This work falls within the general problematic of designing measurement tools adapted to the specificities of fluid flows. The development of digital imaging, combined with visualization techniques commonly employed in experimental fluid dynamics, enables to extract the apparent flow motion from image sequences, thanks to computer vision methods. The objective is to propose a novel "optical flow"
... [Show full abstract] algorithm dedicated to the multiscale motion estimation of fluid flows, using a wavelet representation of the unknown motion field. This wavelet formulation introduces a multiscale framework, conveniently adapted both to the optical flow estimation and to the representation of turbulent motion fields. It enables as well to design divergence-free bases, thereby respecting a constraint given by fluid dynamics. Several regularization schemes are proposed; the simplest consists in truncating the basis at fine scales, while the most complex builds high-order schemes from the connection coefficients of the wavelet basis. Proposed methods are evaluated on synthetic images in the first place, then on actual experimental images of characteristic fluid flows. Results are compared to those given by the usual "cross-correlations", highlighting the advantages and limits of the wavelet-based estimator.