Content uploaded by Oliver Kayser
Author content
All content in this area was uploaded by Oliver Kayser on Oct 13, 2017
Content may be subject to copyright.
HANDBOOK OF
CANNABIS AND
RELATED
PATHOLOGIES
Handbook of Cannabis and Related Pathologies
V.R. Preedy, Editor
ACADEMIC
PRESS
To adopt this book for course use, visit http://textbooks.elsevier.com.
Companion We b Site:
http://store.elsevier.com/product.jsp?&isbn=9780128007563
TOOLS ALL NEEDS
FOR YOUR
textbooks.elsevier.com
TEACHING
ELSEVIER
science &
technology books
Available Resources:
20 additional chapters are available online - see contents list.
HANDBOOK OF
CANNABIS AND
RELATED
PATHOLOGIES
BIOLOGY, PHARMACOLOGY,
DIAGNOSIS, AND TREATMENT
Edited by
V.R. PReedy
BSc, Phd, dSc, FRSB, FRSh, FRIPhh, FRSPh, FRcPath, FRSc
Faculty of Life Sciences and Medicine,
King’s College London, London, United Kingdom
Academic Press is an imprint of Elsevier
125 London Wall, London EC2Y 5AS, United Kingdom
525 B Street, Suite 1800, San Diego, CA 92101-4495, United States
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom
Copyright © 2017 Elsevier Inc. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.
This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).
Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden
our understanding, changes in research methods, professional practices, or medical treatment may become
necessary.
Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for whom
they have a professional responsibility.
To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence
or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the
material herein.
Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
ISBN: 978-0-12-800756-3
For information on all Academic Press publications
visit our website at https://www.elsevier.com/
Publisher: Mara Conner
Acquisitions Editor: April Farr
Editorial Project Manager: Timothy Bennett
Production Project Manager: Chris Wortley
Designer: Mark Rogers
Typeset by Thomson Digital
Dedicated to my friend Chris Bird
Dedication
Page left intentionally blank
vii
Contents
List of Contributors xv
Preface xxv
I
SETTING THE SCENE, BOTANICAL,
GENERAL AND INTERNATIONAL
ASPECTS
1. The Cannabis Plant: Botanical Aspects 3
S. FARAG, O. KAYSER
2. The Biosynthesis of Cannabinoids 13
F. DEGENHARDT, F. STEHLE, O. KAYSER
3. Increasing Plant Concentrations of THC and
Implications on Health Related Disorders 24
V. VINDENES, J. MØRLAND
4. Age as a Predictor of Cannabis Use 33
D. BERGEN-CICO, R.D. CICO
5. Lifetime Cannabis Use and Cognition
in Psychosis Spectrum Disorders 44
M.J. CUESTA, A.M. SÁNCHEZ-TORRES, R. LORENTE-OMEÑACA,
L. MORENO-IZCO
6. A Profile of Synthetic Cannabinoid Users 53
A.N. SANDERS, J.M. STOGNER
7. Dual Disorders in Cannabis Misuse 61
F. ARIAS-HORCAJADAS, N. SZERMAN, P. VEGA,
I. BASURTE, B. MESÍAS
8. Cannabis Use and Cognitive Function 70
C. EVREN
9. Cannabis, Migration, and Psychosis Onset 79
A. KOKONA, I. TARRICONE, M. DI FORTI, E. CARRA
10. The Global Epidemiology and Disease
Burden of Cannabis Use and Dependence 89
L. DEGENHARDT, A.J. FERRARI, W.D. HALL
11. International Aspects of Cannabis Use
and Misuse: the Australian Perspective 101
D.J. ALLSOP, W.D. HALL
12. International Aspects of Cannabis Use
and Misuse: Egypt 110
O.M.E. ABDEL-SALAM, A.F. GALAL, S.A. ELSHEBINEY,
A.E.D.M. GAAFAR
13. Cannabis Body Packing: A Caribbean
Perspective 122
S.O. CAWICH, D. DAN, V. NARAYNSINGH
II
PERSONAL, SOCIAL AND
COMMUNITY ASPECTS
OF CANNABIS USE
14. Gender Differences in Cannabis
Use Disorders 131
R. SECADES-VILLA, S. FERNÁNDEZ-ARTAMENDI
15. The Role of Age in the Onset and Further
Development of Cannabis Use Disorders 138
S. BEHRENDT
16. Effects of Cannabis Use on Neurocognition
in Adolescents and Emerging Adults 151
N.E. WRIGHT, K.E. MAPLE, K.M. LISDAHL
Contents
viii CONTENTS
17. Correlates and Consequences of Prenatal
Cannabis Exposure (PCE): Identifying and
Characterizing Vulnerable Maternal
Populations and Determining Outcomes for
Exposed Offspring 160
L.K. BRENTS
18. Cannabis and Clubbing: Relevance of
Cannabis and Polydrug Use in the Clubbing
Culture Today 171
D.A. HERZIG, S. BACHMANN
19. Cannabis and Sexual Behavior 180
G. SCIMECA, C. CHISARI, M.R.A. MUSCATELLO,
C. CEDRO, G. PANDOLFO, R. ZOCCALI, A. BRUNO
20. Friendships and Cannabis Use 188
J.H. BOMAN IV, C. HECK
21. Students’ Knowledge of Cannabis 198
M. DROZD, J. SOBCZYN
´
SKI
22. Childhood Trauma and Cannabis:
Risk Factors in Severe Mental Disorders? 208
M. AAS, I. MELLE
23. Parent’s Influence on Children’s
Cannabis Use 215
S. MILLER, J.T. SIEGEL, W.D. CRANO
24. Cannabis Users and Premorbid
Intellectual Quotient 223
L. FERRARO, L. SIDELI, D. LA BARBERA
25. Cannabis and Traffic Accidents 234
R.B. DE BONI, R.P. LIMBERGER, T.R.V. SOUSA
III
CANNABIS, BEHAVIOR,
PSYCHOPATHOLOGY AND
NEUROPATHOLOGY
26. Drug-Related Pictures, Attentional Bias,
and Cannabis Use 247
D. ASMARO
27. Cannabis Use and First-Episode Psychosis
Patients (FEP) 257
I. GONZÁLEZ-ORTEGA, M. MARTÍNEZ-CENGOTITABENGOA,
A. GONZÁLEZ-PINTO
28. Cannabis, Associative Memory, fMRI,
and the Implicit Association Test 267
S.L. AMES, A.W. STACY
29. Stress Response in Cannabis Users
and Psychosis 278
M. BIOQUE, H.-H. TSENG, R. MIZRAHI
30. Motivation in Chronic Cannabis Use 288
R. HIRST, L. SODOS, S. GADE, L. RATHKE
31. Cannabis Use and Its Association to Mental
Illness: A Focus on Mood and Anxiety Disorders 298
S. LEV-RAN, D. FEINGOLD
32. Cannabis Use and Well-Being 308
J. ALLEN, M.D. HOLDER, Z. WALSH
33. Craving and Cannabis: A Potential Paradox 317
M.J. LOFLIN, M. EARLEYWINE
34. Delta-9-Tetrahydrocannabinol and
Catalepsy-Like Immobilization 326
N. EGASHIRA
35. The Interactive Nature of Cannabis
and Schizophrenia Risk Genes 335
T. KARL, J.C. ARNOLD
36. Neuroimaging Findings in Adolescent
Cannabis Use and Early Phase Psychosis 345
C.E. CROCKER, J. COOKEY, P.G. TIBBO
37. Cannabis Smoking in Adult Schizophrenia:
A Cognitive and Functional Magnetic
Resonance Imaging Perspective 357
K. PAQUIN, T. LECOMTE, S. POTVIN
38. The Long-Lasting Effects of Cannabis
Use on Movement and Brain Regions that
Control Movement 372
G. TODD, J.M. WHITE
CONTENTS ix
39. Assessment of Cannabis Acute Effects on
Driving Skills: Laboratory, Simulator, and
On-Road Studies 379
P. BONDALLAZ, H. CHTIOUI, B. FAVRAT, E. FORNARI,
C. GIROUD, P. MAEDER
40. Chronic Cannabis Use and Axonal Fiber
Connectivity 391
N. SOLOWIJ, A. ZALESKY, V. LORENZETTI, M. YÜCEL
41. Microglial Activation and Cannabis
Exposure 401
L. CUTANDO, R. MALDONADO, A. OZAITA
42. Cannabis and Psychosis: Correlation,
Causality, and Consequences 413
D. BASU, P. PARAKH
43. Cannabis Use in Bipolar Disorder 422
T.V. LAGERBERG
44. Cannabis Use in Epilepsy—Risks
and Benefits 431
M. HOLTKAMP, M. HAMERLE
45. Cannabis, Cannabinoids, and Visceral Pain 439
R. ABALO, M. ISABEL MARTÍN-FONTELLES
46. Cannabis and Postoperative Analgesia 450
S.O CAWICH, U. DEONARINE, H.E. HARDING, D. DAN,
V. NARAYNSINGH
IV
CANNABIS, ORGANS, TISSUES
AND NON-CNS ASPECTS
47. Chronic Cannabis Abuse and Thyroid
Function 461
U. BONNET
48. Cannabis Hyperemesis Syndrome 466
U. BONNET
49. Cannabis and Cannabinoids and the Effects
on Gastrointestinal Function: An Overview 471
M. SAŁAGA, R. ABALO, J. FICHNA
50. Cardiovascular Effects of Cannabis Usage 481
S. MENAHEM
51. Cannabis and Stroke 486
P.A. BARBER
52. Cannabis Smoking and the Lung 494
D.P. TASHKIN
53. Cannabis and Hepatic Injury 505
S.A. NADA, O.M.E. ABDEL-SALAM, A.A. SLEEM
54. Cannabis Allergy: More Than a Bad Trip 517
A.L. VAN GASSE, V. SABATO, M.M. FABER, C.H. BRIDTS, D.G. EBO
55. Marijuana and Breastfeeding 527
M.G. HILL, K.L. REED
56. Hypocretins/Orexins and Addiction: Role
in Cannabis Dependence 533
Á. FLORES, R. MALDONADO, F. BERRENDERO
57. Regulatory Role of Cannabinoids
for Skin Barrier Functions and
Cutaneous Inflammation 543
T. TÜTING, E. GAFFAL
V
PHARMACOLOGY AND CELLULAR
ACTIVITIES OF CANNABINOIDS
AND ENDOCANNABINOIDS
58. Cannabinoids and the Cannabinoid
Receptors: An Overview 553
D. LU, D.E. POTTER
59. Signaling and Regulation of the
Cannabinoid CB1 Receptor 564
M.R. HUNTER, D.B. FINLAY, M. GLASS
60. Allosteric Modulation of the Cannabinoid
CB1 Receptor 573
E.E. CAWSTON, M.R. HUNTER, M. GLASS
x CONTENTS
61. Polymorphisms of the CB2 Cannabinoid
Receptor 584
P. KUMAR, Z.-H. SONG
62. Chemistry of Cannabinoid Receptor Agonists 592
M. AGHAZADEH TABRIZI, P.G. BARALDI
63. The Endocannabinoid System as a Target
for New Antiseizure Drugs 606
L.R. VILELA, A.C.P. DE OLIVEIRA, M.F. MORAES, F.A. MOREIRA,
R.N. TAKAHASHI
64. Pharmacological Aspects of Anandamide
and 2-Arachidonoyglycerol as Bioactive Lipids 616
M. ALHOUAYEK, G.G. MUCCIOLI
65. Pharmacological Aspects of NMDA
Receptors, mGluR5, and Endocannabinoids 630
Y. IZUMI, C.F. ZORUMSKI
66. Peripheral CB1 Receptors and Ghrelin in
Feeding Regulation: Pharmacological Implications 639
L. ORIO, R. GÓMEZ DE HERAS, F. RODRÍGUEZ DE FONSECA
67. Pharmacological Aspects of Novel
Antiobesity Agents Related to Cannabinoids 649
L. HERNANDEZ-FOLGADO
68. Cannabinoid Reward and Dependence:
Focus on the Main Psychoactive Ingredients
of Marijuana in Preclinical Studies 659
G. PANAGIS
69. Peroxisome Proliferator Activated Receptors
and Cannabinoids 671
E. MUÑOZ, F. POLLASTRO, O. TAGLIALATELA-SCAFATI, G. APPENDINO
70. The Protein–Protein Interactions of Cannabinoid
Receptor Interacting Protein 1a (CRIP1a) and
Cannabinoid 1 Receptor: The Molecular
Mechanism Study Through an Integrated
Molecular Modeling Approach 680
M.H. AHMED, Y. ZHANG
71. Synthetic Cannabinoids: a Summary
of Selected Phenomena with Respect to
Behavioral Pharmacology and Abuse Liability 691
B.T. BURROWS, L.R. WATTERSON, J. EGNATIOS, M.F. OLIVE
VI
EFFECTS OF SPECIFIC NATURAL
AND SYNTHETIC CANNABINOIDS
72. The Role of 5-HT1A Receptor, and Nausea
and Vomiting Relief by Cannabidiol (CBD),
Cannabidiolic Acid (CBDA),
and Cannabigerol (CBG) 703
E.M. ROCK, L.A. PARKER
73. Genetic and Molecular Aspects of Addiction
with Tetrahydrocannabinol 713
T. JANUS, A. MACHOY-MOKRZYŃSKA, K. BOROWIAK
74. Effects of ∆9-Tetrahydrocannabinol in
Human Breast Cancer 722
S. TAKEDA, E. IKEDA, H. OKAZAKI, K. WATANABE, H. ARAMAKI
75. ∆9-THC and COX-2 Signaling 729
J. ZHANG, C. CHEN
76. Cannabinoids and the Addictive
Effects of Nicotine 739
L.V. PANLILIO, S.R. GOLDBERG
77. Cannabinoid Regulation of Intraocular
Pressure: Human and Animal Studies, Cellular
and Molecular Targets 748
A. ALOWAY, A. KUMAR, A.S. LAUN, Z.H. SONG
78. Ocular Delivery of Tetrahydrocannabinol 760
G.R. ADELLI, P. BHAGAV, M.A. REPKA, W. GUL, M.A. ELSOHLY,
S. MAJUMDAR
79. The Role of γ-Aminobutyric Acid in the
Interoceptive Effects of Oral
∆9-Tetrahydrocannabinol in Humans 770
J.A. LILE, J.S. FOGEL, T.H. KELLY
80. The Role of ∆9-Tetrahydrocannabinol in
Diabetes Mellitus 779
Z.M. COSKUN, S. BOLKENT
81. Cannabidiol: An Overview of its
Antipsychotic Properties 787
F.F. PERES, V. ALMEIDA, V.C. ABILIO
CONTENTS xi
82. Cannabidiol for the Treatment of
Epilepsy: An Overview of Possible
Mechanisms of Action and Preclinical and
Human Studies 795
R. GUIMARÃES DOS SANTOS, J.E.C. HALLAK, A.W. ZUARDI,
A.C. DE SOUZA CRIPPA, J.A. DE SOUZA CRIPPA
83. Cannabidiol and Neuroprotection: Evidence
from Preclinical Studies 802
N. SCHRÖDER, V.K. DA SILVA, J.E.C. HALLAK,
A.W. ZUARDI, J.A. DE SOUZA CRIPPA
84. Cannabinoids as Potent Inhibitors
of Human CYP1 Enzymes 813
K. WATANABE, S. YAMAORI, K. MASUDA, T. KATSU,
S. NARIMATSU, I. YAMAMOTO
85. The Synthetic Analog of
∆9-Tetrahydrocannabinol (THC): Nabilone.
