ChapterPDF Available

The Cannabis Plant: Botanical Aspects

Authors:

Abstract and Figures

Cannabis sativa L. (Cannabaceae) is one of the oldest medicinal plants used by humans. For millennia, the plant has also been used for fiber, oil production, and simply as additive for food products. This chapter gives an overview of botanical aspects of the genus Cannabis, such as, macroscopical and microscopical features, taxonomic classification, the current varieties, genomics. Furthermore, geographical distribution, agricultural status, and germplasm conservation are provided. This chapter presents the current state of knowledge of different cultivation forms, including outdoor, indoor, and micropropagation.
Content may be subject to copyright.
HANDBOOK OF
CANNABIS AND
RELATED
PATHOLOGIES
Handbook of Cannabis and Related Pathologies
V.R. Preedy, Editor
ACADEMIC
PRESS
To adopt this book for course use, visit http://textbooks.elsevier.com.
Companion We b Site:
http://store.elsevier.com/product.jsp?&isbn=9780128007563
TOOLS ALL NEEDS
FOR YOUR
textbooks.elsevier.com
TEACHING
ELSEVIER
science &
technology books
Available Resources:
20 additional chapters are available online - see contents list.
HANDBOOK OF
CANNABIS AND
RELATED
PATHOLOGIES
BIOLOGY, PHARMACOLOGY,
DIAGNOSIS, AND TREATMENT
Edited by
V.R. PReedy
BSc, Phd, dSc, FRSB, FRSh, FRIPhh, FRSPh, FRcPath, FRSc
Faculty of Life Sciences and Medicine,
King’s College London, London, United Kingdom
Academic Press is an imprint of Elsevier
125 London Wall, London EC2Y 5AS, United Kingdom
525 B Street, Suite 1800, San Diego, CA 92101-4495, United States
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom
Copyright © 2017 Elsevier Inc. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.
This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).
Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden
our understanding, changes in research methods, professional practices, or medical treatment may become
necessary.
Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for whom
they have a professional responsibility.
To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence
or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the
material herein.
Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
ISBN: 978-0-12-800756-3
For information on all Academic Press publications
visit our website at https://www.elsevier.com/
Publisher: Mara Conner
Acquisitions Editor: April Farr
Editorial Project Manager: Timothy Bennett
Production Project Manager: Chris Wortley
Designer: Mark Rogers
Typeset by Thomson Digital
Dedicated to my friend Chris Bird
Dedication
Page left intentionally blank
vii
Contents
List of Contributors xv
Preface xxv
I
SETTING THE SCENE, BOTANICAL,
GENERAL AND INTERNATIONAL
ASPECTS
1. The Cannabis Plant: Botanical Aspects 3
S. FARAG, O. KAYSER
2. The Biosynthesis of Cannabinoids 13
F. DEGENHARDT, F. STEHLE, O. KAYSER
3. Increasing Plant Concentrations of THC and
Implications on Health Related Disorders 24
V. VINDENES, J. MØRLAND
4. Age as a Predictor of Cannabis Use 33
D. BERGEN-CICO, R.D. CICO
5. Lifetime Cannabis Use and Cognition
in Psychosis Spectrum Disorders 44
M.J. CUESTA, A.M. SÁNCHEZ-TORRES, R. LORENTE-OMEÑACA,
L. MORENO-IZCO
6. A Profile of Synthetic Cannabinoid Users 53
A.N. SANDERS, J.M. STOGNER
7. Dual Disorders in Cannabis Misuse 61
F. ARIAS-HORCAJADAS, N. SZERMAN, P. VEGA,
I. BASURTE, B. MESÍAS
8. Cannabis Use and Cognitive Function 70
C. EVREN
9. Cannabis, Migration, and Psychosis Onset 79
A. KOKONA, I. TARRICONE, M. DI FORTI, E. CARRA
10. The Global Epidemiology and Disease
Burden of Cannabis Use and Dependence 89
L. DEGENHARDT, A.J. FERRARI, W.D. HALL
11. International Aspects of Cannabis Use
and Misuse: the Australian Perspective 101
D.J. ALLSOP, W.D. HALL
12. International Aspects of Cannabis Use
and Misuse: Egypt 110
O.M.E. ABDEL-SALAM, A.F. GALAL, S.A. ELSHEBINEY,
A.E.D.M. GAAFAR
13. Cannabis Body Packing: A Caribbean
Perspective 122
S.O. CAWICH, D. DAN, V. NARAYNSINGH
II
PERSONAL, SOCIAL AND
COMMUNITY ASPECTS
OF CANNABIS USE
14. Gender Differences in Cannabis
Use Disorders 131
R. SECADES-VILLA, S. FERNÁNDEZ-ARTAMENDI
15. The Role of Age in the Onset and Further
Development of Cannabis Use Disorders 138
S. BEHRENDT
16. Effects of Cannabis Use on Neurocognition
in Adolescents and Emerging Adults 151
N.E. WRIGHT, K.E. MAPLE, K.M. LISDAHL
Contents
viii CONTENTS
17. Correlates and Consequences of Prenatal
Cannabis Exposure (PCE): Identifying and
Characterizing Vulnerable Maternal
Populations and Determining Outcomes for
Exposed Offspring 160
L.K. BRENTS
18. Cannabis and Clubbing: Relevance of
Cannabis and Polydrug Use in the Clubbing
Culture Today 171
D.A. HERZIG, S. BACHMANN
19. Cannabis and Sexual Behavior 180
G. SCIMECA, C. CHISARI, M.R.A. MUSCATELLO,
C. CEDRO, G. PANDOLFO, R. ZOCCALI, A. BRUNO
20. Friendships and Cannabis Use 188
J.H. BOMAN IV, C. HECK
21. Students’ Knowledge of Cannabis 198
M. DROZD, J. SOBCZYN
´
SKI
22. Childhood Trauma and Cannabis:
Risk Factors in Severe Mental Disorders? 208
M. AAS, I. MELLE
23. Parent’s Influence on Children’s
Cannabis Use 215
S. MILLER, J.T. SIEGEL, W.D. CRANO
24. Cannabis Users and Premorbid
Intellectual Quotient 223
L. FERRARO, L. SIDELI, D. LA BARBERA
25. Cannabis and Traffic Accidents 234
R.B. DE BONI, R.P. LIMBERGER, T.R.V. SOUSA
III
CANNABIS, BEHAVIOR,
PSYCHOPATHOLOGY AND
NEUROPATHOLOGY
26. Drug-Related Pictures, Attentional Bias,
and Cannabis Use 247
D. ASMARO
27. Cannabis Use and First-Episode Psychosis
Patients (FEP) 257
I. GONZÁLEZ-ORTEGA, M. MARTÍNEZ-CENGOTITABENGOA,
A. GONZÁLEZ-PINTO
28. Cannabis, Associative Memory, fMRI,
and the Implicit Association Test 267
S.L. AMES, A.W. STACY
29. Stress Response in Cannabis Users
and Psychosis 278
M. BIOQUE, H.-H. TSENG, R. MIZRAHI
30. Motivation in Chronic Cannabis Use 288
R. HIRST, L. SODOS, S. GADE, L. RATHKE
31. Cannabis Use and Its Association to Mental
Illness: A Focus on Mood and Anxiety Disorders 298
S. LEV-RAN, D. FEINGOLD
