induced retinal blood flow changes.
Article
Full-text available
Cocoa flavanols (CF) positively influence physiological processes in ways that suggest their consumption may improve aspects of cognitive function. This study investigated the acute cognitive and subjective effects of CF consumption during sustained mental demand. In this randomized, controlled, double-blinded, balanced, three period crossover trial 30 healthy adults consumed drinks containing 520 mg, 994 mg CF and a matched control, with a three-day washout between drinks. Assessments included the state anxiety inventory and repeated 10-min cycles of a Cognitive Demand Battery comprising of two serial subtraction tasks (Serial Threes and Serial Sevens), a Rapid Visual Information Processing (RVIP) task and a 'mental fatigue' scale, over the course of 1 h. Consumption of both 520 mg and 994 mg CF significantly improved Serial Threes performance. The 994 mg CF beverage significantly speeded RVIP responses but also resulted in more errors during Serial Sevens. Increases in self-reported 'mental fatigue' were significantly attenuated by the consumption of the 520 mg CF beverage only. This is the first report of acute cognitive improvements following CF consumption in healthy adults. While the mechanisms underlying the effects are unknown they may be related to known effects of CF on endothelial function and blood flow.
Article
Full-text available
Today, prolonged wakefulness is a widespread phenomenon. Nevertheless, in the field of sleep and wakefulness, several unanswered questions remain. Prolonged wakefulness can be due to acute total sleep deprivation (SD) or to chronic partial sleep restriction. Although the latter is more common in everyday life, the effects of total SD have been examined more thoroughly. Both total and partial SD induce adverse changes in cognitive performance. First and foremost, total SD impairs attention and working memory, but it also affects other functions, such as long-term memory and decision-making. Partial SD is found to influence attention, especially vigilance. Studies on its effects on more demanding cognitive functions are lacking. Coping with SD depends on several factors, especially aging and gender. Also interindividual differences in responses are substantial. In addition to coping with SD, recovering from it also deserves attention. Cognitive recovery processes, although insufficiently studied, seem to be more demanding in partial sleep restriction than in total SD.
Article
Full-text available
Chocolate contains a wide range of antioxidants that includes soluble phenolic compounds (phenolic acids, catechin, epicatechin, and proanthocyanidins), insoluble polymeric phenolics and methylxanthines. The objective of this study was to determine phenolic and theobromine contents in dark (DC), milk (MC), and white (WC) chocolates commonly found in the Malaysian marketplace. Total phenolic and flavonoids were determined by means of a spectrometric assay, while catechin, epicatechin and theobromine were quantified using a reverse-phase HPLC method. Dark chocolates exhibited the highest phenolics and flavonoids contents, followed by milk and white chocolates. Catechin and epicatechin were major flavonoids detected in dark chocolates. Theobromine was detected in dark and milk chocolates, but not in white chocolates. A high correlation (r= 0.93) between total phenolic and flavonoid contents, indicating that the major phenolic compounds in dark chocolates belong to the flavonoid class. When nutrition and health promotion are of concern, dark chocolates would be recommended over milk and white chocolates owing to their higher contents of antioxidant phenolic compounds.
Article
Full-text available
In a cross-sectional study, we examined the relation between intake of 3 common foodstuffs that contain flavonoids (chocolate, wine, and tea) and cognitive performance. 2031 participants (70-74 y, 55% women) recruited from the population-based Hordaland Health Study in Norway underwent cognitive testing. A cognitive test battery included the Kendrick Object Learning Test, Trail Making Test, part A (TMT-A), modified versions of the Digit Symbol Test, Block Design, Mini-Mental State Examination, and Controlled Oral Word Association Test. Poor cognitive performance was defined as a score in the highest decile for the TMT-A and in the lowest decile for all other tests. A self-reported FFQ was used to assess habitual food intake. Participants who consumed chocolate, wine, or tea had significantly better mean test scores and lower prevalence of poor cognitive performance than those who did not. Participants who consumed all 3 studied items had the best test scores and the lowest risks for poor test performance. The associations between intake of these foodstuffs and cognition were dose dependent, with maximum effect at intakes of approximately 10 g/d for chocolate and approximately 75-100 mL/d for wine, but approximately linear for tea. Most cognitive functions tested were influenced by intake of these 3 foodstuffs. The effect was most pronounced for wine and modestly weaker for chocolate intake. Thus, in the elderly, a diet high in some flavonoid-rich foods is associated with better performance in several cognitive abilities in a dose-dependent manner.