Pharmacology and Clinical Application 821
R.E BALTER, M. HANEY
86. Synthetic Cannabinoids in Dementia 828
S. AMANULLAH, K. SHIVAKUMAR, S. HASSAN,
A. CANFIELD, J. COLE
87. Synthetic Cannabinoid Receptor
Agonists (Spice) as New Recreational
Psychoactive Substances 839
A. HELANDER
88. Accidents and Synthetic Cannabinoids
in Blood of Drivers 848
S.S. TUV, V. AUWÄRTER, V. VINDENES
VII
MEDICINAL CANNABIS USE
89. Cannabis and Synthetic Cannabinoids
for Cancer Patients: Multiple Palliative
Indications Together With Promising
Laboratory Antineoplastic Effects 859
D. ZALMAN, G. BAR-SELA
90. The Use of Medical Marijuana in the
Treatment of Psychiatric Disorders 869
T. TELLIOG
˘LU, Z. TELLIOG
˘LU
91. Beneficial Effects of Cannabis and
Related Compounds on Sleep 877
I.M.P. LINARES, J.A.S. CRIPPA, M.H.N. CHAGAS
92. Cannabinoid-Based Medicines for the
Treatment of Gilles de la Tourette Syndrome 883
A.S. KANAAN, K.R. MÜLLER-VAHL
93. Cannabidiol and Multiple Sclerosis 893
M. MECHA, A. FELIÚ, F.-J. CARRILLO-SALINAS, C. GUAZA
94. Cannabinoids and Their Effects on
Painful Neuropathy 905
D. SELVARAJAH, R. GANDHI, S. TESFAYE
95. Cannabis for Basal Ganglia Disorders
(Parkinson Disease and Huntington Disease) 917
O.M.E. ABDEL-SALAM
96. Medical Cannabis for the Treatment
of Inflammatory Bowel Disease 931
A. LAHAT
97. Cannabidiol for the Treatment
of Drug Use Disorders 939
R.G. DOS SANTOS, J.E.C. HALLAK, A.W. ZUARDI,
J.A. DE SOUZA CRIPPA
98. Cannabinoids and Effects on the
Gastrointestinal Tract: A Focus on Motility 947
G. VERA, J. FICHNA, R. ABALO
99. Potential Medical Uses of Cannabigerol:
A Brief Overview 958
S. DEIANA
VIII
SCREENING, DIAGNOSIS,
AND TREATMENT
100. The Cannabis Abuse Screening
Test (CAST) and Its Applications 971
L. BASTIANI, R. POTENTE, M. SCALESE, V. SICILIANO,
L. FORTUNATO, S. MOLINARO
xii CONTENTS
101. Screening of Synthetic Cannabinoids 981
E.L. ØIESTAD, R. KARINEN, K. HAUGLAND, Å.M.L. ØIESTAD
102. On-Site Drug Testing for Cannabis 998
A.A. FERNÁNDEZ
103. Cannabinoids in Oral Fluid: Identification
and Interpretation of Analytical Results 1007
C. MOORE
104. Cannabinoids in Exhaled Breath 1018
O. BECK
105. Barriers to Treatment Seeking for
Cannabis Dependence 1025
P. GATES, J. COPELAND
106. Pharmacotherapies for Cannabis
Use Disorders 1030
A.L. McRAE-CLARK
107. Self-Initiated Cannabis Use Cessation
in Adolescents and Emerging Adults 1036
J. TSAI, M. LITTLE, S. SUSSMAN
108. Treating Cannabis-Dependent Adolescents
with Family Therapy: The Case of
Multidimensional Family Therapy 1047
H. RIGTER
109. Cognitive Behavioral Therapy in
Cannabis Use Disorder 1056
F.M. GUVEN, U.M. CAMSARI, O. SENORMANCI, G. OGUZ
110. The Cannabis Withdrawal Syndrome—
Symptoms and Time Course 1066
M. HESSE, B. THYLSTRUP
111. School-Based Cannabis Prevention
Programs 1074
C. ARIZA, F. SÁNCHEZ-MARTÍNEZ, A. PÉREZ
112. The CapOpus Trial for Cannabis
Use Disorders 1086
C.R. HJORTHØJ, M. NORDENTOFT
113. Treating Cannabis Use Disorders
Through Technology-Assisted Interventions:
The Telephone and Internet 1093
P. GATES, J. COPELAND
114. Reducing Cannabis Use With a Real-Time
Intervention Using Mobile Technology 1101
M. KELLS, L.A. SHRIER
Cannabis Neuropathology Resources and
Recommended Reading 1111
R. RAJENDRAM, V.B. PATEL, V.R. PREEDY
Index 1115
Online Contents
I
SETTING THE SCENE, BOTANICAL,
GENERAL AND INTERNATIONAL
ASPECTS
e1. Tetrahydrocannabinol Concentration
and Genetic Characterization of Cannabis e1
F. CASCINI, I. BOSCHI
II
PERSONAL, SOCIAL AND
COMMUNITY ASPECTS
OF CANNABIS USE
e2. Cannabis Use in Youth Subcultures e11
M. PAWSON, B.C. KELLY
ONLINE CONTENTS xiii
III
CANNABIS, BEHAVIOR,
PSYCHOPATHOLOGY AND
NEUROPATHOLOGY
e3. Aggressive Behavior and Cannabis Use e19
W. LIU, H. PETRAS
e4. COMT Genotypes, Cannabis Use, and
Psychosis: Gene-Environment Interaction
Evidence from Human Populations, and Its
Methodological Concerns e29
M. FATJÓ-VILAS, C. PRATS, L. FAÑANÁS
e5. Neuroimaging and Genetics of the Acute
and Chronic Effects of Cannabis e42
R. MARTÍN-SANTOS, J.A. DE SOUZA CRIPPA, S. BHATTACHARYYA
e6. Gray Matter, Lateral Ventricle Volumes,
and Executive Functioning in Cannabis Users
with First-Episode Psychosis e53
P.J. CUNHA, P.G.P. ROSA, F.L.S. DURAN, L.C. SANTOS,
J.A.S. CRIPPA, G.F. BUSATTO, M.S. SCHAUFELBERGER
e7. Cannabis Use and Attention-Deficit/
Hyperactivity Disorder: Potential Moderators e64
K.E. MAPLE, N.E. WRIGHT, K.M. LISDAHL
IV
CANNABIS, ORGANS, TISSUES
AND NON-CNS ASPECTS
e8. Cannabis and Oral Health: Deleterious
Effects on Periodontitis and Dental Implants e72
G. NOGUEIRA-FILHO
e9. Does Cannabis Use Increase the Risk
of Developing Cancer in Humans? e80
R.C. CALLAGHAN, M. VERDICHEVSKI, T.M. FYFE, J.M. GATLEY
e10. Cannabis and the Use of Amphetamine-Like
Substances e101
A. PORCU, M.P. CASTELLI
V
PHARMACOLOGY AND CELLULAR
ACTIVITIES OF CANNABINOIDS
AND ENDOCANNABINOIDS
e11. Cannabinoid Signaling in Glioma Cells
and Therapeutic implications e111
A. ELLERT-MIKLASZEWSKA, I. A. CIECHOMSKA, B. KAMINSKA
VI
EFFECTS OF SPECIFIC NATURAL
AND SYNTHETIC CANNABINOIDS
e12. Cannabidiol as an Antioxidant e122
R.S. BORGES, A.B.F. DA SILVA
e13. The Anxiolytic Effects of Cannabidiol
(CBD) e131
A.W. ZUARDI, J.A. DE SOUZA CRIPPA, J.E.C. HALLAK,
A.C. CAMPOS, F.S. GUIMARÃES
e14. New Ethological and Morphological
Perspectives for the Investigation of
Panicolytic-Like Effects of Cannabidiol e140
N.C. COIMBRA, J. MENDES-GOMES, J.A. DA SILVA,
T. DOS ANJOS-GARCIA, F. ULLAH, R.C. ALMADA
e15. Spice Use Among United States
Military Personnel e150
H.A. MORRIS, J.M. STOGNER
VII
MEDICINAL CANNABIS USE
e16. Cannabis Use in Fibromyalgia e158
M. FARRÉ, A. FARRÉ, J. FIZ, M. TORRENS
xiv ONLINE CONTENTS
VIII
SCREENING, DIAGNOSIS,
AND TREATMENT
e17. Short Instruments to Screen for
“Problematic” Cannabis Use in General
Population Surveys e168
B. ANNAHEIM, S. LEGLEYE
e18. Self-report of Cannabis Use e185
T. VAN DER LINDEN
e19. CANDIS Program: Modular Treatment
of Cannabis Use Disorders e193
E. HOCH, H. ROHRBACHER
e20. Engaging Cannabis Users in Treatment e202
F. KAY-LAMBKIN, A. HEALEY, A. BAKER, W. SWIFT,
L. THORNTON, A. TURNER
xv
List of Contributors
M. Aas NORMENT, KG Jebsen Centre for Psychosis
Research, Division of Mental Health and Addiction, Oslo
University Hospital & Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
R. Abalo Area of Pharmacology and Nutrition, Faculty
of Health Sciences, University Rey Juan Carlos, Alcorcón;
Associated Unit I+D+i of the Institute of Medicinal Chemistry
(IQM) and of the Institute of Research in Food Sciences (CIAL),
Spanish National Research Council (CSIC), Madrid, Spain
O.M.E. Abdel-Salam Department of Toxicology and Narcotics,
National Research Centre, Dokki, Greater Cairo, Egypt
V.C. Abilio Department of Pharmacology, Federal
University of Sao Paulo; Integrated Laboratory of Clinical
Neurosciences (LiNC), Federal University of Sao Paulo,
Sao Paulo, Brazil
G.R. Adelli Department of Pharmaceutics and Drug
Delivery, School of Pharmacy, University of Mississippi,
Oxford, MS, United States
M.H. Ahmed Department of Medicinal Chemistry, School
of Pharmacy and Institute for Structural Biology and Drug
Discovery, Virginia Commonwealth University, Richmond,
VA, United States
M. Alhouayek Bioanalysis and Pharmacology of Bioactive
Lipids Research Group, Louvain Drug Research Institute,
Université catholique de Louvain, Brussels, Belgium
J. Allen Psychology Department, IKBSAS, University of
British Columbia, Kelowna, BC, Canada
D.J. Allsop Psychopharmacology Laboratory, School of
Psychology, University of Sydney, Sydney, NSW, Australia
R.C. Almada Laboratory of Neuroanatomy &
Neuropsychobiology, Department of Pharmacology,
Ribeirão Preto Medical School of the University of São
Paulo ( FMRP-USP), Ribeirão Preto, São Paulo, Brazil
V. Almeida Department of Pharmacology, Federal
University of Sao Paulo; Integrated Laboratory of Clinical
Neurosciences (LiNC), Federal University of Sao Paulo,
Sao Paulo, Brazil
A. Aloway Department of Pharmacology and Toxicology,
University of Louisville School of Medicine, Louisville, KY,
United States
S. Amanullah Woodstock General Hospital, Woodstock,
ON, Canada; School of Medicine, University of Western
Ontario, London, ON, Canada; and Faculty of Medicine,
Dalhousie University, NS, Canada
S.L. Ames School of Community and Global Health,
Claremont Graduate University, Claremont, CA, United States
B. Annaheim Institute for Biomedical Ethics (IBMB),
University of Basel, Basel, Switzerland
G. Appendino Department of Pharmaceutical Science,
University of Piemonte Orientale, Novara, Italy
H. Aramaki Department of Molecular Biology, Daiichi
University of Pharmacy; Drug Innovation Research Center,
Daiichi University of Pharmacy, Fukuoka, Japan
F. Arias-Horcajadas Psychiatric Department, Doce de
Octubre Hospital, Madrid, Spain
C. Ariza Evaluation and Intervention Methods Service,
Public Health Agency, Barcelona, Spain
J.C. Arnold School of Medicine, Western Sydney University,
Campbelltown; University of Sydney, Department of
Pharmacology, Bosch Institute, Sydney; Brain and Mind
Research Institute, Camperdown, NSW, Australia
D. Asmaro Department of Psychology, Simon Fraser
University, Burnaby, BC, Canada
V. Auwärter Department of Drug Abuse Research, Division
of Forensic Sciences, Norwegian Institute of Public Health,
Oslo, Norway; Forensic Toxicology Department, Medical
Center, University of Freiburg, Institute of Forensic Medicine,
Freiburg, Germany
S. Bachmann Clienia AG, Littenheid, Switzerland
A. Baker Priority Research Centre for Translational
Neuroscience and Mental Health, University of Newcastle,
Callaghan, NSW, Australia
R.E Balter Division on Substance Abuse, New York State
Psychiatric Institute and Department of Psychiatry, Columbia
University Medical Center, New York, NY, United States
P.G. Baraldi Department of Chemistry and Pharmaceutical
Science, University of Ferrara, Ferrara, Italy
P.A. Barber Department of Medicine, Centre for Brain
Research, University of Auckland, Auckland, New Zealand
G. Bar-Sela Division of Oncology, Rambam Health Care
Campus and Faculty of Medicine, Technion—Israel Institute
of Technology, Haifa, Israel
L. Bastiani Institute of Clinical Physiology, The Italian
National Research Council (IFC-CNR), Pisa, Italy
D. Basu Drug De-addiction and Treatment Centre,
Department of Psychiatry, Postgraduate Institute of Medical
Education and Research, Chandigarh, India
I. Basurte Gregorio Marañon Hospital, Madrid, Spain
O. Beck Department of Laboratory Medicine, Section of
Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden
S. Behrendt Institute of Clinical Psychology and
Psychotherapy, Technische Universitaet Dresden, Dresden,
Germany
D. Bergen-Cico Department of Public Health, Addiction
Studies, Syracuse University, Syracuse, NY, United States
xvi LIST OF CONTRIBUTORS
F. Berrendero Department of Experimental and Health
Sciences, Laboratory of Neuropharmacology, School
of Health and Life Sciences, Pompeu Fabra University,
Barcelona, Spain
P. Bhagav Department of Pharmaceutics and Drug Delivery,
School of Pharmacy, University of Mississippi, Oxford, MS,
United States
S. Bhattacharyya Department of Psychosis Studies, King’s
College London, Institute of Psychiatry, Psychology &
Neuroscience, London, United Kingdom
M. Bioque Barcelona Clínic Schizophrenia Unit, Hospital
Clínic de Barcelona, Centro de Investigación Biomédica en
Red de Salud Mental (CIBERSAM), Barcelona, Spain
S. Bolkent Department of Medical Biology, Cerrahpasa
Faculty of Medicine, Istanbul University, Istanbul, Turkey
J.H. Boman IV Department of Criminal Justice, University
of Wyoming, Laramie, WY, United States
P. Bondallaz Traffic Medicine and Psychology Unit,
University Center of Legal Medicine, University Hospital of
Geneva, Geneva, Switzerland
U. Bonnet Department of Psychiatry, Psychotherapy and
Psychosomatics, Evangelisches Krankenhaus Castrop-Rauxel,
Academic Teaching Hospital of the University of Duisburg-
Essen, Castrop-Rauxel, Germany
R.S. Borges Faculty of Pharmacy, Institute of Health
Sciences, Federal University of Pará, Belém, Para, Brazil
K. Borowiak Department of Clinical and Forensic
Toxicology, Pomeranian Medical University, Szczecin,
Poland
I. Boschi Public Health Institute, Department of Forensic
Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
L.K. Brents Brain Imaging Research Center, Psychiatric
Research Institute, University of Arkansas for Medical
Sciences, Little Rock, AR, United States
C.H. Bridts Faculty of Medicine and Health Science,
Department of Immunology-Allergology-Rheumatology,
University of Antwerp, Antwerp, Belgium
A. Bruno Department of Biomedical, Dental Sciences and
Morpho-functional Imaging, University of Messina, Messina,
Italy
B.T. Burrows Department of Psychology, Arizona State
University, Tempe, AZ, United States
G.F. Busatto Department of Psychiatry, Faculty of Medicine,
Laboratory of Psychiatric Neuroimaging (LIM-21), University
of São Paulo; Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
R.C. Callaghan Northern Medical Program, University of
Northern British Columbia, Prince George, BC; Dalla Lana
School of Public Health, University of Toronto, Toronto, ON;
Human Brain Lab, Centre for Addiction and Mental Health,
Toronto, ON, Canada
A.C. Campos Department of Pharmacology, Faculty of
Medicine of Ribeirão Preto, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil
U.M. Camsari Department of Psychiatry and Psychology,
Mayo Clinic Health System, and Mayo Clinic College of
Medicine, Rochester, MN, United States
A. Canfield University of Toronto, Toronto, ON, Canada
E. Carra Department of Psychosis Studies, Institute of
Psychiatry, Psychology and Neuroscience, King’s College
London, London, United Kingdom
F.-J. Carrillo-Salinas Neurobiology and Functional Systems
Department, Cajal Institute, CSIC, Madrid, Spain
F. Cascini Public Health Institute, Department of Forensic
Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
M.P. Castelli Department of Biomedical Sciences, Division
of Neuroscience and Clinical Pharmacology, Cittadella
Universitaria, Monserrato, CA, Italy
S.O. Cawich Department of Clinical Surgical Sciences,
University of the West Indies, St. Augustine Campus,
St Augustine, Trinidad and Tobago
E.E. Cawston Department of Pharmacology and Clinical
Pharmacology, Faculty of Medical and Health Sciences,
University of Auckland, Auckland, New Zealand
C. Cedro Department of Biomedical, Dental Sciences and
Morpho-functional Imaging, University of Messina, Messina,
Italy
M.H.N. Chagas Department of Neurosciences and Behavior,
Faculty of Medicine, Ribeirão Preto, University of São Paulo,
Ribeirão Preto; Barretos School of Health Sciences, Dr. Paulo
Prata, Barretos, São Paulo, Brazil
C. Chen Neuroscience Center of Excellence, School of
Medicine, Louisiana State University Health Sciences Center,
New Orleans, LA, United States
C. Chisari University of York, York, United Kingdom
H. Chtioui Department of Clinical Pharmacology and
Toxicology, University Hospital of Lausanne, Lausanne,
Switzerland
R.D. Cico Columbia University, New York, NY, United States
I.A. Ciechomska Laboratory of Molecular Neurobiology,
Neurobiology Center, Nencki Institute of Experimental
Biology, Warsaw, Poland
N.C. Coimbra Laboratory of Neuroanatomy &
Neuropsychobiology, Department of Pharmacology,
Ribeirão Preto Medical School of the University of São
Paulo (FMRP-USP); Neurobiology of Emotions Research
Centre (NAP-USP-NuPNE), Ribeirão Preto Medical School
of the University of São Paulo (FMRP-USP), Ribeirão Preto,
São Paulo, Brazil
J. Cole Queen Elizabeth Hospital, Charlottetown, PE, Canada
J. Cookey Department of Psychiatry, Dalhousie University,
Halifax, NS, Canada
J. Copeland National Cannabis Prevention and Information
Centre, University of New South Wales, Randwick, Sydney,
NSW, Australia
Z.M. Coskun Department of Molecular Biology and
Genetics, Faculty of Arts and Sciences, Istanbul Bilim
University, Istanbul, Turkey
LIST OF CONTRIBUTORS xvii
W.D. Crano Division of Behavioral and Organizational
Sciences, School of Social Science, Policy and Evaluation,
Claremont Graduate University, Claremont, CA, United
States
J.A.S. Crippa Department of Neuroscience and Behavior,
Faculty of Medicine, Ribeirão Preto, University of São Paulo,
Ribeirao Preto, Brazil
C.E. Crocker Department of Psychiatry, Dalhousie
University; Division of Neurology, Department of Medicine,
Dalhousie University, Halifax, NS, Canada
M.J. Cuesta Department of Psychiatry, IdiSNA, Navarra
Institute for Health Research, Pamplona, Spain
P.J. Cunha Department of Psychiatry, Faculty of Medicine,
Laboratory of Psychiatric Neuroimaging (LIM-21), University
of São Paulo; Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
L. Cutando Department of Experimental and Health
Sciences, Laboratory of Neuropharmacology, School
of Health and Life Sciences, Pompeu Fabra University,
Barcelona, Spain
A.B.F. da Silva Institute of Chemistry of São Carlos,
University of São Paulo, São Carlos, Sao Paulo, Brazil
J.A. da Silva Laboratory of Neuroanatomy &
Neuropsychobiology, Department of Pharmacology,
Ribeirão Preto Medical School of the University of São Paulo
(FMRP-USP), Ribeirão Preto, São Paulo, Brazil