32. Cannabis Use and Well-Being 308
J. ALLEN, M.D. HOLDER, Z. WALSH
33. Craving and Cannabis: A Potential Paradox 317
M.J. LOFLIN, M. EARLEYWINE
34. Delta-9-Tetrahydrocannabinol and
Catalepsy-Like Immobilization 326
N. EGASHIRA
35. The Interactive Nature of Cannabis
and Schizophrenia Risk Genes 335
T. KARL, J.C. ARNOLD
36. Neuroimaging Findings in Adolescent
Cannabis Use and Early Phase Psychosis 345
C.E. CROCKER, J. COOKEY, P.G. TIBBO
37. Cannabis Smoking in Adult Schizophrenia:
A Cognitive and Functional Magnetic
Resonance Imaging Perspective 357
K. PAQUIN, T. LECOMTE, S. POTVIN
38. The Long-Lasting Effects of Cannabis
Use on Movement and Brain Regions that
Control Movement 372
G. TODD, J.M. WHITE
CONTENTS ix
39. Assessment of Cannabis Acute Effects on
Driving Skills: Laboratory, Simulator, and
On-Road Studies 379
P. BONDALLAZ, H. CHTIOUI, B. FAVRAT, E. FORNARI,
C. GIROUD, P. MAEDER
40. Chronic Cannabis Use and Axonal Fiber
Connectivity 391
N. SOLOWIJ, A. ZALESKY, V. LORENZETTI, M. YÜCEL
41. Microglial Activation and Cannabis
Exposure 401
L. CUTANDO, R. MALDONADO, A. OZAITA
42. Cannabis and Psychosis: Correlation,
Causality, and Consequences 413
D. BASU, P. PARAKH
43. Cannabis Use in Bipolar Disorder 422
T.V. LAGERBERG
44. Cannabis Use in Epilepsy—Risks
and Benefits 431
M. HOLTKAMP, M. HAMERLE
45. Cannabis, Cannabinoids, and Visceral Pain 439
R. ABALO, M. ISABEL MARTÍN-FONTELLES
46. Cannabis and Postoperative Analgesia 450
S.O CAWICH, U. DEONARINE, H.E. HARDING, D. DAN,
V. NARAYNSINGH
IV
CANNABIS, ORGANS, TISSUES
AND NON-CNS ASPECTS
47. Chronic Cannabis Abuse and Thyroid
Function 461
U. BONNET
48. Cannabis Hyperemesis Syndrome 466
U. BONNET
49. Cannabis and Cannabinoids and the Effects
on Gastrointestinal Function: An Overview 471
M. SAŁAGA, R. ABALO, J. FICHNA
50. Cardiovascular Effects of Cannabis Usage 481
S. MENAHEM
51. Cannabis and Stroke 486
P.A. BARBER
52. Cannabis Smoking and the Lung 494
D.P. TASHKIN
53. Cannabis and Hepatic Injury 505
S.A. NADA, O.M.E. ABDEL-SALAM, A.A. SLEEM
54. Cannabis Allergy: More Than a Bad Trip 517
A.L. VAN GASSE, V. SABATO, M.M. FABER, C.H. BRIDTS, D.G. EBO
55. Marijuana and Breastfeeding 527
M.G. HILL, K.L. REED
56. Hypocretins/Orexins and Addiction: Role
in Cannabis Dependence 533
Á. FLORES, R. MALDONADO, F. BERRENDERO
57. Regulatory Role of Cannabinoids
for Skin Barrier Functions and
Cutaneous Inflammation 543
T. TÜTING, E. GAFFAL
V
PHARMACOLOGY AND CELLULAR
ACTIVITIES OF CANNABINOIDS
AND ENDOCANNABINOIDS
58. Cannabinoids and the Cannabinoid
Receptors: An Overview 553
D. LU, D.E. POTTER
59. Signaling and Regulation of the
Cannabinoid CB1 Receptor 564
M.R. HUNTER, D.B. FINLAY, M. GLASS
60. Allosteric Modulation of the Cannabinoid
CB1 Receptor 573
E.E. CAWSTON, M.R. HUNTER, M. GLASS
x CONTENTS
61. Polymorphisms of the CB2 Cannabinoid
Receptor 584
P. KUMAR, Z.-H. SONG
62. Chemistry of Cannabinoid Receptor Agonists 592
M. AGHAZADEH TABRIZI, P.G. BARALDI
63. The Endocannabinoid System as a Target
for New Antiseizure Drugs 606
L.R. VILELA, A.C.P. DE OLIVEIRA, M.F. MORAES, F.A. MOREIRA,
R.N. TAKAHASHI
64. Pharmacological Aspects of Anandamide
and 2-Arachidonoyglycerol as Bioactive Lipids 616
M. ALHOUAYEK, G.G. MUCCIOLI
65. Pharmacological Aspects of NMDA
Receptors, mGluR5, and Endocannabinoids 630
Y. IZUMI, C.F. ZORUMSKI
66. Peripheral CB1 Receptors and Ghrelin in
Feeding Regulation: Pharmacological Implications 639
L. ORIO, R. GÓMEZ DE HERAS, F. RODRÍGUEZ DE FONSECA
67. Pharmacological Aspects of Novel
Antiobesity Agents Related to Cannabinoids 649
L. HERNANDEZ-FOLGADO
68. Cannabinoid Reward and Dependence:
Focus on the Main Psychoactive Ingredients
of Marijuana in Preclinical Studies 659
G. PANAGIS
69. Peroxisome Proliferator Activated Receptors
and Cannabinoids 671
E. MUÑOZ, F. POLLASTRO, O. TAGLIALATELA-SCAFATI, G. APPENDINO
70. The Protein–Protein Interactions of Cannabinoid
Receptor Interacting Protein 1a (CRIP1a) and
Cannabinoid 1 Receptor: The Molecular
Mechanism Study Through an Integrated
Molecular Modeling Approach 680
M.H. AHMED, Y. ZHANG
71. Synthetic Cannabinoids: a Summary
of Selected Phenomena with Respect to
Behavioral Pharmacology and Abuse Liability 691
B.T. BURROWS, L.R. WATTERSON, J. EGNATIOS, M.F. OLIVE
VI
EFFECTS OF SPECIFIC NATURAL
AND SYNTHETIC CANNABINOIDS
72. The Role of 5-HT1A Receptor, and Nausea
and Vomiting Relief by Cannabidiol (CBD),
Cannabidiolic Acid (CBDA),
and Cannabigerol (CBG) 703
E.M. ROCK, L.A. PARKER
73. Genetic and Molecular Aspects of Addiction
with Tetrahydrocannabinol 713
T. JANUS, A. MACHOY-MOKRZYŃSKA, K. BOROWIAK
74. Effects of 9-Tetrahydrocannabinol in
Human Breast Cancer 722
S. TAKEDA, E. IKEDA, H. OKAZAKI, K. WATANABE, H. ARAMAKI
75. 9-THC and COX-2 Signaling 729
J. ZHANG, C. CHEN
76. Cannabinoids and the Addictive
Effects of Nicotine 739
L.V. PANLILIO, S.R. GOLDBERG
77. Cannabinoid Regulation of Intraocular
Pressure: Human and Animal Studies, Cellular
and Molecular Targets 748
A. ALOWAY, A. KUMAR, A.S. LAUN, Z.H. SONG
78. Ocular Delivery of Tetrahydrocannabinol 760
G.R. ADELLI, P. BHAGAV, M.A. REPKA, W. GUL, M.A. ELSOHLY,
S. MAJUMDAR
79. The Role of γ-Aminobutyric Acid in the
Interoceptive Effects of Oral
9-Tetrahydrocannabinol in Humans 770
J.A. LILE, J.S. FOGEL, T.H. KELLY
80. The Role of 9-Tetrahydrocannabinol in
Diabetes Mellitus 779
Z.M. COSKUN, S. BOLKENT
81. Cannabidiol: An Overview of its
Antipsychotic Properties 787
F.F. PERES, V. ALMEIDA, V.C. ABILIO
CONTENTS xi
82. Cannabidiol for the Treatment of
Epilepsy: An Overview of Possible
Mechanisms of Action and Preclinical and
Human Studies 795
R. GUIMARÃES DOS SANTOS, J.E.C. HALLAK, A.W. ZUARDI,
A.C. DE SOUZA CRIPPA, J.A. DE SOUZA CRIPPA
83. Cannabidiol and Neuroprotection: Evidence
from Preclinical Studies 802
N. SCHRÖDER, V.K. DA SILVA, J.E.C. HALLAK,
A.W. ZUARDI, J.A. DE SOUZA CRIPPA
84. Cannabinoids as Potent Inhibitors
of Human CYP1 Enzymes 813
K. WATANABE, S. YAMAORI, K. MASUDA, T. KATSU,
S. NARIMATSU, I. YAMAMOTO
85. The Synthetic Analog of
9-Tetrahydrocannabinol (THC): Nabilone.