Article
Full-text available
Numerous studies indicate that flavanols may exert significant vascular protection because of their antioxidant properties and increased nitric oxide bioavailability. In turn, nitric oxide bioavailability deeply influences insulin-stimulated glucose uptake and vascular tone. Thus, flavanols may also exert positive metabolic and pressor effects. The objective was to compare the effects of either dark or white chocolate bars on blood pressure and glucose and insulin responses to an oral-glucose-tolerance test in healthy subjects. After a 7-d cocoa-free run-in phase, 15 healthy subjects were randomly assigned to receive for 15 d either 100 g dark chocolate bars, which contained approximately 500 mg polyphenols, or 90 g white chocolate bars, which presumably contained no polyphenols. Successively, subjects entered a further cocoa-free washout phase of 7 d and then were crossed over to the other condition. Oral-glucose-tolerance tests were performed at the end of each period to calculate the homeostasis model assessment of insulin resistance (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI); blood pressure was measured daily. HOMA-IR was significantly lower after dark than after white chocolate ingestion (0.94 +/- 0.42 compared with 1.72 +/- 0.62; P < 0.001), and QUICKI was significantly higher after dark than after white chocolate ingestion (0.398 +/- 0.039 compared with 0356 +/- 0.023; P = 0.001). Although within normal values, systolic blood pressure was lower after dark than after white chocolate ingestion (107.5 +/- 8.6 compared with 113.9 +/- 8.4 mm Hg; P < 0.05). Dark, but not white, chocolate decreases blood pressure and improves insulin sensitivity in healthy persons.
Article
Full-text available
Working memory (WM) span tasks-and in particular, counting span, operation span, and reading span tasks-are widely used measures of WM capacity. Despite their popularity, however, there has never been a comprehensive analysis of the merits of WM span tasks as measurement tools. Here, we review the genesis of these tasks and discuss how and why they came to be so influential. In so doing, we address the reliability and validity of the tasks, and we consider more technical aspects of the tasks, such as optimal administration and scoring procedures. Finally, we discuss statistical and methodological techniques that have commonly been used in conjunction with WM span tasks, such as latent variable analysis and extreme-groups designs.
Article
Full-text available
Working memory refers to the temporary retention of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be stored for longer periods of time through active maintenance or rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behaviour. Empirical studies of working memory using neuroscientific techniques, such as neuronal recordings in monkeys or functional neuroimaging in humans, have advanced our knowledge of the underlying neural mechanisms of working memory. This rich dataset can be reconciled with behavioural findings derived from investigating the cognitive mechanisms underlying working memory. In this paper, I review the progress that has been made towards this effort by illustrating how investigations of the neural mechanisms underlying working memory can be influenced by cognitive models and, in turn, how cognitive models can be shaped and modified by neuroscientific data. One conclusion that arises from this research is that working memory can be viewed as neither a unitary nor a dedicated system. A network of brain regions, including the prefrontal cortex (PFC), is critical for the active maintenance of internal representations that are necessary for goal-directed behaviour. Thus, working memory is not localized to a single brain region but probably is an emergent property of the functional interactions between the PFC and the rest of the brain.
Article
Full-text available
The decline in estrogen concentrations in women after menopause can contribute to health related changes including impairments in cognition, especially memory. Because of the health concerns related to hormone replacement therapy (HRT), alternative approaches to treat menopausal symptoms, such as nutritional supplements and/or diet containing isoflavones, are of interest. This study investigated whether soy isoflavones (soy milk and supplement) could improve cognitive functioning in healthy, postmenopausal women. PARTICIPANTS, INTERVENTION AND DESIGN: A total of 79 postmenopausal women, 48-65 years of age, completed a double-blind, placebo-controlled trial in which they were randomly assigned to one of three experimental groups: cow's milk and a placebo supplement (control); soy milk and placebo supplement (soy milk, 72 mg isoflavones/day); or cow's milk and isoflavone supplement (isoflavone supplement, 70 mg isoflavones/day). Cognitive functioning was assessed using various cognitive tasks before the intervention (baseline) and after the intervention (test). In contrast to predictions, soy isoflavones did not improve selective attention (Stroop task), visual long-term memory (pattern recognition), short-term visuospatial memory (Benton Visual Retention Test), or visuo-spatial working memory (color match task). Also, the soy milk group showed a decline in verbal working memory (Digit Ordering Task) compared to the soy supplement and control groups. Soy isoflavones consumed as a food or supplement over a 16-week period did not improve or appreciably affect cognitive functioning in healthy, postmenopausal women.
Book
Principles of clinical research methids
Article
Working memory is a system that maintains and manipulates information for several seconds during the planning and execution of many cognitive tasks. Traditionally, it was believed that the neuronal underpinning of working memory is stationary persistent firing of selective neuronal populations. Recent advances introduced new ideas regarding possible mechanisms of working memory, such as short-term synaptic facilitation, precise tuning of recurrent excitation and inhibition, and intrinsic network dynamics. These ideas are motivated by computational considerations and careful analysis of experimental data. Taken together, they may indicate the plethora of different processes underlying working memory in the brain.