V.K. da Silva Neurobiology and Developmental Biology
Laboratory, Faculty of Biosciences, Pontifical Catholic
University, Porto Alegre, Rio Grande do Sul, Brazil
D. Dan Department of Clinical Surgical Sciences, University
of the West Indies, St. Augustine Campus, St Augustine,
Trinidad and Tobago
R.B. De Boni INI Evandro Chagas, FIOCRUZ, Rio de
Janeiro, Rio de Janeiro, Brazil
F. Rodríguez de Fonseca Department of Psychobiology,
Faculty of Psychology, Complutense University of Madrid,
Pozuelo de Alarcón, Madrid, Spain
R. Gómez de Heras Department of Psychobiology, Faculty
of Psychology, Complutense University of Madrid, Pozuelo
de Alarcón, Madrid, Spain
A.C.P. de Oliveira Department of Pharmacology, ICB,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais, Brazil
A.C. de Souza Crippa Health Sciences Sector, Federal
University of Paraná, Curitiba, Parana, Brazil
J.A. de Souza Crippa Department of Neuroscience and
Behavior, Ribeirão Preto Medical School, University of São
Paulo, Ribeirão Preto, Sao Paulo, Brazil
F. Degenhardt Laboratory of Technical Biochemistry,
Department of Biochemical and Chemical Engineering,
TU Dortmund University, Dortmund, Germany
L. Degenhardt National Drug and Alcohol Research
Centre, University of New South Wales, Sydney, NSW,
Australia
S. Deiana CNS Diseases Research Department, Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer straße,
Biberach an der Riss, Germany
U. Deonarine Department of Clinical Surgical Sciences,
University of the West Indies, St. Augustine Campus,
St Augustine, Trinidad and Tobago
M. Di Forti Department of Psychosis Studies, Institute of
Psychiatry, Psychology and Neuroscience, King’s College
London, London, United Kingdom
T. dos Anjos-Garcia Laboratory of Neuroanatomy
& Neuropsychobiology, Department of Pharmacology,
Ribeirão Preto Medical School of the University of São Paulo
(FMRP-USP), Ribeirão Preto, São Paulo, Brazil
R. Guimarães dos Santos Department of Neuroscience and
Behavior, Ribeirão Preto Medical School, University of São
Paulo, Ribeirão Preto, Sao Paulo, Brazil
M. Drozd Department of Pharmaceutics, Medical University
of Lublin, Lublin, Poland
F.L.S. Duran Department of Psychiatry, Faculty of Medicine,
Laboratory of Psychiatric Neuroimaging (LIM-21), University
of São Paulo; Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
M. Earleywine Department of Psychology, School of Arts
and Sciences, University at Albany, State University of New
York, Albany, NY, United States
D.G. Ebo Faculty of Medicine and Health Science,
Department of Immunology-Allergology-Rheumatology,
University of Antwerp, Antwerp, Belgium
N. Egashira Department of Pharmacy, Kyushu University
Hospital; Department of Neuropharmacology, Faculty of
Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
J. Egnatios School of Medicine, University of California San
Diego, La Jolla, CA, United States
A. Ellert-Miklaszewska Laboratory of Molecular
Neurobiology, Neurobiology Center, Nencki Institute of
Experimental Biology, Warsaw, Poland
S.A. ElShebiney Department of Toxicology and Narcotics,
National Research Centre, Cairo, Egypt
M.A. ElSohly ElSohly Laboratories Inc., Oxford, MS,
United States
C. Evren Research, Treatment and Training Center for
Alcohol and Substance Dependence (AMATEM), Bakirkoy
Training and Research Hospital for Psychiatry, Neurology and
Neurosurgery, Istanbul, Turkey
L. Fañanás Faculty of Biology, Anthropology Unit,
Department of Animal Biology, University of Barcelona,
Biomedicine Institute of the University of Barcelona (IBUB),
Barcelona; CIBER of Mental Health (CIBERSAM), Madrid,
Spain
M.M. Faber Faculty of Medicine and Health Science,
Department of Immunology-Allergology-Rheumatology,
University of Antwerp, Antwerp, Belgium
S. Farag Technical University Dortmund, Technical
Biochemistry Dortmund, Dortmund, Germany
xviii LIST OF CONTRIBUTORS
A. Farré Dual Disorder Unit, Addiction Program, Institute
of Neuropsychiatry and Addiction—INAD, and Hospital del
Mar Medical Research Institute—IMIM, Barcelona, Spain
M. Farré Clinical Pharmacology Unit, Germans Trias i Pujol
University Hospital—IGTP, and Human Pharmacology Unit,
Hospital del Mar Medical Research Institute—IMIM, and
Autonomous University of Barcelona, Barcelona, Spain
M. Fatjó-Vilas Faculty of Biology, Anthropology Unit,
Department of Animal Biology, University of Barcelona,
Biomedicine Institute of the University of Barcelona (IBUB),
Barcelona; CIBER of Mental Health (CIBERSAM), Madrid,
Spain
B. Favrat Traffic Medicine and Psychology Unit, University
Center of Legal Medicine, University Hospital of Geneva,
Geneva; Department of Ambulatory Care and Community
Medicine, University Hospital of Lausanne, Lausanne,
Switzerland
D. Feingold Department of Psychiatry, Sheba Medical
Center, Tel Hashomer; Ariel University, Ariel, Israel
A. Feliú Neurobiology and Functional Systems Department,
Cajal Institute, CSIC, Madrid, Spain
A.A. Fernández Forensic Laboratory Institute of Legal
Medicine of Catalonia, Barcelona, Spain
S. Fernández-Artamendi Addictive Behaviors Research
Group, Department of Psychology, University of Oviedo,
Oviedo, Spain
A.J. Ferrari School of Public Health, University of
Queensland, Herston; Institute for Health Metrics and
Evaluation, University of Washington, Seattle, WA, United
States; Queensland Centre for Mental Health Research, Wacol,
QLD, Australia
L. Ferraro Biomedical Department of Internal and Specialist
Medicine; Department of Experimental Biomedicine and
Clinical Neuroscience, School of Medicine, University of
Palermo, Palermo, Italy
J. Fichna Department of Biochemistry, Faculty of Medicine,
Medical University of Lodz, Lodz, Poland
D.B. Finlay Department of Pharmacology and Clinical
Pharmacology, Faculty of Medical and Health Sciences,
University of Auckland, Auckland, New Zealand
J. Fiz EDIR, Center for Diagnosis and Rehabilitation, San
Martín Santa Fe, Argentina
Á. Flores Department of Experimental and Health Sciences,
Laboratory of Neuropharmacology, School of Health and Life
Sciences, Pompeu Fabra University, Barcelona, Spain
J.S. Fogel Department of Psychology, University of Kentucky
College of Arts and Sciences, Lexington, KY, United States
E. Fornari CIBM, University Hospital of Lausanne,
Lausanne, Switzerland
L. Fortunato Institute of Clinical Physiology, The Italian
National Research Council (IFC-CNR), Pisa, Italy
T. Fyfe Northern Medical Program, University of Northern
British Columbia, Prince George, BC, Canada
A.E.D.M. Gaafar Department of Photochemistry, Chemical
Industries Division, National Research Centre, Cairo, Egypt
S. Gade Palo Alto University, Palo Alto, CA, United States
E. Gaffal Laboratory of Experimental Dermatology,
Department of Dermatology and Allergy, University
Hospital of the Friedrich-Wilhelm-University Bonn, Bonn,
Germany
A.F. Galal Department of Toxicology and Narcotics, National
Research Centre, Cairo, Egypt
R. Gandhi Academic Department of Diabetes and
Endocrinology, Sheffield Teaching Hospitals NHS
Foundation Trust, Sheffield, United Kingdom
P. Gates National Cannabis Prevention and Information
Centre, University of New South Wales, Randwick, Sydney,
NSW, Australia
J.M. Gatley Northern Medical Program, University of
Northern British Columbia, Prince George, BC; Dalla Lana
School of Public Health, University of Toronto, Toronto, ON;
Human Brain Lab, Centre for Addiction and Mental Health,
Toronto, ON, Canada
C. Giroud Forensic Toxicology and Chemistry Unit,
University Center of Legal Medicine, University Hospital of
Lausanne, Lausanne, Switzerland
M. Glass Department of Pharmacology and Clinical
Pharmacology, Faculty of Medical and Health Sciences,
University of Auckland, Auckland, New Zealand
S.R. Goldberg Preclinical Pharmacology Section, Behavioral
Neuroscience Branch, Intramural Research Program, National
Institute on Drug Abuse, National Institutes of Health,
Baltimore, MD, United States
I. González-Ortega Department of Psychiatry, University
Hospital of Alava-Santiago, CIBERSAM; University of the
Basque Country; National Distance Education University
(UNED)-Centro Asociado de Vitoria, Vitoria, Spain
A. González-Pinto Department of Psychiatry, University
Hospital of Alava-Santiago, CIBERSAM; University of the
Basque Country, Vitoria, Spain
C. Guaza Neurobiology and Functional Systems Department,
Cajal Institute, CSIC, Madrid, Spain
V. Guillon Service des enquêtes et des sondages, Paris,
France
F.S. Guimarães Department of Pharmacology, Faculty of
Medicine of Ribeirão Preto, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil
W. Gul ElSohly Laboratories Inc., Oxford, MS, United
States
F.M. Guven Turkish Association for Cognitive and
Behavioural Therapies, Istanbul; Department of Psychiatry,
Alcohol & Substance Use Disorders Treatment Center, Lara
Anatolia Hospital, Antalya, Turkey
W.D. Hall Centre for Youth Substance Abuse Research,
University of Queensland, Herston, QLD, Australia
J.E.C. Hallak Department of Neuroscience and Behavior,
Ribeirão Preto Medical School, University of São Paulo,
Ribeirão Preto, Sao Paulo, Brazil
M. Hamerle Department of Psychiatry and Psychotherapy,
Ludwig-Maximilian-University Hospital, Munich, Germany
LIST OF CONTRIBUTORS xix
M. Haney Division on Substance Abuse, New York State
Psychiatric Institute and Department of Psychiatry, College of
Physicians and Surgeons of Columbia University, New York,
NY, United States
H.E. Harding Department of Surgery, University of the West
Indies, Mona Campus, Kingston, Jamaica
S. Hassan Dalhousie University, Dartmouth, NS, Canada
K. Haugland National Criminal Investigation Service
(NCIS) Norway, Forensic Science Department, Oslo, Norway
A. Healey School of Psychology, The University of Newcastle,
University Drive, Callaghan, NSW, Australia
C. Heck City and County of Denver, Crime Prevention and
Control Commission, Denver, CO, United States
A. Helander Department of Laboratory Medicine,
Karolinska Institutet, and Karolinska University Laboratory,
Stockholm, Sweden
L. Hernandez-Folgado Institute of Medical Chemistry,
CSIC, Madrid, Spain
D.A. Herzig Clienia AG, Littenheid, Switzerland
M. Hesse Center for Alcohol and Drug Research, Aarhus
University, Copenhagen Department, Copenhagen,
Denmark
M.G. Hill The University of Arizona, Tucson, AZ, United
States
R. Hirst Palo Alto University, Palo Alto, CA, United States
C.R. Hjorthøj Mental Health Center Copenhagen,
Copenhagen University Hospital, Copenhagen, Denmark
E. Hoch Department of Psychiatry, Ludwig Maximilian
University, Munich, Germany
M.D. Holder Psychology Department, IKBSAS, University
of British Columbia, Kelowna, BC, Canada
M. Holtkamp Epilepsy-Center Berlin-Brandenburg,
Department of Neurology, Charité – Universitätsmedizin
Berlin, Berlin, Germany
M.R. Hunter Department of Pharmacology and Clinical
Pharmacology, Faculty of Medical and Health Sciences,
University of Auckland, Auckland, New Zealand
E. Ikeda Department of Molecular Biology, Daiichi
University of Pharmacy, Fukuoka, Japan
Y. Izumi Department of Psychiatry; The Taylor Family
Institute for Innovative Psychiatric Research, Washington
University School of Medicine, St. Louis, MO, United States
T. Janus Department of Clinical and Forensic Toxicology,
Pomeranian Medical University, Szczecin, Poland
B. Kaminska Laboratory of Molecular Neurobiology,
Neurobiology Center, Nencki Institute of Experimental
Biology, Warsaw, Poland
A.S. Kanaan Clinic of Psychiatry, Social-Psychiatry and
Psychotherapy, Hannover Medical School, Hannover;
Nuclear Magnetic Resonance Unit, Max Planck Institute
for Human Cognitive and Brain Sciences, Leipzig,
Germany
R. Karinen Norwegian Institute of Public Health, Division
of Forensic Sciences, Oslo, Norway
T. Karl Neuroscience Research Australia, Randwick; School
of Medicine, Western Sydney University, Campbelltown,
NSW, Australia
T. Katsu Department of Pharmacy, Faculty of Pharmacy,
Yasuda Women’s University, Hiroshima, Japan
F. Kay-Lambkin NHMRC Centre for Research Excellence in
Mental Health and Substance Use, National Drug and Alcohol
Research Centre, University of New South Wales, Randwick,
NSW, Australia
O. Kayser Technical University Dortmund, Technical
Biochemistry Dortmund, Dortmund, Germany
M. Kells Division of Adolescent/Young Adult Medicine,
Boston Children’s Hospital, Boston, MA, United States
B.C. Kelly Department of Sociology, Purdue University,
West Lafayette, IN, United States
T.H. Kelly Departments of Behavioral Science and Psychiatry,
University of Kentucky College of Medicine, and Department
of Psychology, University of Kentucky College of Arts and
Sciences, Lexington, KY, United States
A. Kokona Department of Medical and Surgical Sciences,
Bologna University, Bologna, Italy
A. Kumar Department of Pharmacology and Toxicology,
University of Louisville School of Medicine, Louisville, KY,
United States
P. Kumar Department of Pharmacology and Toxicology,
University of Louisville School of Medicine, Louisville, KY,
United States
D. La Barbera Department of Experimental Biomedicine
and Clinical Neuroscience, School of Medicine, University of
Palermo, Palermo, Italy
T.V. Lagerberg NORMENT KG Jebsen Centre for Psychosis
Research, Institute of Clinical Medicine, University of Oslo;
Division of Mental Health and Addiction, Oslo University
Hospital, Oslo, Norway
A. Lahat Department of Gastroenterology, Chaim Sheba
Medical Center, Tel-Hashomer, Israel
H.J. Larsen Mental Health Center Copenhagen, Copenhagen
University Hospital, Copenhagen, Denmark
A.S. Laun Department of Pharmacology and Toxicology,
University of Louisville School of Medicine, Louisville, KY,
United States
T. Lecomte Research Centre of the University of
Montreal Institute for Mental Health; Department of
Psychology, University of Montreal, Montreal, QC,
Canada
S. Legleye Institut national d’études démographiques
(INED), Paris; University of Paris-Saclay, Univ. Paris-Sud,
UVSQ, CESP, Inserm, Versailles, France
S. Lev-Ran Department of Psychiatry, Sheba Medical
Center, Tel Hashomer; Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv, Israel
J.A. Lile Departments of Behavioral Science and Psychiatry,
University of Kentucky College of Medicine, and Department
of Psychology, University of Kentucky College of Arts and
Sciences, Lexington, KY, United States
xx LIST OF CONTRIBUTORS
R.P. Limberger LABTOXICO: Laboratory of Toxicology,
Faculty of Pharmacy, Federal University of Rio Grande do Sul,
Porto Alegre, Rio Grande do Sul, Brazil
I.M.P. Linares Department of Neuroscience and Behavior,
Faculty of Medicine, Ribeirão Preto, University of São Paulo,
Ribeirao Preto, Brazil
K.M. Lisdahl Department of Psychology, University of
Wisconsin-Milwaukee, Milwaukee, WI, United States
M. Little Center for Population Sciences, Department of
Preventive Medicine, University of Tennessee Health Science
Center, Memphis, TN, United States
W. Liu NORC at the University of Chicago, Bethesda, MD,
United States
M.J. Loflin Department of Psychology, School of Arts and
Sciences, University at Albany, State University of New York,
Albany, NY, United States
R. Lorente-Omeñaca Department of Psychiatry, IdiSNA,
Navarra Institute for Health Research, Pamplona, Spain
V. Lorenzetti Melbourne Neuropsychiatry Centre,
The University of Melbourne and Melbourne Health,
Melbourne; Brain & Mental Health Laboratory, Monash
Institute of Cognitive and Clinical Neurosciences, School of
Psychological Sciences, Monash University, Clayton, VIC,
Australia
D. Lu Department of Pharmaceutical Sciences, Rangel
College of Pharmacy, Texas A&M University, Kingsville, TX,
United States
J. Mørland Department of Drug Abuse Research, Division
of Forensic Sciences, Norwegian Institute of Public Health,
Oslo, Norway
K.R. Müller-Vahl Clinic of Psychiatry, Social-Psychiatry
and Psychotherapy, Hannover Medical School, Hannover,
Germany
A. Machoy-Mokrzyn´ska Department of Pharmacology,
Pomeranian Medical University, Szczecin, Poland
P. Maeder Department of Radiology, University Hospital of
Lausanne, Lausanne, Switzerland
S. Majumdar Department of Pharmaceutics and Drug
Delivery, School of Pharmacy, University of Mississippi,
Oxford, MS, United States
R. Maldonado Department of Experimental and Health
Sciences, Laboratory of Neuropharmacology, School
of Health and Life Sciences, Pompeu Fabra University,
Barcelona, Spain
K.E. Maple Department of Psychology, University of
Wisconsin-Milwaukee, Milwaukee, WI, United States
M. Martínez-Cengotitabengoa Department of Psychiatry,
University Hospital of Alava-Santiago, CIBERSAM; National
Distance Education University (UNED)-Centro Asociado de
Vitoria, Vitoria, Spain
M. Isabel Martín-Fontelles Area of Pharmacology and
Nutrition, Faculty of Health Sciences, University Rey Juan
Carlos, Alcorcón; Associated Unit I+D+i of the Institute of
Medicinal Chemistry (IQM) and of the Institute of Research
in Food Sciences (CIAL), Spanish National Research Council
(CSIC), Madrid, Spain
R. Martín-Santos Department of Psychiatry and
Psychology, Hospital Clinic, IDIBAPS, University of
Barcelona, CIBERSAM, Barcelona, Spain
K. Masuda Department of Physical Chemistry, Graduate
School of Clinical Pharmacy, Shujitsu University, Okayama,
Japan
A.L. McRae-Clark Medical University of South Carolina,
Charleston, SC, United States