Pharmacology and Clinical Application 821
R.E BALTER, M. HANEY
86. Synthetic Cannabinoids in Dementia 828
S. AMANULLAH, K. SHIVAKUMAR, S. HASSAN,
A. CANFIELD, J. COLE
87. Synthetic Cannabinoid Receptor
Agonists (Spice) as New Recreational
Psychoactive Substances 839
A. HELANDER
88. Accidents and Synthetic Cannabinoids
in Blood of Drivers 848
S.S. TUV, V. AUWÄRTER, V. VINDENES
VII
MEDICINAL CANNABIS USE
89. Cannabis and Synthetic Cannabinoids
for Cancer Patients: Multiple Palliative
Indications Together With Promising
Laboratory Antineoplastic Effects 859
D. ZALMAN, G. BAR-SELA
90. The Use of Medical Marijuana in the
Treatment of Psychiatric Disorders 869
T. TELLIOG
˘LU, Z. TELLIOG
˘LU
91. Beneficial Effects of Cannabis and
Related Compounds on Sleep 877
I.M.P. LINARES, J.A.S. CRIPPA, M.H.N. CHAGAS
92. Cannabinoid-Based Medicines for the
Treatment of Gilles de la Tourette Syndrome 883
A.S. KANAAN, K.R. MÜLLER-VAHL
93. Cannabidiol and Multiple Sclerosis 893
M. MECHA, A. FELIÚ, F.-J. CARRILLO-SALINAS, C. GUAZA
94. Cannabinoids and Their Effects on
Painful Neuropathy 905
D. SELVARAJAH, R. GANDHI, S. TESFAYE
95. Cannabis for Basal Ganglia Disorders
(Parkinson Disease and Huntington Disease) 917
O.M.E. ABDEL-SALAM
96. Medical Cannabis for the Treatment
of Inflammatory Bowel Disease 931
A. LAHAT
97. Cannabidiol for the Treatment
of Drug Use Disorders 939
R.G. DOS SANTOS, J.E.C. HALLAK, A.W. ZUARDI,
J.A. DE SOUZA CRIPPA
98. Cannabinoids and Effects on the
Gastrointestinal Tract: A Focus on Motility 947
G. VERA, J. FICHNA, R. ABALO
99. Potential Medical Uses of Cannabigerol:
A Brief Overview 958
S. DEIANA
VIII
SCREENING, DIAGNOSIS,
AND TREATMENT
100. The Cannabis Abuse Screening
Test (CAST) and Its Applications 971
L. BASTIANI, R. POTENTE, M. SCALESE, V. SICILIANO,
L. FORTUNATO, S. MOLINARO
xii CONTENTS
101. Screening of Synthetic Cannabinoids 981
E.L. ØIESTAD, R. KARINEN, K. HAUGLAND, Å.M.L. ØIESTAD
102. On-Site Drug Testing for Cannabis 998
A.A. FERNÁNDEZ
103. Cannabinoids in Oral Fluid: Identification
and Interpretation of Analytical Results 1007
C. MOORE
104. Cannabinoids in Exhaled Breath 1018
O. BECK
105. Barriers to Treatment Seeking for
Cannabis Dependence 1025
P. GATES, J. COPELAND
106. Pharmacotherapies for Cannabis
Use Disorders 1030
A.L. McRAE-CLARK
107. Self-Initiated Cannabis Use Cessation
in Adolescents and Emerging Adults 1036
J. TSAI, M. LITTLE, S. SUSSMAN
108. Treating Cannabis-Dependent Adolescents
with Family Therapy: The Case of
Multidimensional Family Therapy 1047
H. RIGTER
109. Cognitive Behavioral Therapy in
Cannabis Use Disorder 1056
F.M. GUVEN, U.M. CAMSARI, O. SENORMANCI, G. OGUZ
110. The Cannabis Withdrawal Syndrome—
Symptoms and Time Course 1066
M. HESSE, B. THYLSTRUP
111. School-Based Cannabis Prevention
Programs 1074
C. ARIZA, F. SÁNCHEZ-MARTÍNEZ, A. PÉREZ
112. The CapOpus Trial for Cannabis
Use Disorders 1086
C.R. HJORTHØJ, M. NORDENTOFT
113. Treating Cannabis Use Disorders
Through Technology-Assisted Interventions:
The Telephone and Internet 1093
P. GATES, J. COPELAND
114. Reducing Cannabis Use With a Real-Time
Intervention Using Mobile Technology 1101
M. KELLS, L.A. SHRIER
Cannabis Neuropathology Resources and
Recommended Reading 1111
R. RAJENDRAM, V.B. PATEL, V.R. PREEDY
Index 1115
Online Contents
I
SETTING THE SCENE, BOTANICAL,
GENERAL AND INTERNATIONAL
ASPECTS
e1. Tetrahydrocannabinol Concentration
and Genetic Characterization of Cannabis e1
F. CASCINI, I. BOSCHI
II
PERSONAL, SOCIAL AND
COMMUNITY ASPECTS
OF CANNABIS USE
e2. Cannabis Use in Youth Subcultures e11
M. PAWSON, B.C. KELLY
ONLINE CONTENTS xiii
III
CANNABIS, BEHAVIOR,
PSYCHOPATHOLOGY AND
NEUROPATHOLOGY
e3. Aggressive Behavior and Cannabis Use e19
W. LIU, H. PETRAS
e4. COMT Genotypes, Cannabis Use, and
Psychosis: Gene-Environment Interaction
Evidence from Human Populations, and Its
Methodological Concerns e29
M. FATJÓ-VILAS, C. PRATS, L. FAÑANÁS
e5. Neuroimaging and Genetics of the Acute
and Chronic Effects of Cannabis e42
R. MARTÍN-SANTOS, J.A. DE SOUZA CRIPPA, S. BHATTACHARYYA
e6. Gray Matter, Lateral Ventricle Volumes,
and Executive Functioning in Cannabis Users
with First-Episode Psychosis e53
P.J. CUNHA, P.G.P. ROSA, F.L.S. DURAN, L.C. SANTOS,
J.A.S. CRIPPA, G.F. BUSATTO, M.S. SCHAUFELBERGER
e7. Cannabis Use and Attention-Deficit/
Hyperactivity Disorder: Potential Moderators e64
K.E. MAPLE, N.E. WRIGHT, K.M. LISDAHL
IV
CANNABIS, ORGANS, TISSUES
AND NON-CNS ASPECTS
e8. Cannabis and Oral Health: Deleterious
Effects on Periodontitis and Dental Implants e72
G. NOGUEIRA-FILHO
e9. Does Cannabis Use Increase the Risk
of Developing Cancer in Humans? e80
R.C. CALLAGHAN, M. VERDICHEVSKI, T.M. FYFE, J.M. GATLEY
e10. Cannabis and the Use of Amphetamine-Like
Substances e101
A. PORCU, M.P. CASTELLI
V
PHARMACOLOGY AND CELLULAR
ACTIVITIES OF CANNABINOIDS
AND ENDOCANNABINOIDS
e11. Cannabinoid Signaling in Glioma Cells
and Therapeutic implications e111
A. ELLERT-MIKLASZEWSKA, I. A. CIECHOMSKA, B. KAMINSKA
VI
EFFECTS OF SPECIFIC NATURAL
AND SYNTHETIC CANNABINOIDS
e12. Cannabidiol as an Antioxidant e122
R.S. BORGES, A.B.F. DA SILVA
e13. The Anxiolytic Effects of Cannabidiol
(CBD) e131
A.W. ZUARDI, J.A. DE SOUZA CRIPPA, J.E.C. HALLAK,
A.C. CAMPOS, F.S. GUIMARÃES
e14. New Ethological and Morphological
Perspectives for the Investigation of
Panicolytic-Like Effects of Cannabidiol e140
N.C. COIMBRA, J. MENDES-GOMES, J.A. DA SILVA,
T. DOS ANJOS-GARCIA, F. ULLAH, R.C. ALMADA
e15. Spice Use Among United States
Military Personnel e150
H.A. MORRIS, J.M. STOGNER
VII
MEDICINAL CANNABIS USE
e16. Cannabis Use in Fibromyalgia e158
M. FARRÉ, A. FARRÉ, J. FIZ, M. TORRENS
xiv ONLINE CONTENTS
VIII
SCREENING, DIAGNOSIS,
AND TREATMENT
e17. Short Instruments to Screen for
“Problematic” Cannabis Use in General
Population Surveys e168
B. ANNAHEIM, S. LEGLEYE
e18. Self-report of Cannabis Use e185
T. VAN DER LINDEN
e19. CANDIS Program: Modular Treatment
of Cannabis Use Disorders e193
E. HOCH, H. ROHRBACHER
e20. Engaging Cannabis Users in Treatment e202
F. KAY-LAMBKIN, A. HEALEY, A. BAKER, W. SWIFT,
L. THORNTON, A. TURNER
xv
List of Contributors
M. Aas NORMENT, KG Jebsen Centre for Psychosis
Research, Division of Mental Health and Addiction, Oslo
University Hospital & Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
R. Abalo Area of Pharmacology and Nutrition, Faculty
of Health Sciences, University Rey Juan Carlos, Alcorcón;
Associated Unit I+D+i of the Institute of Medicinal Chemistry
(IQM) and of the Institute of Research in Food Sciences (CIAL),
Spanish National Research Council (CSIC), Madrid, Spain
O.M.E. Abdel-Salam Department of Toxicology and Narcotics,
National Research Centre, Dokki, Greater Cairo, Egypt
V.C. Abilio Department of Pharmacology, Federal
University of Sao Paulo; Integrated Laboratory of Clinical
Neurosciences (LiNC), Federal University of Sao Paulo,
Sao Paulo, Brazil
G.R. Adelli Department of Pharmaceutics and Drug
Delivery, School of Pharmacy, University of Mississippi,
Oxford, MS, United States
M.H. Ahmed Department of Medicinal Chemistry, School
of Pharmacy and Institute for Structural Biology and Drug
Discovery, Virginia Commonwealth University, Richmond,
VA, United States
M. Alhouayek Bioanalysis and Pharmacology of Bioactive
Lipids Research Group, Louvain Drug Research Institute,
Université catholique de Louvain, Brussels, Belgium
J. Allen Psychology Department, IKBSAS, University of
British Columbia, Kelowna, BC, Canada
D.J. Allsop Psychopharmacology Laboratory, School of
Psychology, University of Sydney, Sydney, NSW, Australia
R.C. Almada Laboratory of Neuroanatomy &
Neuropsychobiology, Department of Pharmacology,
Ribeirão Preto Medical School of the University of São