Article
The consumption of high-cacao-content chocolate has been associated with positive health benefits ascribed to flavanol [corrected] antioxidants derived from the ground, fermented cocoa seeds of Theobroma cacao. However, flavanols [corrected] impart a bitter, astringent flavor to foodstuffs, frequently masked in chocolates and confections by aggressive processing and adulteration with other flavors. Recent reports have implied that not all varieties of dark chocolate are created equally, and significant caveats exist regarding its potential health benefits. It is perhaps not surprising that extensive processing, dilution, and the addition of flavor modifiers may improve the palatability of chocolate, but could have negative nutritional and clinical benefits. This article examines the chemical composition of chocolate and the clinical data associated with the consumption of flavonoid-rich cocoa. We review the steps in chocolate manufacturing that directly affect the antioxidant levels in chocolate products, and the caveats associated with claims of health benefits from the consumption of dark chocolate.
Article
There is increasing evidence that the consumption of flavonoid-rich foods can beneficially influence normal cognitive function. In addition, a growing number of flavonoids have been shown to inhibit the development of Alzheimer disease (AD)-like pathology and to reverse deficits in cognition in rodent models, suggestive of potential therapeutic utility in dementia. The actions of flavonoid-rich foods (e.g., green tea, blueberry, and cocoa) seem to be mediated by the direct interactions of absorbed flavonoids and their metabolites with a number of cellular and molecular targets. For example, their specific interactions within the ERK and PI3-kinase/Akt signaling pathways, at the level of receptors or kinases, have been shown to increase the expression of neuroprotective and neuromodulatory proteins and increase the number of, and strength of, connections between neurons. Concurrently, their effects on the vascular system may also lead to enhancements in cognitive performance through increased brain blood flow and an ability to initiate neurogenesis in the hippocampus. Additional mechanisms have been suggested for the ability of flavonoids to delay the initiation of and/or slow the progression of AD-like pathology and related neurodegenerative disorders, including a potential to inhibit neuronal apoptosis triggered by neurotoxic species (e.g., oxidative stress and neuroinflammation) or disrupt amyloid β aggregation and effects on amyloid precursor protein processing through the inhibition of β-secretase (BACE-1) and/or activation of α-secretase (ADAM10). Together, these processes act to maintain the number and quality of synaptic connections in key brain regions and thus flavonoids have the potential to prevent the progression of neurodegenerative pathologies and to promote cognitive performance.
Article
There is no valid instrument currently in use at acute-care hospitals in Hong Kong to aid the detection of cognitive impairment. The objectives of this study were to (1) validate the Digit Span Test (DST) in the identification and differentiation of dementia and delirium; and (2) determine the prevalence of major cognitive impairment in elderly people in an acute medical unit. During the study period from January to February 2010, 144 patients aged 75 years or more who had had unplanned medical admissions were assessed by nurses, using the Digit Span Forwards (DSF) and the Digit Span Backwards (DSB) tests. The DST scores were compared with the psychiatrists' DSM-IV-based diagnoses. Receiver Operating Characteristics curve (ROC) was used in conjunction with sensitivity and specificity measures to assess the performance of DST. The prevalence rates of dementia alone, delirium alone and delirium superimposed on dementia were 21.5%, 9% and 9% respectively. The prior case-note documentation rate was 13.2% for dementia and 2.8% for delirium. Regarding the detection of major cognitive impairment, the ROC curve of DSB showed a sensitivity of 0.77 and specificity of 0.78 at the optimal cutoff of <3. A significant association between scores on the DST and the Cantonese version of the Mini-Mental State Examination (CMMSE) was found in this study (p < 0.05 for DSF, p = 0.00 for DSB). Dementia and delirium were prevalent, yet under-recognized, in acute medical geriatric inpatients. The DSB is an effective tool in identifying patients with major cognitive impairment.
Article
This study examined the extent to which digits forward (DF) or digits backward (DB) account for variance in parent ratings of attention and executive function in children. The sample (n=90) included children with no diagnosis and children with a range of clinical problems, including attention deficit hyperactivity disorder (ADHD). Clinical groups differed from the No Diagnosis group on cognitive ability as well as achievement. Once cognitive ability was controlled, no group differences emerged for Digit Span or digits forward; notably, the ADHD-Predominantly Inattentive group was able to recall significantly more digits backward than the ADHD-Combined Type group. Regression analyses indicated that Full Scale IQ explained significant variance in parent ratings of attention and executive function; DF emerged as a significant predictor only for one measure of attention. When only children with ADHD were considered, DF no longer was a significant predictor. Results support the notion that DF and DB are differing constructs, as well as highlighting the importance of controlling for cognitive ability in consideration of group differences on behavioral measures.
  • R Corti
  • A J Flammer
  • N K Hollenberg
Corti R, Flammer AJ, Hollenberg NK, et al. Cocoa and cardiovascular health Circulation 2009;119:1433-41.