M. Mecha Neurobiology and Functional Systems Department,
Cajal Institute, CSIC, Madrid, Spain
I. Melle NORMENT, KG Jebsen Centre for Psychosis
Research, Division of Mental Health and Addiction, Oslo
University Hospital & Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
S. Menahem Paediatric Cardiology Unit, Monash Health,
Melbourne, Melbourne; Faculty of Medicine, Nursing and
Health Sciences, Monash University, Clayton, VIC, Australia
J. Mendes-Gomes Laboratory of Neuroanatomy &
Neuropsychobiology, Department of Pharmacology, Ribeirão
Preto Medical School of the University of São Paulo (FMRP-
USP), Ribeirão Preto, São Paulo, Brazil
B. Mesías Instituto de Adicciones, Madrid, Spain
S. Miller Division of Behavioral and Organizational Sciences,
School of Social Science, Policy and Evaluation, Claremont
Graduate University, Claremont, CA, United States
R. Mizrahi Centre for Addiction and Mental Health
(CAMH), Research Imaging Centre, Toronto, ON, Canada
S. Molinaro Institute of Clinical Physiology, The Italian
National Research Council (IFC-CNR), Pisa, Italy
C. Moore Toxicology Research and Development,
Immunalysis Corporation, Pomona, CA, United States
M.F. Moraes Department of Physiology and Biochemistry,
ICB, Federal University of Minas Gerais, Belo Horizonte,
Minas Gerais, Brazil
F.A. Moreira Department of Pharmacology, ICB, Federal
University of Minas Gerais, Belo Horizonte, Minas Gerais,
Brazil
L. Moreno-Izco Department of Psychiatry, IdiSNA, Navarra
Institute for Health Research, Pamplona, Spain
H.A. Morris Department of Criminal Justice and
Criminology, University of North Carolina at Charlotte,
Charlotte, NC, United States
E. Muñoz Department of Cell Biology, Physiology and
Immunology, University of Córdoba, Córdoba, Spain
G.G. Muccioli Bioanalysis and Pharmacology of Bioactive
Lipids Research Group, Louvain Drug Research Institute,
Université catholique de Louvain, Brussels, Belgium
M.R.A. Muscatello Department of Biomedical, Dental
Sciences and Morpho-functional Imaging, University of
Messina, Messina, Italy
S.A. Nada Department of Pharmacology, National Research
Centre, Dokki, Greater Cairo, Egypt
V. Naraynsingh Department of Clinical Surgical Sciences,
University of the West Indies, St. Augustine Campus,
St Augustine, Trinidad and Tobago
LIST OF CONTRIBUTORS xxi
S. Narimatsu Department of Health Chemistry, Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences,
Okayama University, Okayama, Japan
G. Nogueira-Filho School of Health Sciences, University
Salvador, Laureate International Universities, Salvador, Bahia,
Brazil
M. Nordentoft Mental Health Center Copenhagen,
Copenhagen University Hospital, Copenhagen, Denmark
G. Oguz Turkish Association for Cognitive and Behavioural
Therapies, Istanbul; Department of Psychology, Canik Basari
University, Samsun, Turkey
Å.M.L. Øiestad Norwegian Institute of Public Health,
Division of Forensic Sciences, Oslo, Norway
E.L. Øiestad Norwegian Institute of Public Health, Division
of Forensic Sciences, Oslo, Norway
H. Okazaki Drug Innovation Research Center, Daiichi
University of Pharmacy, Fukuoka, Japan
M.F. Olive Department of Psychology, Arizona State
University, Tempe, AZ, United States
L. Orio Department of Psychobiology, Faculty of
Psychology, Complutense University of Madrid, Pozuelo de
Alarcón, Madrid, Spain
A. Ozaita Department of Experimental and Health
Sciences, Laboratory of Neuropharmacology, School
of Health and Life Sciences, Pompeu Fabra University,
Barcelona, Spain
A. Pérez Evaluation and Intervention Methods Service,
Public Health Agency, Barcelona, Spain
G. Panagis University of Crete, Department of Psychology,
Laboratory of Behavioral Neuroscience, Rethymnon, Crete,
Greece
G. Pandolfo Department of Biomedical, Dental Sciences and
Morpho-functional Imaging, University of Messina, Messina,
Italy
L.V. Panlilio Preclinical Pharmacology Section, Behavioral
Neuroscience Branch, Intramural Research Program, National
Institute on Drug Abuse, National Institutes of Health,
Baltimore, MD, United States
K. Paquin Research Centre of the University of Montreal
Institute for Mental Health; Department of Psychology,
University of Montreal, Montreal, QC, Canada
P. Parakh Department of Psychiatry, Ruby General Hospital,
Kolkata, India
L.A. Parker Department of Psychology and Collaborative
Neuroscience Program, University of Guelph, Guelph, ON,
Canada
V.B. Patel University of Westminster, School of Life Sciences,
Department of Biomedical Science, London, United Kingdom
M. Pawson Department of Sociology, The Graduate Center,
City University of New York, New York, NY, United States
F.F. Peres Department of Pharmacology, Federal University
of Sao Paulo; Integrated Laboratory of Clinical Neurosciences
(LiNC), Federal University of Sao Paulo, Sao Paulo, Brazil
H. Petras American Institutes for Research, Washington, DC,
United States
F. Pollastro Department of Pharmaceutical Science,
University of Piemonte Orientale, Novara, Italy
A. Porcu Department of Biomedical Sciences, Division
of Neuroscience and Clinical Pharmacology, Cittadella
Universitaria, Monserrato, CA, Italy
R. Potente Institute of Clinical Physiology, The Italian
National Research Council (IFC-CNR), Pisa, Italy
D.E. Potter Department of Pharmaceutical Sciences, Rangel
College of Pharmacy, Texas A&M University, Kingsville, TX,
United States
S. Potvin Research Centre of the University of Montreal
Institute for Mental Health; Department of Psychiatry,
Faculty of Medicine, University of Montreal, Montreal, QC,
Canada
C. Prats Faculty of Biology, Anthropology Unit,
Department of Animal Biology, University of Barcelona,
Biomedicine Institute of the University of Barcelona (IBUB),
Barcelona; CIBER of Mental Health (CIBERSAM), Madrid,
Spain
V.R. Preedy Faculty of Life Sciences and Medicine, King’s
College London, London, United Kingdom
R. Rajendram Faculty of Life Sciences and Medicine, King’s
College London, London, United Kingdom
L. Rathke Palo Alto University, Palo Alto, CA, United
States
K.L. Reed The University of Arizona, Tucson, AZ, United
States
M.A. Repka Department of Pharmaceutics and Drug
Delivery, School of Pharmacy, University of Mississippi,
Oxford, MS, United States
H. Rigter Youth Interventions Foundation, Curium,
Department of Child and Adolescent Psychiatry, Leiden
University Medical Center, Leiden, The Netherlands
E.M. Rock Department of Psychology and Collaborative
Neuroscience Program, University of Guelph, Guelph, ON,
Canada
H. Rohrbacher Practice for Cognitive Behaviour Therapy,
Munich, Germany
P.G.P. Rosa Department of Psychiatry, Faculty of Medicine,
Laboratory of Psychiatric Neuroimaging (LIM-21), University
of São Paulo; Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
F. Sánchez-Martínez Evaluation and Intervention Methods
Service, Public Health Agency, Barcelona, Spain
A.M. Sánchez-Torres Department of Psychiatry, IdiSNA,
Navarra Institute for Health Research, Pamplona, Spain
M. Sałaga Department of Biochemistry, Faculty of Medicine,
Medical University of Lodz, Lodz, Poland
V. Sabato Faculty of Medicine and Health Science,
Department of Immunology-Allergology-Rheumatology,
University of Antwerp, Antwerp, Belgium
A.N. Sanders Department of Criminal Justice and
Criminology, University of North Carolina at Charlotte,
Charlotte, NC, United States
xxii LIST OF CONTRIBUTORS
L.C. Santos Department of Psychiatry, Faculty of Medicine,
Laboratory of Psychiatric Neuroimaging (LIM-21), University
of São Paulo; Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
M. Scalese Institute of Clinical Physiology, The Italian
National Research Council (IFC-CNR), Pisa, Italy
M.S. Schaufelberger Department of Psychiatry, Faculty of
Medicine, Laboratory of Psychiatric Neuroimaging (LIM-21),
University of São Paulo; Center for Interdisciplinary Research
on Applied Neurosciences (NAPNA), University of São Paulo,
São Paulo; Department of Neuroscience and Behavior, Faculty
of Medicine, Ribeirão Preto, University of São Paulo, Ribeirao
Preto, Brazil
N. Schröder Neurobiology and Developmental Biology
Laboratory, Faculty of Biosciences, Pontifical Catholic
University, Porto Alegre, Rio Grande do Sul, Brazil
G. Scimeca Department of Biomedical, Dental Sciences and
Morpho-functional Imaging, University of Messina, Messina,
Italy
R. Secades-Villa Addictive Behaviors Research Group,
Department of Psychology, University of Oviedo, Oviedo,
Spain
D. Selvarajah Department of Human Metabolism, Medical
School, University of Sheffield, Sheffield, United Kingdom
O. Senormanci Department of Psychiatry, Bülent Ecevit
University School of Medicine, Zonguldak, Turkey
K. Shivakumar Health Sciences North, Department of
Psychiatry, and Northern Ontario School of Medicine,
Sudbury, ON, Canada
L.A. Shrier Division of Adolescent/Young Adult Medicine,
Boston Children’s Hospital, and Department of Pediatrics,
Harvard Medical School, Boston, MA, United States
V. Siciliano Institute of Clinical Physiology, The Italian
National Research Council (IFC-CNR), Pisa, Italy
L. Sideli Department of Experimental Biomedicine and
Clinical Neuroscience, School of Medicine, University of
Palermo, Palermo, Italy
J.T. Siegel Division of Behavioral and Organizational
Sciences, School of Social Science, Policy and Evaluation,
Claremont Graduate University, Claremont, CA,
United States
A.A. Sleem Department of Pharmacology, National
Research Centre, Dokki, Greater Cairo, Egypt
J. Sobczyn´ski Department of Pharmaceutics, Medical
University of Lublin, Lublin, Poland
L. Sodos Palo Alto University, Palo Alto, CA, United States
N. Solowij School of Psychology, University of Wollongong,
Wollongong, NSW, Australia
Z.-H. Song Department of Pharmacology and Toxicology,
University of Louisville School of Medicine, Louisville, KY,
United States
A.W. Stacy School of Community and Global Health,
Claremont Graduate University, Claremont, CA,
United States
F. Stehle Laboratory of Technical Biochemistry, Department
of Biochemical and Chemical Engineering, TU Dortmund
University, Dortmund, Germany
J.M. Stogner Department of Criminal Justice and
Criminology, University of North Carolina at Charlotte,
Charlotte, NC, United States
S. Sussman Departments of Preventive Medicine and
Psychology, and School of Social Work, Institute for Health
Promotion and Disease Prevention Research, University of
Southern California, Los Angeles, CA, United States
W. Swift NHMRC Centre for Research Excellence in Mental
Health and Substance Use, National Drug and Alcohol
Research Centre, University of New South Wales, Randwick,
NSW, Australia
N. Szerman Gregorio Marañon Hospital, Madrid, Spain
T. Tüting Laboratory of Experimental Dermatology,
Department of Dermatology and Allergy, University
Hospital of the Friedrich-Wilhelm-University Bonn, Bonn,
Germany
M. Aghazadeh Tabrizi Department of Chemistry and
Pharmaceutical Science, University of Ferrara, Ferrara, Italy
O. Taglialatela-Scafati Department of Pharmacy, University
of Napoli Federico II, Napoli, Italy
R.N. Takahashi Department of Pharmacology, CCB, Federal
University of Santa Catarina, Florianópolis, Santa Catarina,
Brazil
S. Takeda Laboratory of Xenobiotic Metabolism and
Environmental Toxicology, Faculty of Pharmaceutical
Sciences, Hiroshima International University (HIU), Kure,
Hiroshima, Japan
I. Tarricone Department of Medical and Surgical Sciences,
Bologna University; Department of Mental Health, Bologna,
Italy
D.P. Tashkin Division of Pulmonary and Critical Care,
Department of Medicine, David Geffen School of Medicine at
UCLA, Los Angeles, CA, United States
T. Telliog˘lu Brown University, Alpert Medical School,
Substance Abuse Division, Rhode Island Hospital,
Providence, RI, United States
Z. Telliog˘lu Brown University, Alpert Medical School,
Rhode Island Hospital, Providence, RI, United States
S. Tesfaye Academic Department of Diabetes and
Endocrinology, Sheffield Teaching Hospitals NHS Foundation
Trust, Sheffield, United Kingdom
L. Thornton NHMRC Centre for Research Excellence in
Mental Health and Substance Use, National Drug and Alcohol
Research Centre, University of New South Wales, Randwick,
NSW, Australia
B. Thylstrup Center for Alcohol and Drug Research,
Aarhus University, Copenhagen Department, Copenhagen,
Denmark
P.G. Tibbo Department of Psychiatry, Dalhousie University,
Halifax, NS, Canada
G. Todd School of Pharmacy and Medical Sciences,
University of South Australia, Adelaide, SA, Australia
LIST OF CONTRIBUTORS xxiii
M. Torrens Addiction Program, Institute of Neuropsychiatry
and Addiction—INAD, and Hospital del Mar Medical
Research Institute—IMIM, Barcelona, Spain
J. Tsai Department of Preventive Medicine, Keck School of
Medicine, University of Southern California, Los Angeles, CA,
United States
H.-H. Tseng Centre for Addiction and Mental Health
(CAMH), Research Imaging Centre, Toronto, ON, Canada;
Department of Psychosis Studies, Institute of Psychiatry,
King’s College London, London, United Kingdom
A. Turner Priority Research Centre for Translational
Neuroscience and Mental Health, University of Newcastle,
Callaghan, NSW, Australia
S.S. Tuv Department of Drug Abuse Research, Division
of Forensic Sciences, Norwegian Institute of Public Health,
Oslo, Norway
F. Ullah Laboratory of Neuroanatomy & Neuropsychobiology,
Department of Pharmacology, Ribeirão Preto Medical School of
the University of São Paulo (FMRP-USP), Ribeirão Preto, São
Paulo, Brazil
T. Van der Linden Department Drugs and Toxicology,
National Institute of Criminalistics, Brussels, Belgium
A.L. Van Gasse Faculty of Medicine and Health Science,
Department of Immunology-Allergology-Rheumatology,
University of Antwerp, Antwerp, Belgium
P. Vega Instituto de Adicciones, Madrid, Spain
G. Vera Area of Pharmacology and Nutrition, Faculty
of Health Sciences, University Rey Juan Carlos, Alcorcón;
Associated Unit I+D+i of the Institute of Medicinal Chemistry
(IQM) and of the Institute of Research in Food Sciences
(CIAL), Spanish National Research Council (CSIC), Madrid,
Spain
M. Verdichevski Northern Medical Program, University
of Northern British Columbia, Prince George, BC, Canada
T.R. Vieira Sousa Center for Drug and Alcohol Research,
Hospital de Clinicas de Porto Alegre, Federal University of
Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
L.R. Vilela Department of Pharmacology, ICB, Federal
University of Minas Gerais, Belo Horizonte, Minas Gerais,
Brazil
V. Vindenes Department of Drug Abuse Research, Division
of Forensic Sciences, Norwegian Institute of Public Health,
Oslo, Norway
Z. Walsh Psychology Department, IKBSAS, University of
British Columbia, Kelowna, BC, Canada
K. Watanabe Department of Hygienic Chemistry, Faculty
of Pharmaceutical Sciences, Hokuriku University, Kanazawa;
Pharmaceutical Education Support Center, Daiichi University
of Pharmacy, Fukuoka, Japan
L.R. Watterson Department of Psychology, Arizona State
University, Tempe, AZ, United States
J.M. White School of Pharmacy and Medical Sciences,
University of South Australia, Adelaide, SA, Australia
N.E. Wright Department of Psychology, University of
Wisconsin-Milwaukee, Milwaukee, WI, United States
M. Yücel Melbourne Neuropsychiatry Centre, The University
of Melbourne and Melbourne Health, Melbourne; Brain &
Mental Health Laboratory, Monash Institute of Cognitive
and Clinical Neurosciences, School of Psychological Sciences,
Monash University, Clayton, VIC, Australia
I. Yamamoto Hokuriku University, Kanazawa, Japan
S. Yamaori Department of Pharmacy, Shinshu University
Hospital, Matsumoto, Japan
A. Zalesky Melbourne Neuropsychiatry Centre, The
University of Melbourne and Melbourne Health, Melbourne,
VIC, Australia
D. Zalman Division of Oncology, Rambam Health Care
Campus and Faculty of Medicine, Technion—Israel Institute
of Technology, Haifa, Israel
J. Zhang Neuroscience Center of Excellence, School of
Medicine, Louisiana State University Health Sciences Center,
New Orleans, LA, United States
Y. Zhang Department of Medicinal Chemistry, School of
Pharmacy and Institute for Structural Biology and Drug
Discovery, Virginia Commonwealth University, Richmond,
VA, United States
R. Zoccali Department of Biomedical, Dental Sciences and
Morpho-functional Imaging, University of Messina, Messina,
Italy
C.F. Zorumski Department of Psychiatry; The Taylor
Family Institute for Innovative Psychiatric Research,
Washington University School of Medicine, St. Louis, MO,
United States
A.W. Zuardi Department of Neuroscience and Behavior,
Ribeirão Preto Medical School, University of São Paulo,
Ribeirão Preto, Sao Paulo, Brazil
Page left intentionally blank
xxv
Preface
Cannabis is probably one of the most commonly
used drugs of misuse. It has a wide range of adverse
effects including impairing learning and memory. At
the same time, the medical use of cannabis has been
advocated due to its ability to relieve pain as an ex-
ample. Understanding the nature of the pleasure-
seeking, disinhibition, and other effects have also
paved the way for the specialized field of cannabis
pharmacology. This includes elucidating the nature
of cannabinoid receptors, which has led to the devel-
opment of synthetic cannabinoid agonists. However,
the aforementioned is a rather simplistic synopsis.