Paulo ( FMRP-USP), Ribeirão Preto, São Paulo, Brazil
V. Almeida Department of Pharmacology, Federal
University of Sao Paulo; Integrated Laboratory of Clinical
Neurosciences (LiNC), Federal University of Sao Paulo,
Sao Paulo, Brazil
A. Aloway Department of Pharmacology and Toxicology,
University of Louisville School of Medicine, Louisville, KY,
United States
S. Amanullah Woodstock General Hospital, Woodstock,
ON, Canada; School of Medicine, University of Western
Ontario, London, ON, Canada; and Faculty of Medicine,
Dalhousie University, NS, Canada
S.L. Ames School of Community and Global Health,
Claremont Graduate University, Claremont, CA, United States
B. Annaheim Institute for Biomedical Ethics (IBMB),
University of Basel, Basel, Switzerland
G. Appendino Department of Pharmaceutical Science,
University of Piemonte Orientale, Novara, Italy
H. Aramaki Department of Molecular Biology, Daiichi
University of Pharmacy; Drug Innovation Research Center,
Daiichi University of Pharmacy, Fukuoka, Japan
F. Arias-Horcajadas Psychiatric Department, Doce de
Octubre Hospital, Madrid, Spain
C. Ariza Evaluation and Intervention Methods Service,
Public Health Agency, Barcelona, Spain
J.C. Arnold School of Medicine, Western Sydney University,
Campbelltown; University of Sydney, Department of
Pharmacology, Bosch Institute, Sydney; Brain and Mind
Research Institute, Camperdown, NSW, Australia
D. Asmaro Department of Psychology, Simon Fraser
University, Burnaby, BC, Canada
V. Auwärter Department of Drug Abuse Research, Division
of Forensic Sciences, Norwegian Institute of Public Health,
Oslo, Norway; Forensic Toxicology Department, Medical
Center, University of Freiburg, Institute of Forensic Medicine,
Freiburg, Germany
S. Bachmann Clienia AG, Littenheid, Switzerland
A. Baker Priority Research Centre for Translational
Neuroscience and Mental Health, University of Newcastle,
Callaghan, NSW, Australia
R.E Balter Division on Substance Abuse, New York State
Psychiatric Institute and Department of Psychiatry, Columbia
University Medical Center, New York, NY, United States
P.G. Baraldi Department of Chemistry and Pharmaceutical
Science, University of Ferrara, Ferrara, Italy
P.A. Barber Department of Medicine, Centre for Brain
Research, University of Auckland, Auckland, New Zealand
G. Bar-Sela Division of Oncology, Rambam Health Care
Campus and Faculty of Medicine, Technion—Israel Institute
of Technology, Haifa, Israel
L. Bastiani Institute of Clinical Physiology, The Italian
National Research Council (IFC-CNR), Pisa, Italy
D. Basu Drug De-addiction and Treatment Centre,
Department of Psychiatry, Postgraduate Institute of Medical
Education and Research, Chandigarh, India
I. Basurte Gregorio Marañon Hospital, Madrid, Spain
O. Beck Department of Laboratory Medicine, Section of
Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden
S. Behrendt Institute of Clinical Psychology and
Psychotherapy, Technische Universitaet Dresden, Dresden,
Germany
D. Bergen-Cico Department of Public Health, Addiction
Studies, Syracuse University, Syracuse, NY, United States
xvi LIST OF CONTRIBUTORS
F. Berrendero Department of Experimental and Health
Sciences, Laboratory of Neuropharmacology, School
of Health and Life Sciences, Pompeu Fabra University,
Barcelona, Spain
P. Bhagav Department of Pharmaceutics and Drug Delivery,
School of Pharmacy, University of Mississippi, Oxford, MS,
United States
S. Bhattacharyya Department of Psychosis Studies, King’s
College London, Institute of Psychiatry, Psychology &
Neuroscience, London, United Kingdom
M. Bioque Barcelona Clínic Schizophrenia Unit, Hospital
Clínic de Barcelona, Centro de Investigación Biomédica en
Red de Salud Mental (CIBERSAM), Barcelona, Spain
S. Bolkent Department of Medical Biology, Cerrahpasa
Faculty of Medicine, Istanbul University, Istanbul, Turkey
J.H. Boman IV Department of Criminal Justice, University
of Wyoming, Laramie, WY, United States
P. Bondallaz Traffic Medicine and Psychology Unit,
University Center of Legal Medicine, University Hospital of
Geneva, Geneva, Switzerland
U. Bonnet Department of Psychiatry, Psychotherapy and
Psychosomatics, Evangelisches Krankenhaus Castrop-Rauxel,
Academic Teaching Hospital of the University of Duisburg-
Essen, Castrop-Rauxel, Germany
R.S. Borges Faculty of Pharmacy, Institute of Health
Sciences, Federal University of Pará, Belém, Para, Brazil
K. Borowiak Department of Clinical and Forensic
Toxicology, Pomeranian Medical University, Szczecin,
Poland
I. Boschi Public Health Institute, Department of Forensic
Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
L.K. Brents Brain Imaging Research Center, Psychiatric
Research Institute, University of Arkansas for Medical
Sciences, Little Rock, AR, United States
C.H. Bridts Faculty of Medicine and Health Science,
Department of Immunology-Allergology-Rheumatology,
University of Antwerp, Antwerp, Belgium
A. Bruno Department of Biomedical, Dental Sciences and
Morpho-functional Imaging, University of Messina, Messina,
Italy
B.T. Burrows Department of Psychology, Arizona State
University, Tempe, AZ, United States
G.F. Busatto Department of Psychiatry, Faculty of Medicine,
Laboratory of Psychiatric Neuroimaging (LIM-21), University
of São Paulo; Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
R.C. Callaghan Northern Medical Program, University of
Northern British Columbia, Prince George, BC; Dalla Lana
School of Public Health, University of Toronto, Toronto, ON;
Human Brain Lab, Centre for Addiction and Mental Health,
Toronto, ON, Canada
A.C. Campos Department of Pharmacology, Faculty of
Medicine of Ribeirão Preto, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil
U.M. Camsari Department of Psychiatry and Psychology,
Mayo Clinic Health System, and Mayo Clinic College of
Medicine, Rochester, MN, United States
A. Canfield University of Toronto, Toronto, ON, Canada
E. Carra Department of Psychosis Studies, Institute of
Psychiatry, Psychology and Neuroscience, King’s College
London, London, United Kingdom
F.-J. Carrillo-Salinas Neurobiology and Functional Systems
Department, Cajal Institute, CSIC, Madrid, Spain
F. Cascini Public Health Institute, Department of Forensic
Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
M.P. Castelli Department of Biomedical Sciences, Division
of Neuroscience and Clinical Pharmacology, Cittadella
Universitaria, Monserrato, CA, Italy
S.O. Cawich Department of Clinical Surgical Sciences,
University of the West Indies, St. Augustine Campus,
St Augustine, Trinidad and Tobago
E.E. Cawston Department of Pharmacology and Clinical
Pharmacology, Faculty of Medical and Health Sciences,
University of Auckland, Auckland, New Zealand
C. Cedro Department of Biomedical, Dental Sciences and
Morpho-functional Imaging, University of Messina, Messina,
Italy
M.H.N. Chagas Department of Neurosciences and Behavior,
Faculty of Medicine, Ribeirão Preto, University of São Paulo,
Ribeirão Preto; Barretos School of Health Sciences, Dr. Paulo
Prata, Barretos, São Paulo, Brazil
C. Chen Neuroscience Center of Excellence, School of
Medicine, Louisiana State University Health Sciences Center,
New Orleans, LA, United States
C. Chisari University of York, York, United Kingdom
H. Chtioui Department of Clinical Pharmacology and
Toxicology, University Hospital of Lausanne, Lausanne,
Switzerland
R.D. Cico Columbia University, New York, NY, United States
I.A. Ciechomska Laboratory of Molecular Neurobiology,
Neurobiology Center, Nencki Institute of Experimental
Biology, Warsaw, Poland
N.C. Coimbra Laboratory of Neuroanatomy &
Neuropsychobiology, Department of Pharmacology,
Ribeirão Preto Medical School of the University of São
Paulo (FMRP-USP); Neurobiology of Emotions Research
Centre (NAP-USP-NuPNE), Ribeirão Preto Medical School
of the University of São Paulo (FMRP-USP), Ribeirão Preto,
São Paulo, Brazil
J. Cole Queen Elizabeth Hospital, Charlottetown, PE, Canada
J. Cookey Department of Psychiatry, Dalhousie University,
Halifax, NS, Canada
J. Copeland National Cannabis Prevention and Information
Centre, University of New South Wales, Randwick, Sydney,
NSW, Australia
Z.M. Coskun Department of Molecular Biology and
Genetics, Faculty of Arts and Sciences, Istanbul Bilim
University, Istanbul, Turkey
LIST OF CONTRIBUTORS xvii
W.D. Crano Division of Behavioral and Organizational
Sciences, School of Social Science, Policy and Evaluation,
Claremont Graduate University, Claremont, CA, United
States
J.A.S. Crippa Department of Neuroscience and Behavior,
Faculty of Medicine, Ribeirão Preto, University of São Paulo,
Ribeirao Preto, Brazil
C.E. Crocker Department of Psychiatry, Dalhousie
University; Division of Neurology, Department of Medicine,
Dalhousie University, Halifax, NS, Canada
M.J. Cuesta Department of Psychiatry, IdiSNA, Navarra
Institute for Health Research, Pamplona, Spain
P.J. Cunha Department of Psychiatry, Faculty of Medicine,
Laboratory of Psychiatric Neuroimaging (LIM-21), University
of São Paulo; Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
L. Cutando Department of Experimental and Health
Sciences, Laboratory of Neuropharmacology, School
of Health and Life Sciences, Pompeu Fabra University,
Barcelona, Spain
A.B.F. da Silva Institute of Chemistry of São Carlos,
University of São Paulo, São Carlos, Sao Paulo, Brazil
J.A. da Silva Laboratory of Neuroanatomy &
Neuropsychobiology, Department of Pharmacology,
Ribeirão Preto Medical School of the University of São Paulo
(FMRP-USP), Ribeirão Preto, São Paulo, Brazil
V.K. da Silva Neurobiology and Developmental Biology
Laboratory, Faculty of Biosciences, Pontifical Catholic
University, Porto Alegre, Rio Grande do Sul, Brazil
D. Dan Department of Clinical Surgical Sciences, University
of the West Indies, St. Augustine Campus, St Augustine,
Trinidad and Tobago
R.B. De Boni INI Evandro Chagas, FIOCRUZ, Rio de
Janeiro, Rio de Janeiro, Brazil
F. Rodríguez de Fonseca Department of Psychobiology,
Faculty of Psychology, Complutense University of Madrid,
Pozuelo de Alarcón, Madrid, Spain
R. Gómez de Heras Department of Psychobiology, Faculty
of Psychology, Complutense University of Madrid, Pozuelo
de Alarcón, Madrid, Spain
A.C.P. de Oliveira Department of Pharmacology, ICB,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais, Brazil
A.C. de Souza Crippa Health Sciences Sector, Federal
University of Paraná, Curitiba, Parana, Brazil
J.A. de Souza Crippa Department of Neuroscience and
Behavior, Ribeirão Preto Medical School, University of São
Paulo, Ribeirão Preto, Sao Paulo, Brazil
F. Degenhardt Laboratory of Technical Biochemistry,
Department of Biochemical and Chemical Engineering,
TU Dortmund University, Dortmund, Germany
L. Degenhardt National Drug and Alcohol Research
Centre, University of New South Wales, Sydney, NSW,
Australia
S. Deiana CNS Diseases Research Department, Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer straße,
Biberach an der Riss, Germany
U. Deonarine Department of Clinical Surgical Sciences,
University of the West Indies, St. Augustine Campus,
St Augustine, Trinidad and Tobago
M. Di Forti Department of Psychosis Studies, Institute of
Psychiatry, Psychology and Neuroscience, King’s College
London, London, United Kingdom
T. dos Anjos-Garcia Laboratory of Neuroanatomy
& Neuropsychobiology, Department of Pharmacology,
Ribeirão Preto Medical School of the University of São Paulo
(FMRP-USP), Ribeirão Preto, São Paulo, Brazil
R. Guimarães dos Santos Department of Neuroscience and
Behavior, Ribeirão Preto Medical School, University of São
Paulo, Ribeirão Preto, Sao Paulo, Brazil
M. Drozd Department of Pharmaceutics, Medical University
of Lublin, Lublin, Poland
F.L.S. Duran Department of Psychiatry, Faculty of Medicine,
Laboratory of Psychiatric Neuroimaging (LIM-21), University
of São Paulo; Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
M. Earleywine Department of Psychology, School of Arts
and Sciences, University at Albany, State University of New
York, Albany, NY, United States
D.G. Ebo Faculty of Medicine and Health Science,
Department of Immunology-Allergology-Rheumatology,
University of Antwerp, Antwerp, Belgium
N. Egashira Department of Pharmacy, Kyushu University
Hospital; Department of Neuropharmacology, Faculty of
Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
J. Egnatios School of Medicine, University of California San
Diego, La Jolla, CA, United States
A. Ellert-Miklaszewska Laboratory of Molecular
Neurobiology, Neurobiology Center, Nencki Institute of
Experimental Biology, Warsaw, Poland
S.A. ElShebiney Department of Toxicology and Narcotics,
National Research Centre, Cairo, Egypt
M.A. ElSohly ElSohly Laboratories Inc., Oxford, MS,
United States
C. Evren Research, Treatment and Training Center for
Alcohol and Substance Dependence (AMATEM), Bakirkoy
Training and Research Hospital for Psychiatry, Neurology and
Neurosurgery, Istanbul, Turkey
L. Fañanás Faculty of Biology, Anthropology Unit,
Department of Animal Biology, University of Barcelona,
Biomedicine Institute of the University of Barcelona (IBUB),
Barcelona; CIBER of Mental Health (CIBERSAM), Madrid,
Spain
M.M. Faber Faculty of Medicine and Health Science,
Department of Immunology-Allergology-Rheumatology,
University of Antwerp, Antwerp, Belgium
S. Farag Technical University Dortmund, Technical
Biochemistry Dortmund, Dortmund, Germany
xviii LIST OF CONTRIBUTORS
A. Farré Dual Disorder Unit, Addiction Program, Institute
of Neuropsychiatry and Addiction—INAD, and Hospital del
Mar Medical Research Institute—IMIM, Barcelona, Spain
M. Farré Clinical Pharmacology Unit, Germans Trias i Pujol
University Hospital—IGTP, and Human Pharmacology Unit,
Hospital del Mar Medical Research Institute—IMIM, and
Autonomous University of Barcelona, Barcelona, Spain
M. Fatjó-Vilas Faculty of Biology, Anthropology Unit,
Department of Animal Biology, University of Barcelona,
Biomedicine Institute of the University of Barcelona (IBUB),
Barcelona; CIBER of Mental Health (CIBERSAM), Madrid,
Spain
B. Favrat Traffic Medicine and Psychology Unit, University
Center of Legal Medicine, University Hospital of Geneva,
Geneva; Department of Ambulatory Care and Community
Medicine, University Hospital of Lausanne, Lausanne,
Switzerland
D. Feingold Department of Psychiatry, Sheba Medical
Center, Tel Hashomer; Ariel University, Ariel, Israel
A. Feliú Neurobiology and Functional Systems Department,
Cajal Institute, CSIC, Madrid, Spain
A.A. Fernández Forensic Laboratory Institute of Legal
Medicine of Catalonia, Barcelona, Spain
S. Fernández-Artamendi Addictive Behaviors Research
Group, Department of Psychology, University of Oviedo,
Oviedo, Spain
A.J. Ferrari School of Public Health, University of
Queensland, Herston; Institute for Health Metrics and
Evaluation, University of Washington, Seattle, WA, United
States; Queensland Centre for Mental Health Research, Wacol,
QLD, Australia
L. Ferraro Biomedical Department of Internal and Specialist
Medicine; Department of Experimental Biomedicine and
Clinical Neuroscience, School of Medicine, University of
Palermo, Palermo, Italy
J. Fichna Department of Biochemistry, Faculty of Medicine,
Medical University of Lodz, Lodz, Poland
D.B. Finlay Department of Pharmacology and Clinical
Pharmacology, Faculty of Medical and Health Sciences,
University of Auckland, Auckland, New Zealand
J. Fiz EDIR, Center for Diagnosis and Rehabilitation, San