The long-term use of cannabis may also increase the
risk of schizophrenia, paranoia, and other psychoses.
Its use can affect cells, organs, individuals, families,
subcultures, groups, and communities. This is be-
cause the interrelationships between cannabis and in-
dividual components, diagnosis, screening, social and
community effects, psychopathology, neuropathol-
ogy, non-CNS effects, polydrug use, medicinal appli-
cations, treatments, and pharmacology are complex.
Furthermore, although the active agents in cannabis
are known, the individual steps between exposure
by ingestion or inhalation and effects on cells and the
body are multifactorial, and cut across many scientific
disciplines. It is thus important to learn from these
interrelationships to embrace a multidisciplinary ap-
proach to understand all the threads and ramifications
of cannabis use, misuse, and applications. For exam-
ple, some cellular mechanisms elucidated by studying
one anatomical CNS component may also be relevant
to other areas of the CNS, or other fields of cannabis
toxicity and pharmacology. Another example relates
to the impact of cannabis on social dysfunction, which
may also be relevant to other psychosocial scenarios,
or useful in devising new treatment strategies. An ad-
ditional example relates to preclinical studies which
may be relevant to understanding clinical patholo-
gies, psychomorbidities, or therapeutic drugs. Un-
raveling these complex relationships is difficult, as
there is a wide myriad of material related to canna-
bis. In simple terms, the material on cannabis use and
misuse has hitherto been either scattered, diffused,
or crosses different disciplines. These limitations are,
however, addressed in The Handbook of Cannabis and
Related Pathologies: Biology, Pharmacology, Diagnosis,
and Treatment which embraces all aspects of canna-
bis in a one-stop-shop approach. Where appropriate,
positive aspects of cannabis and related metabolites
are described.
The book is divided into eight major parts as follows:
1. Setting the Scene, Botanical, General, and
International Aspects
2. Personal, Social, and Community Aspects of
Cannabis Use
3. Cannabis, Behavior, Psychopathology, and
Neuropathology
4. Cannabis, Organs, Tissues, and non-CNS Aspects
5. Pharmacology and Cellular Activities of
Cannabinoids and Endocannabinoids
6. Effects of Specific Natural and Synthetic
Cannabinoids
7. Medicinal Cannabis Use
8. Screening, Diagnosis, and Treatments
The Editor recognizes the difficulties in ascribing
chapters to particular sections, and even their location
within separate sections. This is because some chapters
can be categorized in many ways. However, this issue
is resolved with the excellent indexing carried out by
Elsevier.
The Handbook of Cannabis and Related Pathologies: Biol-
ogy, Pharmacology, Diagnosis, and Treatment transcends
both multiple disciplinary and intellectual divides, as
each chapter has:
• Key Facts
• Mini-Dictionary
• Summary Points
Finally, there is a chapter on Resources and Recom-
mended Reading, suggested by some of the book’s con-
tributors.
The Handbook of Cannabis and Related Pathologies:
Biology, Pharmacology, Diagnosis, and Treatment has been
designed for those working in the field of cannabis
and cannabinoids, drug abuse workers, neurologists,
specialists in addictive behaviors, health scientists,
public health and community workers, doctors,
xxvi PREFACE
pharmacologists, research scientists, and other special-
ists. The book is valuable as a personal reference book,
and also for academic libraries that cover the domains
of health sciences or addictions. Contributions are from
leading national and international experts, including
those from world renowned institutions. It is suitable
for undergraduates, postgraduates, lecturers, and aca-
demic professors.
Professor V.R. Preedy, BSc, PhD, DSc,
FRSB, FRSH, FRIPHH, FRSPH, FRCPath, FRSC
King’s College London, London, United Kingdom
PART I
SETTING THE SCENE, BOTANICAL,
GENERAL AND INTERNATIONAL
ASPECTS
1 The cannabis plant: Botanical aspects 3
2 The biosynthesis of cannabinoids 13
3 Increasing plant concentrations of THC and
implications on health related disorders 24
4 Age as a predictor of cannabis use 33
5 Lifetime cannabis use and cognition in psychosis
spectrum disorders 44
6 A profile of synthetic cannabinoid users 53
7 Dual disorders in cannabis misuse 61
8 Cannabis use and cognitive function 70
9 Cannabis, migration, and psychosis onset 79
10 The global epidemiology and disease burden
of cannabis use and dependence 89
11 International aspects of cannabis use and
misuse: the australian perspective 101
12 International aspects of cannabis use and
misuse: Egypt 110
13 Cannabis body packing: A caribbean perspective 122
Page left intentionally blank
CHAPTER
3
Handbook of Cannabis and Related Pathologies. http://dx.doi.org/10.1016/B978-0-12-800756-3.00001-6
Copyright © 2017 Elsevier Inc. All rights reserved.
1
The Cannabis Plant: Botanical Aspects
S. Farag, O. Kayser
Technical University Dortmund, Technical Biochemistry Dortmund, Dortmund, Germany
SUMMARY POINTS
• Thischapterfocusesonthebotanicalaspectsof
Cannabis.
• Cannabistrichomescancomeinglandularand
nonglandularshapes,includingoilresin.
• Resinglandsarethemainproducerof
cannabinoids.
• Recently,hybridcannabisstrainshavebeen
developed.
• Modernhydroponictechniques,coupledwith
selectivearticiallighting,areusedinorderto
solvetheissueoflow-potencycannabis.
• However,wearguethatitisnecessarytoapply
transgenicCannabisplantstofacilitatethe
metabolicpathwayforcannabinoidproduction
oragronomictraits.
KEY FACTS
• MostpopularvarietiesofCannabisareacombination
oftwoorthreeofC. sativa,C. indicaorC. ruderalis.
•Cannabiscultivatedforberoroil,ornarcotics
production.
• Cannabinoidsarethemainactiveingredient.
• Cultivationandbreedingofnarcoticstrainsisnot
permittedinmostcountries.
• Onlyfemaleplantsareeconomicallyimportantfor
producingresininnarcoticstrains.
• Indoorhorticulturallightingisanewsystemtomimic
sunlight.
• Indoorhydroponictechnologyisusedformaximizing
cannabinoids.
LIST OF ABBREVIATIONS
CBD Cannabidiol
CBDA Cannabidiolicacid
CBN Cannabinol
GPP Geranylpyrophosphate
GRIN GermplasmResourcesInformationNetwork
ISSR Intersimplesequencerepeat
NPGS NationalPlantGermplasmSystem
RAPD Randomampliedpolymorphic
RFLP Restrictionfragmentlengthpolymorphism
RH Relativehumidity
RFLP Restrictionfragmentpolymorphisms
THCA Tetrahydrocannabinolicacid
THC∆9-Tetrahydrocannabinol
USDA UnitedStatesDepartmentofAgriculture
INTRODUCTION
Cannabis sativa L. (marijuana; Cannabaceae) is an
annual dioeciously owering plant. The rst appear-
anceofCannabiswasbelievedtobecentralAsiaabout
5000BC.Formillennia,theplanthasalsobeenusedfor
ber,oilproduction,and traditional uses. Itcontainsa
numberofmedicinallyimportant compounds,suchas,
cannabinoids (Appendino, Chianese, & Taglialatela-
Scafati,2011),terpenoids (Ross &ElSohly,1996),avo-
noids (Vanhoenacker, Van Rompaey, De Keukeleire, &
Sandra, 2002), alkaloids (Turner & Elsohly, 1976), and
others (Brenneisen, 2007). Cannabinoids are a unique
classofterpenophenoliccompoundstoCannabisplants,
accumulated mainly in the cavity of trichomes (Kim
& Mahlberg, 1997). More than 80 cannabinoids have
beenisolatedfromC. sativa(Elsohly&Slade,2005).The
mainpsychoactive compound is∆9-tetrahydrocannabi-
nol(THC),withwell-knownmedicinaleffects(Elbatsh,
4 1. THE CANNABIS PLANT: BOTANICAL ASPECTS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
Moklas,Marsden,&Kendall,2012).Atpresent,cultiva-
tionandbreedingofCannabisisprohibitedinmostcoun-
tries,exceptbypermissionforpurposesofresearchand
pharmaceuticaluses(ElSohly,2002).Cannabisplantsare
usuallypropagatedthroughtheseed(sexualreproduc-
tion;outdoorcultivation)orbyvegetativepropagation,
usingstem cuttings(asexual reproduction;indoor cul-
tivation)(Potter,2004).However,bothtechniqueshave
advantagesanddisadvantages.Thischapterisdedicat-
edtobotanicalaspects,includingmorphology,taxono-
my, genetics, conservation, geographical distribution,
andcultivationforms.
BOTANY OF CANNABIS
Macroscopical Features
Informationwaspublishedelsewhere,givingdetailed
technicaldescriptionsofCannabismorphology(Clarke,
1981;UNODC,2009)Fig.1.1.However,thisinformation
hasbeensimpliedinthepresenttext.C. sativaisanan-
nual,dioeciously(ie,maleandfemaleowersarefound
onseparateplants),pollinatedplantwithstrongtaproot,
erect stems. The stems are usually angular, furrowed,
branched,withwoodyinterior,sometimeshollowinthe
internodes,andvaryfrom1to6minheight.Thebranch-
ingiseitheroppositeoralternate.Therootsareadvanta-
geous,withbranchedtaproot,generally30–60cmdeep,
upto2.5minloosesoils,veryneartothesurface,and
morebranchedinwet soils. Leavesaregreenandpal-
mate(sevenlobes).However,thesizeandshapeofthe
leaetsdiffersmarkedly,accordingtogeneticorigin.The
leafarrangementiseitheropposite,oralternateorspiral.
Theleaetsare6–11cm(length)and2–15mm(width).
Leafmarginsarecoarselyserrated.Theadaxialandabax-
ialsurfacesaregreen,withscattered,resinoustrichomes.
Inorescences consist of numerous ower heads that
canbe foundon long, leafy stems from eachleaf axil.
Thestaminate(maleower)consistsofvepale-green,
hairysepalsabout2.5–4mm long, andvependulous
stamens,withslenderlamentsandstamen.Thepistil-
late(femaleowers)arealmostsessile,andareinpairs.
Thefruit(seed),isanachene,containsasingleseedwith
ahardshelltightlycoveredbythethinwalloftheovary,
andit is ellipsoid, slightly compressed,smooth, about
2–5mmlong,generallybrownishandmottled.
FIGURE 1.1 (A)femaleC. sativa;(B)portionofthefemaleowers;(C)pistillatefemaleower(stigmas,style,perigonalbract,andstipule);(D)
portionofthefemaleowersshowanther;(E)matureseed.
BOTANY OF CANNABIS 5
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
Microscopical Features
Ingeneral,Cannabistrichomescompriseadiverseset
ofstructuresanddifferenttypesoftrichomes(eg,glan-
dularandnonglandular)onasingleleaf,whenviewed
through a hand lens (Fig. 1.2). Cannabis trichome re-
searchers have commonly described two types of the
nonglandular trichome that have not been associated
with terpenoid development (Table 1.1). Three types
of glandular trichome have been described on female
plants, namely bulbous, sessile, and capitate stalked
(Happyanaetal.,2013).Maleplantshavebeenfoundto
exhibitafourthtype—theantherialglandulartrichome,
whichhasonlybeenfoundonanthers(Fairbairn,1972).
Glandulartrichomesaremadefromaseriesofdifferenti-
atedcellswithdifferentfunctionalproperties,namelythe
secretorycells,andstalkcells(Kim&Mahlberg,1991).
Classification of Cannabis
The rst ofcial publication which recorded the use
ofLatin binomials is Linnaeus’s Species Plantarum, and
itcanbedatedbacktotheyear1753.Afterward,thein-
ternationalcommunity acknowledged it as the starting
point for modern botanical nomenclature. The species
nameCannabismeans“cane-like,”whilethegenusname
“sativa”hasthemeaning“planted or sown,”andsignies
thattheplantispropagatedfromseed,andnotfrompe-
rennial roots (Raman, 1998). According to the modern
system of classication, Cannabis belongs to the family
of Cannabaceae, along with the Humulus genus (hops)
(Turner,Elsohly,&Boeren,1980a,b).Differentvarietiesof
Cannabishavebeendeveloped overthecourseofmany
centuries,astheresultofbreedingandselection.How-
ever, the Cannabis processed by these methods creates
many debates about further botanical classication. So
far,there isno general agreementabout thetaxonomic
rankof various groupswithin the genusCannabis, and
consequentlyitsmonospecic or polyspecic character,
sincethetimeofLinnaeus(late18thcentury)(Hazekamp,
Justin,Lubbe,&Ruhaak,2010).UNODC(1956)divided
domesticatedCannabisintothreedifferentgroups:
• berhemp,long,unbranchedplants,withpoorseed
production
• oilseedhemp,short,earlymaturingplants,withrich
seedproduction
• drughemp,short,stronglybranchedplants,with
smalldarkgreenleaves.
Schultes,Klein,Plowman,&Lockwood(1974)distin-
guishedthreespecieswithin the genus:C. sativa L., C.
indicaLam., and C. ruderalis.Other authors referredto
thesametaxaonlyatsubspeciclevelwithinonesingle
species,C. sativa(Hoffmann,1961).SmallandCronquist
(1976)dividedthesinglespeciesC. sativaintothesub-
speciessativa andindica, eachconsisting ofa domesti-
cated(Table1.2)andwildvarieties.Withinthesubspe-
ciessativa,the domesticatedandthe wild varietiesare
C. sativasubsp.sativavar.sativa(domesticated),C. sativa
subsp.sativavar.spontama(wild),C. sativasubsp.indica
var. indica (domesticated), and C. sativa subsp. indica
var. kafiristanica (wild). However, it is commonly ac-
ceptedthatCannabisismonotypic,andconsistsonlyof
a single species: C. sativa(Brenneisen, 1983; Beutler &
Dermarderosian,1978).
FIGURE 1.2Microscopic photographs of C. sativa trichomes.(A)Trichomesontheower;(B)capitate-stalkedtrichome;(C)capitate-sessile
trichome;(D)bulboustrichome;(E)trichomesonthebract;(F)trichomesonthestem;(G)trichomesontheadaxialsurfaceofaoralleaf.Abig
capitate-sessiletrichomeisindicatedwithanarrow;(H)trichomesontheabaxialsurfaceofaleaf.Presentabundantsmallcapitate-sessileand
bulboustrichomes.Source: Adapted from Happyana et al. (2013).
6 1. THE CANNABIS PLANT: BOTANICAL ASPECTS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
TABLE 1.2 Synopsis of C. sativa Sectional Species, Subspecies, and Varieties Recognized Based on Chemical, Genetic, and
Morphological Variation
Section sativa Section spontanea
C. sativa(L.)a
C. chinensis(Delile)
C. gigantea(Delile)
C. americana(Houghton)
C. sativasubsp.Intersita(So.)
subsp.culta(Serebr)
subsp.Sativa(L.)
var. sativa
var. praecox
var. monoica
var. gigantea
var. Chinensis
var. pedemontana
C. ruderalis(L)a
C. sativasubsp.spontanea(Serebr.)
var. spontanea
var.ruderalis
Section indica
C. indica(Lam.)a
C. macrosperma(Stokes)
C. sativasubsp.indica(Lam.)
var. indica
var. kif
var. afghanica
var. kafiristanica
a Includes the endemic and domesticated populations (Raman, 1998; Sytsma et al., 2002; Hillig, 2005).
TABLE 1.1 A Summary of Cannabis Trichomes Classification, Structure, Distribution, Timing of Development, and Lifespan
Trichomes
Classification Structure Distribution
Timing of
development/
density Lifespan References
Nonglandular
trichomesa
(1)Noncystolithic trichomes:
long,unicellular,smooth,
curved,covering
trichomes
Lowersideof
vegetativeleaves
andpistillate
bracts
Decreases
withage
Theviabilityand
functioning
secretionis
correlatedwith
senescenceof
epidermalcells
(Fairbairn,1972;
Hammond&
Mahlberg,1977;Turner
etal.,1977,1980b,1981;
Croteau,1988;
Werker,2000;Guy&
Stott,2005;Happyana
etal.,2013)
(2)Cystolithic trichomes:
moresquat,unicellular,claw
shape,cystolithcovering
trichomes,containing
calciumcarbonate
Glandular
trichomesb
(1)Bulbous:
withsmallestgland
Vegetativeleaves
andpistillate
bracts
(2)Capitate-sessile (unstalked):
thestructureiscommonly
simple,andthetrichomes
headconnecteddirectlyto
themesophyllcells.
(3)Capitate-stalked:
thestructuremorecomplex,
theydevelopedresin
head(alsoknownas
theglandularhead)
thatresemblesagolf
ballsittingonatee(the
trichome’sstalk).
Bractsandoral
leaves
Increaseswith
age
Antherialsessile
trichomesc
Largesize,withadiameter
ofapproximately
70–80µm
Undersideofthe
antherlobes
a Nonglandular trichomes lack cannabinoids.
b Glandular trichomes are the principal or sole site of storage of most cannabinoids, the content of ∆9-THC in pistillate flowers ranged between 10 and 12%, and in leaves ranged
between 1 and 2%.
c Male plants are of no consequence in medicine production because they develop few glandular trichomes and, consequently, produce few cannabinoids or terpenes.