Martín Santa Fe, Argentina
Á. Flores Department of Experimental and Health Sciences,
Laboratory of Neuropharmacology, School of Health and Life
Sciences, Pompeu Fabra University, Barcelona, Spain
J.S. Fogel Department of Psychology, University of Kentucky
College of Arts and Sciences, Lexington, KY, United States
E. Fornari CIBM, University Hospital of Lausanne,
Lausanne, Switzerland
L. Fortunato Institute of Clinical Physiology, The Italian
National Research Council (IFC-CNR), Pisa, Italy
T. Fyfe Northern Medical Program, University of Northern
British Columbia, Prince George, BC, Canada
A.E.D.M. Gaafar Department of Photochemistry, Chemical
Industries Division, National Research Centre, Cairo, Egypt
S. Gade Palo Alto University, Palo Alto, CA, United States
E. Gaffal Laboratory of Experimental Dermatology,
Department of Dermatology and Allergy, University
Hospital of the Friedrich-Wilhelm-University Bonn, Bonn,
Germany
A.F. Galal Department of Toxicology and Narcotics, National
Research Centre, Cairo, Egypt
R. Gandhi Academic Department of Diabetes and
Endocrinology, Sheffield Teaching Hospitals NHS
Foundation Trust, Sheffield, United Kingdom
P. Gates National Cannabis Prevention and Information
Centre, University of New South Wales, Randwick, Sydney,
NSW, Australia
J.M. Gatley Northern Medical Program, University of
Northern British Columbia, Prince George, BC; Dalla Lana
School of Public Health, University of Toronto, Toronto, ON;
Human Brain Lab, Centre for Addiction and Mental Health,
Toronto, ON, Canada
C. Giroud Forensic Toxicology and Chemistry Unit,
University Center of Legal Medicine, University Hospital of
Lausanne, Lausanne, Switzerland
M. Glass Department of Pharmacology and Clinical
Pharmacology, Faculty of Medical and Health Sciences,
University of Auckland, Auckland, New Zealand
S.R. Goldberg Preclinical Pharmacology Section, Behavioral
Neuroscience Branch, Intramural Research Program, National
Institute on Drug Abuse, National Institutes of Health,
Baltimore, MD, United States
I. González-Ortega Department of Psychiatry, University
Hospital of Alava-Santiago, CIBERSAM; University of the
Basque Country; National Distance Education University
(UNED)-Centro Asociado de Vitoria, Vitoria, Spain
A. González-Pinto Department of Psychiatry, University
Hospital of Alava-Santiago, CIBERSAM; University of the
Basque Country, Vitoria, Spain
C. Guaza Neurobiology and Functional Systems Department,
Cajal Institute, CSIC, Madrid, Spain
V. Guillon Service des enquêtes et des sondages, Paris,
France
F.S. Guimarães Department of Pharmacology, Faculty of
Medicine of Ribeirão Preto, University of São Paulo, Ribeirão
Preto, São Paulo, Brazil
W. Gul ElSohly Laboratories Inc., Oxford, MS, United
States
F.M. Guven Turkish Association for Cognitive and
Behavioural Therapies, Istanbul; Department of Psychiatry,
Alcohol & Substance Use Disorders Treatment Center, Lara
Anatolia Hospital, Antalya, Turkey
W.D. Hall Centre for Youth Substance Abuse Research,
University of Queensland, Herston, QLD, Australia
J.E.C. Hallak Department of Neuroscience and Behavior,
Ribeirão Preto Medical School, University of São Paulo,
Ribeirão Preto, Sao Paulo, Brazil
M. Hamerle Department of Psychiatry and Psychotherapy,
Ludwig-Maximilian-University Hospital, Munich, Germany
LIST OF CONTRIBUTORS xix
M. Haney Division on Substance Abuse, New York State
Psychiatric Institute and Department of Psychiatry, College of
Physicians and Surgeons of Columbia University, New York,
NY, United States
H.E. Harding Department of Surgery, University of the West
Indies, Mona Campus, Kingston, Jamaica
S. Hassan Dalhousie University, Dartmouth, NS, Canada
K. Haugland National Criminal Investigation Service
(NCIS) Norway, Forensic Science Department, Oslo, Norway
A. Healey School of Psychology, The University of Newcastle,
University Drive, Callaghan, NSW, Australia
C. Heck City and County of Denver, Crime Prevention and
Control Commission, Denver, CO, United States
A. Helander Department of Laboratory Medicine,
Karolinska Institutet, and Karolinska University Laboratory,
Stockholm, Sweden
L. Hernandez-Folgado Institute of Medical Chemistry,
CSIC, Madrid, Spain
D.A. Herzig Clienia AG, Littenheid, Switzerland
M. Hesse Center for Alcohol and Drug Research, Aarhus
University, Copenhagen Department, Copenhagen,
Denmark
M.G. Hill The University of Arizona, Tucson, AZ, United
States
R. Hirst Palo Alto University, Palo Alto, CA, United States
C.R. Hjorthøj Mental Health Center Copenhagen,
Copenhagen University Hospital, Copenhagen, Denmark
E. Hoch Department of Psychiatry, Ludwig Maximilian
University, Munich, Germany
M.D. Holder Psychology Department, IKBSAS, University
of British Columbia, Kelowna, BC, Canada
M. Holtkamp Epilepsy-Center Berlin-Brandenburg,
Department of Neurology, Charité – Universitätsmedizin
Berlin, Berlin, Germany
M.R. Hunter Department of Pharmacology and Clinical
Pharmacology, Faculty of Medical and Health Sciences,
University of Auckland, Auckland, New Zealand
E. Ikeda Department of Molecular Biology, Daiichi
University of Pharmacy, Fukuoka, Japan
Y. Izumi Department of Psychiatry; The Taylor Family
Institute for Innovative Psychiatric Research, Washington
University School of Medicine, St. Louis, MO, United States
T. Janus Department of Clinical and Forensic Toxicology,
Pomeranian Medical University, Szczecin, Poland
B. Kaminska Laboratory of Molecular Neurobiology,
Neurobiology Center, Nencki Institute of Experimental
Biology, Warsaw, Poland
A.S. Kanaan Clinic of Psychiatry, Social-Psychiatry and
Psychotherapy, Hannover Medical School, Hannover;
Nuclear Magnetic Resonance Unit, Max Planck Institute
for Human Cognitive and Brain Sciences, Leipzig,
Germany
R. Karinen Norwegian Institute of Public Health, Division
of Forensic Sciences, Oslo, Norway
T. Karl Neuroscience Research Australia, Randwick; School
of Medicine, Western Sydney University, Campbelltown,
NSW, Australia
T. Katsu Department of Pharmacy, Faculty of Pharmacy,
Yasuda Women’s University, Hiroshima, Japan
F. Kay-Lambkin NHMRC Centre for Research Excellence in
Mental Health and Substance Use, National Drug and Alcohol
Research Centre, University of New South Wales, Randwick,
NSW, Australia
O. Kayser Technical University Dortmund, Technical
Biochemistry Dortmund, Dortmund, Germany
M. Kells Division of Adolescent/Young Adult Medicine,
Boston Children’s Hospital, Boston, MA, United States
B.C. Kelly Department of Sociology, Purdue University,
West Lafayette, IN, United States
T.H. Kelly Departments of Behavioral Science and Psychiatry,
University of Kentucky College of Medicine, and Department
of Psychology, University of Kentucky College of Arts and
Sciences, Lexington, KY, United States
A. Kokona Department of Medical and Surgical Sciences,
Bologna University, Bologna, Italy
A. Kumar Department of Pharmacology and Toxicology,
University of Louisville School of Medicine, Louisville, KY,
United States
P. Kumar Department of Pharmacology and Toxicology,
University of Louisville School of Medicine, Louisville, KY,
United States
D. La Barbera Department of Experimental Biomedicine
and Clinical Neuroscience, School of Medicine, University of
Palermo, Palermo, Italy
T.V. Lagerberg NORMENT KG Jebsen Centre for Psychosis
Research, Institute of Clinical Medicine, University of Oslo;
Division of Mental Health and Addiction, Oslo University
Hospital, Oslo, Norway
A. Lahat Department of Gastroenterology, Chaim Sheba
Medical Center, Tel-Hashomer, Israel
H.J. Larsen Mental Health Center Copenhagen, Copenhagen
University Hospital, Copenhagen, Denmark
A.S. Laun Department of Pharmacology and Toxicology,
University of Louisville School of Medicine, Louisville, KY,
United States
T. Lecomte Research Centre of the University of
Montreal Institute for Mental Health; Department of
Psychology, University of Montreal, Montreal, QC,
Canada
S. Legleye Institut national d’études démographiques
(INED), Paris; University of Paris-Saclay, Univ. Paris-Sud,
UVSQ, CESP, Inserm, Versailles, France
S. Lev-Ran Department of Psychiatry, Sheba Medical
Center, Tel Hashomer; Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv, Israel
J.A. Lile Departments of Behavioral Science and Psychiatry,
University of Kentucky College of Medicine, and Department
of Psychology, University of Kentucky College of Arts and
Sciences, Lexington, KY, United States
xx LIST OF CONTRIBUTORS
R.P. Limberger LABTOXICO: Laboratory of Toxicology,
Faculty of Pharmacy, Federal University of Rio Grande do Sul,
Porto Alegre, Rio Grande do Sul, Brazil
I.M.P. Linares Department of Neuroscience and Behavior,
Faculty of Medicine, Ribeirão Preto, University of São Paulo,
Ribeirao Preto, Brazil
K.M. Lisdahl Department of Psychology, University of
Wisconsin-Milwaukee, Milwaukee, WI, United States
M. Little Center for Population Sciences, Department of
Preventive Medicine, University of Tennessee Health Science
Center, Memphis, TN, United States
W. Liu NORC at the University of Chicago, Bethesda, MD,
United States
M.J. Loflin Department of Psychology, School of Arts and
Sciences, University at Albany, State University of New York,
Albany, NY, United States
R. Lorente-Omeñaca Department of Psychiatry, IdiSNA,
Navarra Institute for Health Research, Pamplona, Spain
V. Lorenzetti Melbourne Neuropsychiatry Centre,
The University of Melbourne and Melbourne Health,
Melbourne; Brain & Mental Health Laboratory, Monash
Institute of Cognitive and Clinical Neurosciences, School of
Psychological Sciences, Monash University, Clayton, VIC,
Australia
D. Lu Department of Pharmaceutical Sciences, Rangel
College of Pharmacy, Texas A&M University, Kingsville, TX,
United States
J. Mørland Department of Drug Abuse Research, Division
of Forensic Sciences, Norwegian Institute of Public Health,
Oslo, Norway
K.R. Müller-Vahl Clinic of Psychiatry, Social-Psychiatry
and Psychotherapy, Hannover Medical School, Hannover,
Germany
A. Machoy-Mokrzyn´ska Department of Pharmacology,
Pomeranian Medical University, Szczecin, Poland
P. Maeder Department of Radiology, University Hospital of
Lausanne, Lausanne, Switzerland
S. Majumdar Department of Pharmaceutics and Drug
Delivery, School of Pharmacy, University of Mississippi,
Oxford, MS, United States
R. Maldonado Department of Experimental and Health
Sciences, Laboratory of Neuropharmacology, School
of Health and Life Sciences, Pompeu Fabra University,
Barcelona, Spain
K.E. Maple Department of Psychology, University of
Wisconsin-Milwaukee, Milwaukee, WI, United States
M. Martínez-Cengotitabengoa Department of Psychiatry,
University Hospital of Alava-Santiago, CIBERSAM; National
Distance Education University (UNED)-Centro Asociado de
Vitoria, Vitoria, Spain
M. Isabel Martín-Fontelles Area of Pharmacology and
Nutrition, Faculty of Health Sciences, University Rey Juan
Carlos, Alcorcón; Associated Unit I+D+i of the Institute of
Medicinal Chemistry (IQM) and of the Institute of Research
in Food Sciences (CIAL), Spanish National Research Council
(CSIC), Madrid, Spain
R. Martín-Santos Department of Psychiatry and
Psychology, Hospital Clinic, IDIBAPS, University of
Barcelona, CIBERSAM, Barcelona, Spain
K. Masuda Department of Physical Chemistry, Graduate
School of Clinical Pharmacy, Shujitsu University, Okayama,
Japan
A.L. McRae-Clark Medical University of South Carolina,
Charleston, SC, United States
M. Mecha Neurobiology and Functional Systems Department,
Cajal Institute, CSIC, Madrid, Spain
I. Melle NORMENT, KG Jebsen Centre for Psychosis
Research, Division of Mental Health and Addiction, Oslo
University Hospital & Institute of Clinical Medicine,
University of Oslo, Oslo, Norway
S. Menahem Paediatric Cardiology Unit, Monash Health,
Melbourne, Melbourne; Faculty of Medicine, Nursing and
Health Sciences, Monash University, Clayton, VIC, Australia
J. Mendes-Gomes Laboratory of Neuroanatomy &
Neuropsychobiology, Department of Pharmacology, Ribeirão
Preto Medical School of the University of São Paulo (FMRP-
USP), Ribeirão Preto, São Paulo, Brazil
B. Mesías Instituto de Adicciones, Madrid, Spain
S. Miller Division of Behavioral and Organizational Sciences,
School of Social Science, Policy and Evaluation, Claremont
Graduate University, Claremont, CA, United States
R. Mizrahi Centre for Addiction and Mental Health
(CAMH), Research Imaging Centre, Toronto, ON, Canada
S. Molinaro Institute of Clinical Physiology, The Italian
National Research Council (IFC-CNR), Pisa, Italy
C. Moore Toxicology Research and Development,
Immunalysis Corporation, Pomona, CA, United States
M.F. Moraes Department of Physiology and Biochemistry,
ICB, Federal University of Minas Gerais, Belo Horizonte,
Minas Gerais, Brazil
F.A. Moreira Department of Pharmacology, ICB, Federal
University of Minas Gerais, Belo Horizonte, Minas Gerais,
Brazil
L. Moreno-Izco Department of Psychiatry, IdiSNA, Navarra
Institute for Health Research, Pamplona, Spain
H.A. Morris Department of Criminal Justice and
Criminology, University of North Carolina at Charlotte,
Charlotte, NC, United States
E. Muñoz Department of Cell Biology, Physiology and
Immunology, University of Córdoba, Córdoba, Spain
G.G. Muccioli Bioanalysis and Pharmacology of Bioactive
Lipids Research Group, Louvain Drug Research Institute,
Université catholique de Louvain, Brussels, Belgium
M.R.A. Muscatello Department of Biomedical, Dental
Sciences and Morpho-functional Imaging, University of
Messina, Messina, Italy
S.A. Nada Department of Pharmacology, National Research
Centre, Dokki, Greater Cairo, Egypt
V. Naraynsingh Department of Clinical Surgical Sciences,
University of the West Indies, St. Augustine Campus,
St Augustine, Trinidad and Tobago
LIST OF CONTRIBUTORS xxi
S. Narimatsu Department of Health Chemistry, Graduate
School of Medicine, Dentistry and Pharmaceutical Sciences,
Okayama University, Okayama, Japan
G. Nogueira-Filho School of Health Sciences, University
Salvador, Laureate International Universities, Salvador, Bahia,
Brazil
M. Nordentoft Mental Health Center Copenhagen,
Copenhagen University Hospital, Copenhagen, Denmark
G. Oguz Turkish Association for Cognitive and Behavioural
Therapies, Istanbul; Department of Psychology, Canik Basari
University, Samsun, Turkey
Å.M.L. Øiestad Norwegian Institute of Public Health,
Division of Forensic Sciences, Oslo, Norway
E.L. Øiestad Norwegian Institute of Public Health, Division
of Forensic Sciences, Oslo, Norway
H. Okazaki Drug Innovation Research Center, Daiichi
University of Pharmacy, Fukuoka, Japan
M.F. Olive Department of Psychology, Arizona State
University, Tempe, AZ, United States
L. Orio Department of Psychobiology, Faculty of
Psychology, Complutense University of Madrid, Pozuelo de
Alarcón, Madrid, Spain
A. Ozaita Department of Experimental and Health
Sciences, Laboratory of Neuropharmacology, School
of Health and Life Sciences, Pompeu Fabra University,
Barcelona, Spain
A. Pérez Evaluation and Intervention Methods Service,
Public Health Agency, Barcelona, Spain
G. Panagis University of Crete, Department of Psychology,
Laboratory of Behavioral Neuroscience, Rethymnon, Crete,
Greece
G. Pandolfo Department of Biomedical, Dental Sciences and
Morpho-functional Imaging, University of Messina, Messina,
Italy
L.V. Panlilio Preclinical Pharmacology Section, Behavioral
Neuroscience Branch, Intramural Research Program, National