BOTANY OF CANNABIS 7
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
The current scientific classification of Cannabis (Sytsma
et al., 2002)
Class Hamamelidae
Subclass Rosales
Order Cannabaceae
Family Cannabis
Genus sativa
Species
Other Recent Taxonomic Studies
CHEMOTAXONOMIC CLASSIFICATION
Recently, chemotaxonomic classication splits the
phenotypesbasedonthequantitativedifferencesinthe
cannabinoidratiooftetrahydrocannabinolicacid(THC),
cannabinol(CBN),andcannabidiol(CBD),intheratioof
[THC]+[CBN]/[CBD].Iftheratioexceeded1,plantsare
classiedas“chemo-type,”otherwiseas“ber-type,”and
thiswastherststudytodifferentiatebetweenthedrug-
andber-type,byFettermanetal.(1971).Therefore,this
ratiowassubsequentlyusedtodiscriminatechemotype,
intermediatetype,andber-type(Turner,Cheng,Lewis,
Russell, & Sharma, 1979). Hillig and Mahlberg (2004)
splitCannabisintoputativespeciesandsubspecies,us-
ingmultivariatedataanalysis.Moreover,itwasreported
that,dependingonage,theCannabisplantcanbeclassi-
edintodifferentmorphotypes,atdifferenttimepoints
ofitsdevelopment.Althoughthisclassicationwasnot
comprehensive enough to elucidate infrageneric taxo-
nomicstructure,anddoesnotdenethecontentsofcan-
nabinoidsforeachchemotype,itprovidesausabletool
forclassication(Hazekampetal.,2010).
MOLECULAR CLASSIFICATION
Severalmoleculartechniqueshavebeenevaluatedto
establishthegeneticrelationshipamongdifferentvariet-
iesofCannabisplants.Somerecentstudieshaveclassi-
edandidentiedC. sativasamplesthatcannotbedif-
ferentiatedbyHPLCanalysis alone, byusinggenomic
DNA, random amplied polymorphic DNA (RAPD),
andrestrictionfragmentpolymorphisms(RFLP)analy-
sis,butlittleworkappearstohavebeenconductedwith
markertypesthatwouldbeusableforbreeding(Gillan,
Cole,Linacre,Thorpe,&Watson,1995;Faeti,Mandolino,
&Ranalli,1996).Recently,Kojoma,Iida,Makino,Sekita,
andSatake(2002)reportedthatdifferentCannabiswere
identied by means of inter simple sequence repeat
(ISSR).ISSR is a technique offeringthe reproducibility
andsimplicityofRAPDswithhighreliability(Galvan,
Bornet,Balatti,&Branchard,2003).
Current Cannabis Varieties
Recently, Cannabis growers have become more
awaretocreatevariations betweendifferentstrains for
developingnewvarieties.Newly hybrid varietieshave
been developed as a result of the crossbreds, such as,
“super-sativa”(Clarke& Watson,2002;deMeijer,2004).
Recently, varieties of Cannabis have been licensed to
GW Pharmaceuticals Ltd, as part of indoor breeding
programs(deMeijer&Hammond,2005).IntheUnited
States,the majority ofCannabis cultivars wereselected
fromsinglelandracesources,orfrommultihybridprog-
enies made from different landraces (de Meijer, 2004).
The marijuana potency monitoring project at the Uni-
versity of Mississippi (USA) is breeding Sinsemilla,
Skunk 1, Four Way, Four Way-F, Thai/Skunk, Terbag
W1,K2,and MX Cannabisof hybrid varieties(ElSohly,
Holley,&Turner,1985;Elsohly,Holley,Lewis,Russell,&
Turner,1984).IntheNetherlands,therearethreediffer-
entCannabisvarietiesfromsativa:Bedrocan,Bedrobinol,
andBediol, and one variety from C. indica is Bedica –
allstudiedandregisteredbyBedrocanBV(Fischedick,
Hazekamp,Erkelens,Choi, & Verpoorte,2010).Nowa-
days, many Cannabis hybrid cultivars (Table 1.3) and
someselectedpurestrainshavebeencommercializedin
manyprivate companies, and there areup to 20more
orlesswelldenedstrainsforeitherindoororoutdoor
cultivation,inTheNetherlands,butasufcientdataset
isnotavailable,duetoillegalcultivation.Today,thecul-
tivationandproductionofhempisrestrictedandcon-
trolledbecauseofitsassociationwithnarcoticuse.Most
ofthehempbreederscultivateberhemp with the ul-
timategoaltoreduceTHCcontentbelow0.2%,oreven
togetnoncannabinoidplantsbybreedingandcrossing
experiments(deMeijer,1995).
Genetics of Cannabis
Genome of Cannabis sativa
ThegenomeofCannabis(2n=18+XXforfemale,and
2n=18+XYformale)hasakaryotypecomposedofnine
autosomesandapairofsexchromosomes(XandY).Sex
chromosomeschangesduringthedevelopmentalstages
areclaimedtooccurinmanydioeciousplants,asastrat-
egy for survival (Flemming et al., 2007). The genome
wasmeasuredinbothfemale(XX)andmaleplants(XY)
(Vyskot&Hobza,2015).Theestimatedhaploidgenome
sizesare818Mbforfemaleplants,and843Mbformales
(Sakamotoetal.,1998).Thegenomicresourcesavailable
forCannabisaremainlyconnedtotranscriptomeinfor-
mation:theNCBIdatabasecontains12,907ESTsand23
unassembledRNA-SeqdatasetsofIlluminareads(Marks
etal.,2009).Thegeneticbasisofcannabinoidvariationin
C. sativashowedthattheamountofTHCversusCBDis
likelygovernedbyone locus withtwocodominantal-
leles,B(d)andB(t)(deMeijeretal.,2003).Onepossible
explanationfor these resultsisthat the two alleles en-
codeeither THCAorCBDAsynthaseso that homozy-
gousplantswouldcontaineithertetrahydrocannabinolic
8 1. THE CANNABIS PLANT: BOTANICAL ASPECTS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
acid(THCA)orcannabidiolicacid(CBDA)asthemajor
cannabinoid,andheterozygoteswouldhaveanapproxi-
matelyequalmixtureof thetwo(Fig.1.3).Anotherex-
planationisthatTHCAandCBDAsynthasesareclosely
linked genes, perhaps produced as a result of a gene
duplication event. A recent study analyzed the THCA
synthase sequences from drug (high-THC) and ber
(low-THC)varieties,andfoundthattheaminoacidse-
quenceofTHCAsynthasefromhigh-THCvarietiesdif-
feredby37 major substitutions, comparedtolow-THC
varieties(Kojoma,Seki,Yoshida,&Muranaka,2006).
Geographical Distribution
Small and Cronquist (1976) state that genus Canna-
bisgeographically growsto the north of latitude 30°N
andsouthof latitude 60°N(Hillig,2005). The genusis
believedtohaveoriginatedintheNorthwestHimalayas,
andoccurswidelyinAfrica.
Agricultural Status
Nowadays, ber hemp is cultivated in a number
of countries around the world, and China represents
thelargest producer of hemp with focuson ber-type
(Mediavilla,Bassetti,&Leupin,1999).Nevertheless,cul-
tivationof medicinal Cannabisis prohibited in mostof
countries,exceptbypermissionforpurposesofresearch
andpharmaceuticaluses.
Conservation Initiatives
Cannabispopulationsarefacing the threatofgenetic
drift—which has a direct effect on the changes to the
phenotypeandchemicalprole,duetoallogamous(de
Meijer&Vansoest,1992). The conservation of Cannabis
germplasmisdivided into two mainstrategies:in situ
andexsitu.
Ex Situ Conservation in Gene Banks
The Cannabis gene bank at Vavilov Research Insti-
tute of Plant Industry (St. Petersburg, Russia) main-
tainedabout200accessions,formorethan50years(de
Meijer,1998). In addition,theHungarian gene bankat
the Research Center for Agrobiodiversity (Tápiószele,
Hungary)maintainedabout70accessions.Collectionsof
upto20accessionsarepreservedinotherdepositoriesin
Germany,Turkey,andJapan.Incomparisonwithother
crops,theavailablenumberofwell-documentedCannabis
accessionsislimited(deMeijer&Vansoest,1992).Now-
adays,severalaccessionsaremaintainedbytheUnited
States Department of Agriculture (USDA)/National
PlantGermplasm System (NPGS),and associated data
canbe accessedfrom the Germplasm Resources Infor-
mationNetwork(GRIN)database.
FIGURE 1.3Inheritance of chemical phenotype in C. sativa “co-
dominant monogenic control,” homozygous THC producing BtBt
genotypes are typically selected for recreational use.Source: From de
Meijer et al. (2003).
TABLE 1.3 Origin of Hemp Varieties Were Reported in
Literaturea
Variety Country
Finola Finland
Glukhov33,Kuban,Uso11,Zenica,USO13,USO
15,USO31,YUSO14,YUSO16
Ukraine
Asso,Carmagnola,CS(CarmagnolaSelezionata),
Carmono,Carma,Codimono,ElettaCampana,
Ferrara,Ermes,Fibrimor
Fibranova
Italy
Fasamo,Ferimon Germany
Santhica27,Epsilon68,Fedora17,Fedora19,
Fedrina74,Felina32,Felina34,Fibrimon21,
Fibrimon24,Fibrimon56,Futura,Futura77,
Futura75,Santhica23,Dioica88
France
KompoltiSargaszaru,Kinaiunisexualis,Kompolti,
KompoltiHybridTC,KompoltiHyper,Elite,
Fibriko
Hungary
Fibramulta151,Irene,Lovrin110,Moldovan,
Secuieni1
Romania
Beniko,Bialobrzeskie,LKCSD,Dolnoslaskie Poland
Chamaeleon,Dutch“Yellow”line Netherlands
ErmakovskayaMestnaya Russia
Delta405,Delta-llosa Spain
Kenvir Turkey
Swissmix Swiss
Ratslaviska Czech
Silistrensi,Mecnajacopt Bulgaria
Pesnica Slovenia
Flajsmanova,Novosadksa,Novosadskaplus,
Novosadskakonoplja
Former
Yugoslavia
KinaiEgylaki,KinaiKetlaki China
KozuhuraZairai Japan
a Low THC cultivars, less than 0.2% dry weight.
BOTANY OF CANNABIS 9
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
In Situ Conservation as In Vitro Gene Banks
In vitro conservation of encapsulated microcuttings
ofCannabisshootletswasattemptedunderslowgrowth
conditions between 5 and 15°C (Lata, Chandra, Khan,
& ElSohly, 2008; Lata, Chandra, Mehmedic, Khan, &
ElSohly, 2012), but adaptation to in vitro conditions
could induce mutants of the offspring plants, causing
geneticandchemicaldrift(Larkin&Scowcroft,1981).
Cultivation Techniques of Cannabis
Outdoor Cultivation
Cannabis plant can be propagated from seeds, and
thelifecycleiscompleted within4–6months,depend-
ingonthetimeoftheplantationandthevariety.Itcan
reachupto5m(16ft.)inheight,ina4–6monthsgrow-
ingseason(Raman,1998;Clarke&Watson,2002).Her-
maphroditic varieties of this plant have been bred for
industrial hemp production, as this allows more uni-
formcrops(Leggett,2006).Theprocessofgerminationis
usuallycompletedin3–7days(Clarke&Watson,2002).
Theseedlingstageiscompletedwithin2–3months.Lat-
er,theplantischaracterizedbyincreasedbiomassand
total growth under long day time lengths (vegetative
growth).Itiseasytorecognizethemaleandfemalesex
atthis stage.Later insummer,thereproductivephase
ofCannabis begins when the plant is exposedto short
daytimelengths(lesslightperdaythandarkness)of12–
14horless,dependingonitslatitudeandgeneticorigin
(Brenneisen,1983).Oncethemaleowersripenedand
pollinated, the female owers died directly. The pro-
ducedseedsafteroweringhavecombinationsoftraits
fromtwoparents,asaresultofcrossfertilization(Clarke
&Watson,2002).Thismethodismostlyusedforthecul-
tivationofCannabisforhempber,orCannabisseedwith
lessthan0.2%THC.
Indoor Cultivation
Thismethodof breedingisusedforincreasingresin
potency,andavoidingunwantedmaleplants(Chandra,
Lata,Khan,&ElSohly,2010). The complete growthcy-
cle, quality, and quantity of biomass can be regulated
undercontrolledenvironmentalconditions(6–8weeks).
Thesuccessful indoorsystem requiresan effective hy-
droponic system to deliver nutrients and oxygen, and
supporttheplants’growth(Fig.1.4).However,thereisa
numberofdifferenttechniquesthathavebeenproposed
fortheindoorhorticultureofCannabis,forexample,the
standingaeratedtechnique,nutrientlmtechnique,and
aeroponicstechnique.Inhydroponicgrowing,thenutri-
entsolutionisbestatapHwithinacertainrange(5.5–
6.5)formaximumuptakeandgoodplantgrowth(Argo
&Fischer,2002).IndoorCannabiscropcultivationneeds
articial light and compressed CO2 gas for photosyn-
thesis,andforcontrollingoweringandplantbiomass
(Jones,1997).Here,selectivevegetativefemaleplantsare
usedformakingclones.Later,allclonesarekeptunder
standardenvironmentalconditions (light,temperature,
RH,andCO2concentration)inagrowingroomforvegeta-
tion(18h/dayphotoperiod)andforowering(12h/day
photoperiod).
In vitro Micropropagation
The micropropagation system offers a number of
clear advantages, including (1) human-controlled
method with fast propagation in a comparably short
time, due to high potential multiplication rates, (2) it
isindependentof seasonal factorslike climate and ge-
ography, and (3) the produced plants are usually free
from microorganism-borne diseases (Zafar, Aeri, &
Datta,1992).Ontheotherhand,invitropropagationof
C. sativathroughtheseedispossibleinmostofcultivars,
althoughthegreatestproblemwithsuchamethodisthe
FIGURE 1.4Indoor cultivation of C. sativa.Source: Photo provided from Bedrocan BV, the Netherlands.
10 1. THE CANNABIS PLANT: BOTANICAL ASPECTS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
highlevel of heterozygositythatcould lead toa rapid
and dramatic prole shift of secondary metabolites
fromonegenerationtothenext (Chandra et al.,2010).
Infact, in vitropropagation using explants or somatic
embryogenesishasbeenreported(Lataetal.,2002).Be-
sides the progress in the eld of plant biotechnology,
verylittleprogresshasbeenmadetodatetowarddevel-
opinganin vitro regenerationfromC. sativa.Previous
reports on de novo organogensis of C. sativa emerged
inearly1980s(Fisse,Braut,Cosson,&Paris,1981),and
subsequentlyfromcallusofdifferentgenotypesandex-
plantsources,includingcotyledonsandstem(Wielgus,
Luwanska, Lassocinski, & Kaczmarek, 2008), young
leaves (Lata, Chandra, Khan, & ElSohly, 2010), inter-
nodes, and axillary buds and petioles (Slusarkiewicz-
Jarzina,Ponitka,&Kaczmarek,2005),androots(Ranalli
& Mandolino, 1999). Alternatively, the use of meriste-
maticcallusformicropropagationwasstudiedrecently
(Farag&Kayser,unpublishedresults,Fig.1.5).
Recommendations for Future Action
Giventhe high therapeutic and commercialvalue of
Cannabis,legalindoorbreedingstartedinsomepharma-
ceuticalcompanies.Thebiotechnologicalresearchforge-
neticimprovementhasbeenminimaltodate.Researches
ontransgenicCannabisisstillneededtofacilitatethemet-
abolicengineeringofcannabinoidsandagronomictraits.
MINI-DICTIONARY
Encapsulation Invitrotechniquefortheproductionofsynthetic
seeds(Ca-alginatebeads)forlong-termstorageofgermplasm.
Genome Thecompletesetofchromosomalandextra-
chromosomalDNA/RNAofanorganism,acell,anorganelle,
oravirus.
Inter simple sequence repeats (ISSR) Amoleculartechnique
forevolutionarybiology.Itssimplesequencerepeats(SSR),also
knownasmicrosatellites,aretandemrepeatsofafewbasepairs
distributedthroughoutthegenome.
Micropropagation Invitrotechniqueformultiplyingplanttissues
throughinvitroculture,eitherindirectly(withinterveningcallus
stage)ordirectly(withoutaninterveningproliferativestage).This
isachievedbyalteringtheconcentrationofgrowthregulators,
mainlyauxinsandcytokinins.
Random amplified polymorphic DNA (RAPD) Amolecular
techniquefortherapidassignationofDNA-basedcharacterstates
forphylogeneticanalysis.Thetechniqueusesthepolymerase
chainreaction(PCR)toamplifyanygenomicregioncontaining
singleprimerofnucleotidearbitrarysequence.
Restriction fragment length polymorphism (RFLP) Amolecular
techniqueforgenomemapping,andvariationanalysis(genotyping,
forensics,paternitytests,hereditarydiseasediagnostics,etc.).The
techniqueusesrestrictionofendonucleasestocutDNAatspecic
(generally4–6bp)recognitionsites.
Trichome Denedashair-likestructuresthatextendfromthe
epidermisofaerialtissues;arepresentonthesurfaceofmost
terrestrialplants.
References
Appendino, G., Chianese, G., & Taglialatela-Scafati, O. (2011). Can-
nabinoids:occurrenceand medicinal chemistry.Current Medicinal
Chemistry,18(7),1085–1099.
Argo,W.R.,Fischer,P.R.(2002).UnderstandingpHmanagementfor
container-growncrops.Meister,Willoughby,Ohio.
Beutler, J.A., & Dermarderosian, A. H. (1978). Chemotaxonomy of
Cannabis.1.CrossbreedingbetweenCannabis sativaandCannabis
ruderalis, with analysis of Cannabinoid content. Economic Botany,
32(4),387–394.
Brenneisen,R.(1983).Psychotropicdrugs.I.Cannabis sativaL.(Canna-
binaceae).Pharmaceutica Acta Helvetiae,58(11),314–320.
Brenneisen,R.(2007). Chemistry and analysis of phytocannabinoids
andotherCannabisconstituents.InM.A.Elsohly(Ed.),Marijuana
and the cannabinoids(pp.17–49).Totowa:HumanaPress.
Chandra,S.H.,Lata, I.,Khan,A.,& ElSohly,M.A.(2010).Propagation
ofeliteCannabis sativafortheproductionof∆9-Tetrahydrocannabinol
(THC)usingbiotechnologicaltools.InA.Rajesh(Ed.),Medicinal Plant
Biotechnology(pp.98–114).UK:CABI.
Clarke,R.C.(1981).Marijuana botany. An advanced study: the propagation
and breeding of distinct cannabis.Berkeley,CA:And/OrPress.
Clarke,R.C.,&Watson,D.P.(2002).BotanyofnaturalCannabismedi-
cines.InF.Grotenhermen, &E.Russo(Eds.),Cannabis and canna-
binoids: pharmacology, toxicology, and therapeutic potential(pp.3–13).
NewYork:TheHaworthPress.
Croteau,R.(1988).Catabolismofmonoterpenesinessentialoilplants.
Developments in Food Science,18,65–84.
FIGURE 1.5In vitro micropropagation of leaf-derived calli from C. sativa L.(A)Callusculture,(B)meristemoidformation,(C)shootlets
multiplicationonGamborg’sB5mediumsupplementedwithvariouscombinationsofauxinsandcytokinins.Source: Photos provided from Sayed
Farag PhD project, Technische Universität Dortmund.
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
REFERENCES 11
deMeijer,E. P.M.,& Vansoest,L.J.M. (1992). The CPRO Cannabis
germplasmcollection.Euphytica,62(3),201–211.
deMeijer,E.P.M.(1995).Fibrehempcultivars:asurveyoforigin,an-
cestry,availabilityandbriefagronomiccharacteristics.Journal of the
International Hemp Associaiton,2(2),66–73.
deMeijer,E.(1998).Cannabisgermplasmresources.InP.Ranalli(Ed.),
Advances in hemp research.NewYork:HaworthFoodProductsPress,
p.272.
deMeijer,E.P.,Bagatta,M.,Carboni,A.,Crucitti,P.,Moliterni,V.M.,
Ranalli, P., & Mandolino, G. (2003). The inheritance of chemical
phenotypeinCannabis sativaL.Genetics,163(1),335–346.
deMeijer,E. (2004). Thebreedingofcannabis cultivars for pharma-
ceuticalenduses.InG.W.Guy,B.A.Whittle, &P.Robson(Eds.),
Medicinal uses of cannabis and cannabinoids (pp. 55–70). London:
PharmaceuticalPress.
deMeijer,E.P.M.,&Hammond,K.M.(2005).Theinheritanceofchem-
icalphenotypeinCannabis sativaL.(II):cannabigerolpredominant
plants.Euphytica,145,189–198.
Elbatsh, M. M., Moklas, M. A., Marsden, C. A., & Kendall, D.A.
(2012).Antidepressant-like effectsofdelta(9)-tetrahydrocannab-
inol and rimonabant in the olfactory bulbectomised rat model
of depression. Pharmacology Biochemistry and Behavior, 102(2),
357–365.
ElSohly,M.A.(2002).ChemicalconstituentsofCannabis.InF.Groten-
hermen,&E.Russo(Eds.),Cannabis and cannabinoids: pharmacology,
toxicology, and therapeutic potential(pp.27–36).NewYork,NY:The
HaworthPress.
Elsohly,M.A.,Holley,J.H.,Lewis,G.S.,Russell,M.H.,&Turner,C.E.
(1984).ConstituentsofCannabis sativaL.24.Thepotencyofcons-
catedmarijuana,hashish,andhashoilovera10-yearperiod.Jour-
nal of Forensic Science,29(2),500–514.
ElSohly,M.A.,Holley,J.H.,&Turner,C.E.(1985).ConstituentsofCan-
nabissativaL.XXVI. Thedelta-9-tetrahydrocannabinolcontentof
conscatedmarijuana,1974–1983.InD.J.Harvey(Ed.),Marijuana
’84’(p.37).Oxford:IRLPress.
ElSohly,M.A.,&Slade,D.(2005).Chemicalconstituentsofmarijuana:
thecomplexmixtureof natural cannabinoids. Life Sciences, 78(5),
539–548.
Faeti,V.,Mandolino,G.,&Ranalli,P.(1996).GeneticdiversityofCan-
nabis sativa germplasm based on RAPD markers. Plant Breeding,
115(5),367–370.
Fairbairn,J.W.(1972).TrichomesandglandsofCannabis SativaL.Bul-
letin on Narcotics,24(4),29–33.
Fetterman,P.,Keith, E. S., Waller,C. W.,Guerrero,O., Doorenbo,N.
J.,&Quimby,M. W.(1971).Mississippi-grownCannabis sativaL-
preliminaryobservation onchemicaldenition ofphenotypeand
variations in tetrahydrocannabinol content versus age, sex, and
plantpart.Journal of Pharmaceutical Sciences,60(8),1246–1249.
Fischedick,J.T.,Hazekamp,A.,Erkelens,T.,Choi,Y.H.,&Verpoorte,
R.(2010).Metabolic ngerprinting of Cannabis sativa L., cannabi-
noidsand terpenoidsforchemotaxonomicand drugstandardiza-
tionpurposes.Phytochemistry,71(17-18),2058–2073.
Fisse,J.,Braut, F.,Cosson, L., &Paris, M. (1981). Étude in vitro des
capacitésorganogénétiquesdetissusdeCannabis sativaL.;Effetde
différentes substances de croissance. Plantes Médicinales et Phyto-
therapie,15,217–223.
Flemming,T.,Muntendam,R.,Steup,C.,&Kayser,O.(2007).Chemis-
tryandbiologicalactivity oftetrahydrocannabinolanditsderiva-
tives.InM.T.H.Khan(Ed.),Topics in heterocyclic chemistry: Bioactive
heterocycles IV(pp.1–42).(Vol.10).Berlin:Springer-Verlag.
Galvan,M. Z.,Bornet,B.,Balatti,P.A.,&Branchard,M. (2003).Inter
simplesequencerepeat(ISSR)markersasatoolfortheassessment
of both genetic diversity and gene pool origin in common bean
(Phaseolus vulgarisL.).Euphytica,132(3),297–301.
Gillan, R., Cole, M. D., Linacre, A., Thorpe, J. W., & Watson, N. D.
(1995).Comparison ofCannabis sativaby randomamplicationof
polymorphicDNA(RAPD)andHPLCofcannabinoids:aprelimi-
narystudy.Science and Justice,35(3),169–177.
Guy,G.W.,&Stott,C.(2005).ThedevelopmentofSativex®-anatural
cannabisbasedmedicine. In R.Mechoulam,&J. Bruinrels(Eds.),
Cannabinoids as therapeutics milestones in drug therapy(pp.231–263).
Berlin:Springer.
Hammond,C.T.,&Mahlberg,P.G.(1977).Morphogenesisofcapitate
glandularhairsofCannabis sativa(Cannabaceae).American Journal
of Botany,64(8),1023–1031.
Happyana,N.,Agnolet,S.,Muntendam, R.,VanDam,A., Schneider,
B., & Kayser,O. (2013). Analysis of cannabinoids in laser-micro-
dissectedtrichomes ofmedicinalCannabis sativa usingLCMSand
cryogenicNMR.Phytochemistry,87,51–59.
Hazekamp,A.,Justin,T.F.,Lubbe,A.,&Ruhaak,R.L.(2010).3.24-Chem-
istryofCannabis.Comprehensive Natural Products II,3,1033–1084.
Hillig,K.W.(2005).GeneticevidenceforspeciationinCannabis(Can-
nabaceae).Genetic Resources and Crop Evolution,52(2),161–180.
Hillig,K.W.,&Mahlberg,P.G.(2004).Achemotaxonomicanalysisof
cannabinoidvariationinCannabis(Cannabaceae).American Journal
of Botany,91(6),966–975.
Hoffmann,W.(1961).Hanf, Cannabissativa L. Handbuch der Pflanzen-
züchtung(vol5).Berlin:PaulParey.
Jones,J.B. (1997). Hydroponics: a practical guide for the soilless grower.
BocanRaton:CRCPress.
Kim,E.S.,&Mahlberg,P.G.(1991).Secretorycavitydevelopmentin
glandulartrichomesof Cannabis sativa L(Cannabaceae). American
Journal of Botany,78(2),220–229.
Kim,E. S.,&Mahlberg,P.G.(1997).Immunochemicallocalizationof
tetrahydrocannabinol (THC) in cryoxed glandular trichomes of
Cannabis(Cannabaceae).American Journal of Botany,84(3),336–342.
Kojoma,M.,Iida,O.,Makino,Y.,Sekita,S.,&Satake,M.(2002).DNA
ngerprintingofCannabis sativausinginter-simplesequencerepeat
(ISSR)amplication.Planta Medica,68(1),60–63.
Kojoma,M., Seki,H.,Yoshida,S.,&Muranaka,T.(2006). DNApoly-
morphisms in the tetrahydrocannabinolic acid (THCA) synthase
genein“drug-type”and“ber-type”Cannabis sativaL.Forensic Sci-
ence International,159(2-3),132–140.
Larkin,P.,&Scowcroft,W.(1981).Somaclonalvariationanovelsource
ofvariabilityfromcell culturesfor plantimprovement.Theoretical
and Applied Genetics,60,197–214.
Lata,H.,Bedir,E.,Hosick,A.,Ganzera,M.,Khan,I.,&Moraes,R.M.
(2002).In vitroplantregenerationfromleaf-derivedcallusofCimi-
cifuga racemosa.Planta Medica,68(10),912–915.
Lata,H.,Chandra,S.,Khan,I.A.,&ElSohly,M.A.(2008).Propagation
ofCannabis sativaL.usingsyntheticseedtechnology.Planta Medica,
74(3),328–1328.
Lata,H.,Chandra, S., Khan, I.A.,& ElSohly,M.A.(2010).Highfre-
quencyplantregenerationfromleafderivedcallusofhighdelta(9)-
tetrahydrocannabinol yielding Cannabis sativa L. Planta Medica,
76(14),1629–1633.
Lata, H., Chandra, S., Mehmedic, Z., Khan, I. A., & ElSohly, M. A.
(2012). In vitro germplasm conservation of high Delta(9)-tetrahy-
drocannabinolyieldingeliteclonesofCannabis sativaL.underslow
growthconditions.Acta Physiologiae Plantarum,34(2),743–750.
Leggett,T.(2006).Areviewoftheworldcannabissituation.Bulletin on
Narcotics,58(1–2),1–155.
Marks,M.D.,Tian,L.,Wenger,J.P.,Omburo,S.N.,Soto-Fuentes,W.,He,
J.,Gang,D.R.,Weiblen,G.D.,&Dixon,R.A.(2009).Identication
of candidate genes affecting ∆9-tetrahydrocannabinol biosynthesis
inCannabis sativa.Journal of Experimental Botany,60(13),3715–3726.
Mediavilla,V.,Bassetti,P.,&Leupin,M.(1999).Agronomiccharacter-
isticsofsomehempgenotypes.Journal of the International Hemp As-
sociation,6,45–53.
Potter,D.J.(2004).Growthandmorphologyofmedicinal Cannabis.In
G.W.Guy,B.A.Whittle,& P.J.Robson(Eds.),The medicinal uses of
Cannabis and cannabinoids(pp.17–54).London:PharmaceuticalPress.
12 1. THE CANNABIS PLANT: BOTANICAL ASPECTS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
Raman,A. (Ed.), (1998). TheCannabisplant:botany,cultivation,and
processing for use. In Cannabis: The Genus Cannabis (pp. 29–54).
Amsterdam:HarwoodAcademicPublishers.
Ranalli,P.,&Mandolino,G.(1999).Advancesinhempresearch.InP.
Ranalli(Ed.),Advances in biotechnological approaches for hemp breeding
and industry(pp.185–208).NewYork:TheHaworthPress.
Ross,S.A., & ElSohly,M.A. (1996). The volatile oil composition of
freshandair-driedbudsofCannabis sativa.Journal of Natural Prod-
ucts,59(1),49–51.
Sakamoto,K.,Akiyama,Y.,Fukui,K.,Kamada,H.,&Satoh,S.(1998).
Characterization: genome sizes and morphology of sex chromo-
someinhemp(Cannabis sativaL.).Cytologia,63,459–464.
Schultes,R. E.,Klein,W.M., Plowman,T.,&Lockwood, T.E.(1974).
Cannabis:anexampleoftaxonomicneglect.Harvard University Bo-
tanical Museum Leaflets,23,337–367.
Slusarkiewicz-Jarzina, A., Ponitka, A., & Kaczmarek, Z. (2005). In-
uenceofcultivar,explantsource and plant growthregulatoron
callusinductionandplantregenerationof Cannabis sativa L.Acta
Biologica Cracoviensia Series Botanica,47(2),145–151.
Small,E.,&Cronquist,A.(1976).Apracticalandnaturaltaxonomyfor
Cannabis.Taxon,25,405–435.
Sytsma,K.,Morawetz,J.,Pires,J.,Nepokroeff,M.,Conti,E.,Zjhra,M.,
Hall,J.,&Chase,M.(2002).Urticaleanrosids:circumscription,ro-
sidancestry,and phylogenetics based on rbcL, trnL-F,andndhF
sequences.American Journal of Botany,89(9),1531–1546.
Turner,C.E.,&Elsohly,M.A.(1976).Anhydrocannabisativine,anew
alkaloidisolatedfromCannabis sativa.Lloydia,39(6),474–1474.
Turner,J. C.,Hemphill,J.K.,&Mahlberg,P.G. (1977). Glanddistri-
bution and cannabinoid content in clones of Cannabis sativa L.
American Journal of Botany,64(6),687–693.
Turner,C.E.,Cheng,P.C.,Lewis,G.S.,Russell,M.H.,&Sharma,G.K.
(1979).Constituents ofCannabis sativa.15.Botanical andchemical
proleofIndianvariants.Planta Medica,37(3),217–225.
Turner,C.E.,Elsohly,M.A., &Boeren,E.G.(1980a).Constituentsof
Cannabis sativaL.17.areviewofthenaturalconstituents.Journal of
Natural Products,43(2),169–234.
Turner,J.C.,Hemphill,J.K.,&Mahlberg,P.G.(1980b).Trichomesand
cannabinoidcontentofdevelopingleavesandbractsofCannabis sa-
tivaL(Cannabaceae).American Journal of Botany,67(10),1397–1406.
Turner,J.C.,Hemphill,J.K.,& Mahlberg, P.G.(1981). Interrelation-
shipsofglandulartrichomesandcannabinoidcontent.2.Develop-
ingvegetativeleavesofCannabis sativaL(Cannabaceae).Bulletin on
Narcotics,33(3),63–71.
UNODC,UnitedNations,(2009).Recommendedmethodsforidenti-
cationandanalysisofcannabisandcannabisproducts,NewYork.
http://www.unodc.org/documents/scientic/ST-NAR-40-Ebook.
pdf
UNODC,UnitedNations(1956).Problemsofmodernhempbreeding,
withparticularreferencetothebreedingofvarietiesofhempcontain-
inglittle ornohashish,NewYork.http://www.unodc.org/unodc/
en/data-and-analysis/bulletin/bulletin_1956-01-01_3_page007.html
Vanhoenacker, G., Van Rompaey,P., De Keukeleire, D., & Sandra, P.
(2002).Chemotaxonomicfeaturesassociatedwithavonoidsofcan-
nabinoid-freecannabis(Cannabis sativasubspsativaL.)inrelationto
hops(Humulus lupulusL.).Natural Product Letters,16(1),57–63.
Vyskot,B., & Hobza, R. (2015). The genomics of plant sex chromo-
somes.Plant Science,236,126–135.
Werker,E. (2000). Trichome diversity and development. Advances in
Botanical Research,31,1–35.
Wielgus,K., Luwanska,A.,Lassocinski,W.,&Kaczmarek,Z. (2008).
Estimationof Cannabis sativaL.tissue cultureconditionsessential
forcallusinductionandplantregeneration.Journal of Natural Fibers,
5(3),199–207.
Zafar,R.,Aeri,V.,& Datta,A. (1992).Application ofplanttissue and
cellcultureforproductionofsecondarymetabolites.Fitoterapia,63,
33–43.
CHAPTER
13
Handbook of Cannabis and Related Pathologies. http://dx.doi.org/10.1016/B978-0-12-800756-3.00002-8
Copyright © 2017 Elsevier Inc. All rights reserved.
2
The Biosynthesis of Cannabinoids
F. Degenhardt, F. Stehle, O. Kayser
Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering,
TU Dortmund University, Dortmund, Germany
SUMMARY POINTS
• Thischapterfocusesonthepathwaywhichleads
tothebiosynthesisofphytocannabinoidsin
C. sativaL.
• CBGAisthecentralprecursorof
phytocannabinoidbiosynthesisinCannabis.
• CBGAS,onlythreeenzymes—THCAS,CBDAS,
andCBCAS—areinvolvedinthebiosynthesisof
phytocannabinoidsinCannabisplants.
• SequencesofCBDASandTHCASareknown.
• ThecarboxylgroupinCBGAseemstobe
essentialfortheenzymaticreactionscatalyzedby
CBDAS,CBCAS,andTHCAS.
• Thediversityofmorethan60cannabinoidsisthe
resultofnonenzymaticmodications.
• Propylcannabinoidsoccurbytheprenylationof
divarinicacid(DA)withgeranyldiphosphate
(GPP).
LIST OF ABBREVIATIONS
AAE Acyl-activatingenzyme
BBE Berberinebridgeenzyme
CBC Cannabichromene
CBCA Cannabichromenicacid
CBCAS Cannabichromenicacidsynthase
CBCVA Cannabichrovarinicacid
CBD Cannabidiol
CBDA Cannabidiolicacid
CBDAS Cannabidiolicacidsynthase
CBDV Cannabidivarin
CBDVA Cannabidivarinicacid
CBG Cannabigerol
CBGA Cannabigerolicacid(3-geranylolivetolate)
CBGAS Cannabigerolicacidsynthase
CBGVA Cannabigerovarinicacid
CBN Cannabinol
CBNRA Cannabinerolicacid(cis-CBGA)
CHS Chalconesynthase
CsAAE1C. sativahexanoyl-CoAsynthetase1
CsAAE3C. sativahexanoyl-CoAsynthetase2
CsHCS1C. sativahexanoyl-CoAsynthetase1
CsHCS2C. sativahexanoyl-CoAsynthetase2
DA Divarinicacid
DABB Dimericα+βbarrel
DMAPP Dimethylallyldiphosphate
KEY FACTS OF
PHYTOCANNABINOIDS—BESIDES
C. SATIVA
• Phytocannabinoidsareplant-derivednaturalcompounds
thatactasligandstocannabinoidreceptors(CB1andCB2)
orsharechemicalsimilaritywithcannabinoids.
•C. sativaL.isintensivelyinvestigatedforthepresence
ofphytocannabinoids.Todate,onlyafewplantsare
discoveredthatcontainphytocannabinoidsotherthan
theonesknownfromCannabis.
• TheNewZealandliverwortRadula marginataand
JapaneseliverwortRadula perrottetiicontainperrotteti-
nene,anaturallyoccurringbibenzylcannabinoid.
• Twocannabigerol-likecompoundsweredetectedin
theaerialpartsofHelichrysum umbraculigerumLess.,a
plantcommonintheeasternpartsofSouthAfrica.
•N-alkylamides(cannabinomimetics),foundinthe
medicinalplantsEchinaceae angustifoliaandEchinaceae
purpurea(purplecornower),areknowntointeract
withtheCB2receptor.
14 2. THE BIOSYNTHESIS OF CANNABINOIDS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
DOXP 1-Deoxy-d-xylulose-5-phosphate
GOT Geranylpyrophosphate:olivetolate
geranyltransferase
GPP Geranyldiphosphate
HTAL Hexanoyltriaceticacidlactone
IPP Isopentenyldiphosphate
MEP 2C-methyl-d-erythritol-4-phosphate
MVA Mevalonate
NPP Neryldiphosphate
OA Olivetolicacid
OAC Olivetolicacidcyclase
OLS Olivetolsynthase
PKS Polyketidesynthase
SNP Singlenucleotidepolymorphism
STS Stilbenesynthase
THC Tetrahydrocannabinol
THCA Tetrahydrocannabinolicacid
THCAS Tetrahydrocannabinolicacidsynthase
THCV Tetrahydrocannabivarin
THCVA Tetrahydrocannabivarinicacid
INTRODUCTION
Cannabis sativaL. (hemp) is one of the oldest do-
mesticplants in thehistory of mankind,and hasbeen
cultivated for at least 10,000 years (Schultes, Klein,
Plowman,&Lockwood,1974). TogetherwithHumulus
lupulus (hop), C. sativa belongs to the small family of
Cannabaceae.Cannabisisanannual,usually dioecious,
wind-pollinatedherb,withbothmaleandfemaleow-
ersgrowingonseparateplants.Theplantiswellknown
forthebiosynthesisofcannabinoids,theterpenopheno-
licconstituentsthatshowpsychoactiveeffects.Butsince
otherplantsalsohavesecondarymetabolitesthatinter-
actwiththehumancannabinoidreceptors,anewdeni-
tionhadtobemade.Hence,phytocannabinoidsarenow
dened as any plant-derived natural compound that
canactasaligandtohumancannabinoidreceptors(CB1
andCB2)orsharechemicalsimilaritywithcannabinoids
(Gertsch,Pertwee,&Di Marzo, 2010).Interestingly,all
partsoftheCannabisplant,withtheexceptionofseeds,
cancontaincannabinoids, but theymainly accumulate
in the glandular trichomes of female owers (Gagne
etal.,2012;vanBakeletal.,2011).
The following chapter focuses on the pathway that
leadstotheenzymaticbiosynthesisofcannabinoids.For
a long time, it was postulated that the key intermedi-
ateiscannabidiol(CBD)orcannabidiolicacid(CBDA),
both resulting from a condensation of a monoterpene,
andolivetolorolivetolicacid(OA),respectively.In1964,
Gaoni and Mechoulam postulated cannabigerol (CBG)
asthekeyintermediate,thecondensationproductofge-
ranyldiphosphate(GPP),andolivetolorOA.Basedon
this,theyconcludedthatthecannabinoidsCBD,tetrahy-
drocannabinol(THC)andcannabinol(CBN) areallde-
rivedfromCBG,andjustdifferinthewayofcyclization
(Gaoni&Mechoulam,1964).Finally,incorporationstud-
ieswith 13C-labeled glucosehaveshown thatGPPand
OAareindeedtheprecursorsforformationofcannabig-
erolicacid(CBGA).Thus,thegeneralstructureofcanna-
binoidsisassembledbytwoparts:(1)adiphenol(resor-
cin)carryinganalkylchain(OA);and(2)amonoterpene
moiety (GPP) (Fig. 2.1). Subsequently, Fellermeier and
FIGURE 2.1General structure of cannabinoids and their precursors, olivetolic acid, and geranyl diphosphate.Cannabinoidsarecomposed
oftwoparts:acyclicmonoterpenepart(red),andadiphenol(resorcin)part,carryinganalkylchain(blue).Thedibenzopyran-numberingsystem
isused.
CANNABINOID PRECURSOR BIOSYNTHESIS 15
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
coworkerspostulatedCBGAasthecentralcannabinoid
precursor(Fellermeier,Eisenreich,Bacher,&Zenk,2001;
Fellermeier&Zenk,1998).Interestingly,freeOAhasnev-
erbeendetectedinCannabisplantmaterialuntilnow.
Itisworthytonotethat,althoughmorethan60can-
nabinoidsareknown,onlythreeenzymes,besidescan-
nabigerolicacidsynthase(CBGAS),namelytetrahydro-
cannabinolicacidsynthase(THCAS),cannabidiolicacid
synthase(CBDAS),andcannabichromenicacidsynthase
(CBCAS),areinvolvedincannabinoidbiosynthesis.The
resultingacidiccannabinoidsarethemostabundantones
accumulatinginCannabis.Theneutralandpsychoactive
formsarethe results of nonenzymatic decarboxylation
duringstorage,heatorsunlight;explainingtheheating
ofplantmaterial(ie,smokingorbaking),duringCanna-
bisconsumption(Fischedick,Hazekamp,Erkelens,Choi,
&Verpoorte,2010;Tauraetal.,2007a).Thus,thebroad
diversityofthedifferentcannabinoidsismainlydueto
nonenzymatic transformation or degradation of both
acidic and neutral cannabinoids by the effects of light
(UVirradiation)andauto-oxidation(Crombie,Ponsford,
Shani, Yagnitinsky, & Mechoulam, 1968; Razdan,
Puttick,Zitko,&Handrick,1972).Itisstillunclearifall
theseformsarepresentinlivingplantsasnaturalorar-
tefacts,duetostorageandsamplepreparation(ElSohly
&Slade,2005).
CANNABINOID PRECURSOR
BIOSYNTHESIS
Polyketide Pathway Toward Olivetolic Acid
The origin of hexanoate in trichomes has not been
elucidatedsofar.Suzuki,Kurano,Esumi,Yamaguchi,and
Doi(2003)showedthatthe side-chain moietyofalkyl-
resorcinolsisformedbyfattyacidunits,butitremains
unclearifthemoietyistheresultofbiosynthesisordeg-
radationoffattyacids.Studiesregardingtheincorpora-
tionof13C-labelsintocannabinoidsindicatethathexano-
ateissynthesizedfromacetyl-CoAasastarterunit,and
vemolecules of malonyl-CoA. These building blocks
areprecursorsofthefattyacidbiosynthesis(Fellermeier
etal.,2001).
Based on this, two pathways are feasibly possible,
after analysis of a cDNA/EST library generated from
femaleowers(glands)ofC. sativa.First,thehexanoyl
residuecouldbeobtainedbyanearlyterminationofthe
fattyacidbiosynthesis.Subsequently,thehexanoylmoi-
etyoftheresultinghexanoyl-ACPwouldbecleavedbya
thioesteraseortransferredtoCoAbyanACP-CoAtrans-
acylase.Finally,acyl-CoAsynthetasewouldcatalyzethe
conversionoftheobtainedn-hexanoltohexanoyl-CoA
(Marks et al., 2009). Second, n-hexanol could be pro-
ducedbythebreakdownofC18unsaturatedfattyacids
viathelipoxygenasepathway(Marksetal.,2009;Stout,
Boubakir,Ambrose,Purves,&Page,2012).Nevertheless,
furtherstudiesarenecessarytoclarifytheoriginofthe
hexanolmoiety.
Hexanoyl-CoAisamedium-chainfattyacyl-CoAthat
can be detected in high amounts in Cannabis owers
(Stoutetal.,2012).Itissynthesizedbyanacyl-activating
enzyme(AAE)called hexanoyl-CoAsynthetase(Marks
et al., 2009; Page & Stout, 2013). AAEs can use short,
medium,longaswellasverylong-chainfattyacidsas
carboxylic acid substrates. Two novel enzymes were
identied,C. sativahexanoyl-CoAsynthetase1(CsHCS1
or CsAAE1) and C. sativa hexanoyl-CoA synthetase 2
(CsHCS2 or CsAAE3) that are capable of producing
hexanoyl-CoAusing hexanoate andCoAas substrates.
Based on transcript levels, CsHCS1 seems to be tri-
chome-specic.AlthoughCsHCS2 exhibits lower tran-
scriptlevels,incomparisontoCsHCS1,itisabundantin
alltissues.ThegeneofCsHCS1consistsofa2163-nucle-
otideopenreadingframe,andencodesa720-aminoacid
polypeptidechain.ThegeneofCsHCS2iscomposedof
a 1632-nucleotide open reading frame, and encodes a
543-aminoacidpolypeptidechain.BothCsHCSsgener-
allyrequiredivalentcationsforactivity.Thiswasshown
byaddingMg2+,Mn2+,and Co2+ to theenzymeassays.
Thus,CsHCS1preferentiallyacceptsMg2+,andCsHCS2
Co2+.Thehighestenzymeactivitywasdetectedat40°C
andpH9forbothenzymes.Furthermore,bothenzymes
canbeinhibitedbyhighconcentrationsofCoA(Page&
Stout,2013;Stoutetal.,2012).
Taken together, the published data suggest that
CsHCS1isthe enzyme involvedin the biosynthesis of
cannabinoids: (1) it is the most abundant AAE in tri-
chomes;(2)itishighlyspecicforshort-chainfattyacyl-
CoA,particularlyhexanoate(KMvalueinthenMrange);
and(3)itislocalizedinthecytosol,assuggestedforthe
olivetolsynthase (see later).Incontrast, CsHCS2islo-
calizedintheperoxisomesandacceptsabroadrangeof
substrates,whileshowing a KMvaluefor hexanoate in
themMrange(Page&Stout,2013;Stoutetal.,2012).
The alkylresorcinol moiety of cannabinoids is de-
rived from OA, the product of polyketide synthases
(PKSs)thatcatalyzethealdolcondensationofhexanoyl-
CoAwiththreemoleculesofmalonyl-CoA(Fellermeier
etal.,2001;Raharjo,Chang,Choi,Peltenburg-Looman,
&Verpoorte,2004)(Fig.2.2).Thesecondprecursormal-
onyl-CoA is predominantly derived from acetyl-CoA
bycarboxylation. TheATP-dependentreactionis cata-
lyzedbyanacetyl-CoAcarboxylase(EC6.4.1.2).Theen-
zymeutilizestherststepinthefattyacidbiosynthesis
(Chen,Kim,Weng,&Browse,2011;Konishi,Shinohara,
Yamada,&Sasaki, 1996).Tauraetal.(2009)discovered
aplanttype III PKSin owers andrapidlyexpanding
leavesofC. sativa.Thegeneofolivetolsynthase(OLS)
encodesa 385-amino acid polypeptide chainthat does
16 2. THE BIOSYNTHESIS OF CANNABINOIDS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
notcontainasignalpeptide(Table2.1).TheOLSprotein
hasatheoreticalmolecularmassof43kDa,asconrmed
by SDS-PAGE analysis. However, size-exclusion chro-
matographyexperimentsrevealeda molecular mass of
about89kDa,indicatingahomodimericenzyme(Gagne
etal.,2012;Tauraetal.,2009).OLS(PKS-1)wasprelimi-
narilycrystallizedbyTaguchietal.(2008)andthestruc-
turewasnallypublishedbyYangetal.(2016).Itisof
interestthattheenzymedoesnotproduceOA,butolive-
tol,triketidepyrone,andtetraketidepyrone.Analysisof
theaminoacidsequencedisplayedahighsimilaritywith
those of Medicago sativa chalcone synthase (CHS), and
otherplantPKSs(60–70%).Additionally,thecatalytictri-
aderesiduesofCHS(Cys164-His303-Asn336)areconserved
(Tauraet al.,2009).SinceCHSscatalyzeintramolecular
C6→C1Claisencondensations,Raharjo,andcoworkers
werethersttosuggestin2004(Raharjoetal.,2004)that
OLScouldbeastilbenesynthase(STS).Theseenzymes
catalyze C2 → C7 aldol condensations, followed by a
decarboxylation step. Additionally, studies by Austin,
Bowman,Ferrer,Schröder,&Noel (2004) showed that
thecyclizationreactioncanbechangedfromaClaisen-
type(CHS) toan aldol-type(STS) bysubstitution ofa
fewaminoacidsinCHS(=aldolswitch).
Nevertheless,sinceOLSaloneisnotcapabletoform
OA, another enzyme/PKS might be involved in the
biosynthesis.ThemissingenzymeshouldcatalyzeaC2
→C7 intramolecular aldol condensation uponwhich
thecarboxylatemoietyispreserved.Thisisimportant
sinceCBGASdoesnotacceptolivetol as a prenyldo-
nor(Fellermeier&Zenk,1998).Gagneetal.(2012)iso-
lated a gene encoding a 101-amino acid polypeptide
chain.Thissmallprotein(12kDa)showssimilaritiesto
apolyketide cyclase thatbelongs to thedimeric α+β
barrel (DABB)-type protein family. Furthermore, the
identiedgeneexhibitshighexpressionlevelsinglan-
dular trichomes. Together, this made the polyketide
cyclaseapromisingcandidateforthemissingolivetolic
acidcyclase(OAC).
Finally,usingbothOLSandOACwithhexanoyl-CoA
and malonyl-CoA in one assay, the formation of OA,
pentyldiaceticacid(triketidepyrone),and hexanoyltri-
aceticacidlactone(HTAL;tetraketidepyrone)couldbe
demonstrated(Page & Gagne, 2013) (Fig. 2.2). Itis as-
sumedthatOLScatalyzestheformationofaninterme-
diatethat is subsequently converted into OA by OAC
(Gagneetal.,2012;Taguchietal.,2008).
Biosynthesis of Geranyl Diphosphate
Themonoterpenemoietyofcannabinoids(Fig.2.2)is
derived from GPP. Its precursors, isopentenyl diphos-
phate (IPP), and dimethylallyl diphosphate (DMAPP),
are predominantly (>98%) biosynthesized via the
2C-methyl-d-erythritol-4-phosphate (MEP) pathway
[alsotermedasnonmevalonatepathwayor1-deoxy-d-
xylulose-5-phosphate (DOXP) pathway] (Fellermeier
etal.,2001).TheseresultsaresupportedbyMarksetal.
(2009). They isolated RNA from the glands of a tetra-
hydrocannabinolic acid (THCA)-producing Cannabis
strainandgeneratedacDNAlibrary.Aftersequencing,
theywereabletoidentifyallbutoneenzymeinvolved
in the MEP pathway.Additionally, Stout et al. (2012)
foundhigh expression ofMEP pathway genesin Can-
nabis owers. Furthermore, in higher plants the MEP
pathway, mainly involved in secondary metabolism,
is localized in plastids (described in detail elsewhere,
for example, Eisenreich, Bacher, Arigoni, & Rohdich,
(2004),orHunter(2007),whereasthemevalonate(MVA)
pathway, predominantly contributing to primary me-
tabolism,islocalizedinthecytosol.Thecompartmental
separationbetweenthesetwopathwaysisnotabsolute.
Themetabolitesofbothpathwayscanbetransportedbi-
directionallyacross the plastid membranes (Eisenreich
etal.,2004).
Subsequently, the head-to-tail condensation of IPP
and DMAPP to form GPP is catalyzed by geranyl di-
phosphatesynthase(Fig.2.2)(Burkeetal.,1999).
TABLE 2.1 Enzymes Involved In Cannabinoid Biosynthesis in C. sativa L
Enzyme Accession no.aEC no. References
Olivetolsynthase OLS AB164375 2.3.1.206 Tauraetal.(2009)
Olivetolicacidcyclase OAC AFN42527.1 4.4.1.26 Gagneetal.(2012)
Cannabigerolicacidsynthase CBGAS US2012/0144523
A1b
2.5.1.102 FellermeierandZenk(1998);
PageandBoubakir(2012)
Cannabichromenicacidsynthase CBCAS 1.3.3.- Morimotoetal.(1998)
Cannabidiolicacid
synthase
CBDAS AB292682 1.21.3.8 Tauraetal.(2007a)
Tetrahydrocannabinolicacidsynthase THCAS AB057805 1.21.3.7 Sirikantaramasetal.(2004)
ThetableliststheenzymesandthecorrespondingGenBankaccessionnumbersinvolvedinbiosynthesisofC. sativaphytocannabinoids.
aGenBank.
bPatent number.