Institute on Drug Abuse, National Institutes of Health,
Baltimore, MD, United States
K. Paquin Research Centre of the University of Montreal
Institute for Mental Health; Department of Psychology,
University of Montreal, Montreal, QC, Canada
P. Parakh Department of Psychiatry, Ruby General Hospital,
Kolkata, India
L.A. Parker Department of Psychology and Collaborative
Neuroscience Program, University of Guelph, Guelph, ON,
Canada
V.B. Patel University of Westminster, School of Life Sciences,
Department of Biomedical Science, London, United Kingdom
M. Pawson Department of Sociology, The Graduate Center,
City University of New York, New York, NY, United States
F.F. Peres Department of Pharmacology, Federal University
of Sao Paulo; Integrated Laboratory of Clinical Neurosciences
(LiNC), Federal University of Sao Paulo, Sao Paulo, Brazil
H. Petras American Institutes for Research, Washington, DC,
United States
F. Pollastro Department of Pharmaceutical Science,
University of Piemonte Orientale, Novara, Italy
A. Porcu Department of Biomedical Sciences, Division
of Neuroscience and Clinical Pharmacology, Cittadella
Universitaria, Monserrato, CA, Italy
R. Potente Institute of Clinical Physiology, The Italian
National Research Council (IFC-CNR), Pisa, Italy
D.E. Potter Department of Pharmaceutical Sciences, Rangel
College of Pharmacy, Texas A&M University, Kingsville, TX,
United States
S. Potvin Research Centre of the University of Montreal
Institute for Mental Health; Department of Psychiatry,
Faculty of Medicine, University of Montreal, Montreal, QC,
Canada
C. Prats Faculty of Biology, Anthropology Unit,
Department of Animal Biology, University of Barcelona,
Biomedicine Institute of the University of Barcelona (IBUB),
Barcelona; CIBER of Mental Health (CIBERSAM), Madrid,
Spain
V.R. Preedy Faculty of Life Sciences and Medicine, King’s
College London, London, United Kingdom
R. Rajendram Faculty of Life Sciences and Medicine, King’s
College London, London, United Kingdom
L. Rathke Palo Alto University, Palo Alto, CA, United
States
K.L. Reed The University of Arizona, Tucson, AZ, United
States
M.A. Repka Department of Pharmaceutics and Drug
Delivery, School of Pharmacy, University of Mississippi,
Oxford, MS, United States
H. Rigter Youth Interventions Foundation, Curium,
Department of Child and Adolescent Psychiatry, Leiden
University Medical Center, Leiden, The Netherlands
E.M. Rock Department of Psychology and Collaborative
Neuroscience Program, University of Guelph, Guelph, ON,
Canada
H. Rohrbacher Practice for Cognitive Behaviour Therapy,
Munich, Germany
P.G.P. Rosa Department of Psychiatry, Faculty of Medicine,
Laboratory of Psychiatric Neuroimaging (LIM-21), University
of São Paulo; Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
F. Sánchez-Martínez Evaluation and Intervention Methods
Service, Public Health Agency, Barcelona, Spain
A.M. Sánchez-Torres Department of Psychiatry, IdiSNA,
Navarra Institute for Health Research, Pamplona, Spain
M. Sałaga Department of Biochemistry, Faculty of Medicine,
Medical University of Lodz, Lodz, Poland
V. Sabato Faculty of Medicine and Health Science,
Department of Immunology-Allergology-Rheumatology,
University of Antwerp, Antwerp, Belgium
A.N. Sanders Department of Criminal Justice and
Criminology, University of North Carolina at Charlotte,
Charlotte, NC, United States
xxii LIST OF CONTRIBUTORS
L.C. Santos Department of Psychiatry, Faculty of Medicine,
Laboratory of Psychiatric Neuroimaging (LIM-21), University
of São Paulo; Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
M. Scalese Institute of Clinical Physiology, The Italian
National Research Council (IFC-CNR), Pisa, Italy
M.S. Schaufelberger Department of Psychiatry, Faculty of
Medicine, Laboratory of Psychiatric Neuroimaging (LIM-21),
University of São Paulo; Center for Interdisciplinary Research
on Applied Neurosciences (NAPNA), University of São Paulo,
São Paulo; Department of Neuroscience and Behavior, Faculty
of Medicine, Ribeirão Preto, University of São Paulo, Ribeirao
Preto, Brazil
N. Schröder Neurobiology and Developmental Biology
Laboratory, Faculty of Biosciences, Pontifical Catholic
University, Porto Alegre, Rio Grande do Sul, Brazil
G. Scimeca Department of Biomedical, Dental Sciences and
Morpho-functional Imaging, University of Messina, Messina,
Italy
R. Secades-Villa Addictive Behaviors Research Group,
Department of Psychology, University of Oviedo, Oviedo,
Spain
D. Selvarajah Department of Human Metabolism, Medical
School, University of Sheffield, Sheffield, United Kingdom
O. Senormanci Department of Psychiatry, Bülent Ecevit
University School of Medicine, Zonguldak, Turkey
K. Shivakumar Health Sciences North, Department of
Psychiatry, and Northern Ontario School of Medicine,
Sudbury, ON, Canada
L.A. Shrier Division of Adolescent/Young Adult Medicine,
Boston Children’s Hospital, and Department of Pediatrics,
Harvard Medical School, Boston, MA, United States
V. Siciliano Institute of Clinical Physiology, The Italian
National Research Council (IFC-CNR), Pisa, Italy
L. Sideli Department of Experimental Biomedicine and
Clinical Neuroscience, School of Medicine, University of
Palermo, Palermo, Italy
J.T. Siegel Division of Behavioral and Organizational
Sciences, School of Social Science, Policy and Evaluation,
Claremont Graduate University, Claremont, CA,
United States
A.A. Sleem Department of Pharmacology, National
Research Centre, Dokki, Greater Cairo, Egypt
J. Sobczyn´ski Department of Pharmaceutics, Medical
University of Lublin, Lublin, Poland
L. Sodos Palo Alto University, Palo Alto, CA, United States
N. Solowij School of Psychology, University of Wollongong,
Wollongong, NSW, Australia
Z.-H. Song Department of Pharmacology and Toxicology,
University of Louisville School of Medicine, Louisville, KY,
United States
A.W. Stacy School of Community and Global Health,
Claremont Graduate University, Claremont, CA,
United States
F. Stehle Laboratory of Technical Biochemistry, Department
of Biochemical and Chemical Engineering, TU Dortmund
University, Dortmund, Germany
J.M. Stogner Department of Criminal Justice and
Criminology, University of North Carolina at Charlotte,
Charlotte, NC, United States
S. Sussman Departments of Preventive Medicine and
Psychology, and School of Social Work, Institute for Health
Promotion and Disease Prevention Research, University of
Southern California, Los Angeles, CA, United States
W. Swift NHMRC Centre for Research Excellence in Mental
Health and Substance Use, National Drug and Alcohol
Research Centre, University of New South Wales, Randwick,
NSW, Australia
N. Szerman Gregorio Marañon Hospital, Madrid, Spain
T. Tüting Laboratory of Experimental Dermatology,
Department of Dermatology and Allergy, University
Hospital of the Friedrich-Wilhelm-University Bonn, Bonn,
Germany
M. Aghazadeh Tabrizi Department of Chemistry and
Pharmaceutical Science, University of Ferrara, Ferrara, Italy
O. Taglialatela-Scafati Department of Pharmacy, University
of Napoli Federico II, Napoli, Italy
R.N. Takahashi Department of Pharmacology, CCB, Federal
University of Santa Catarina, Florianópolis, Santa Catarina,
Brazil
S. Takeda Laboratory of Xenobiotic Metabolism and
Environmental Toxicology, Faculty of Pharmaceutical
Sciences, Hiroshima International University (HIU), Kure,
Hiroshima, Japan
I. Tarricone Department of Medical and Surgical Sciences,
Bologna University; Department of Mental Health, Bologna,
Italy
D.P. Tashkin Division of Pulmonary and Critical Care,
Department of Medicine, David Geffen School of Medicine at
UCLA, Los Angeles, CA, United States
T. Telliog˘lu Brown University, Alpert Medical School,
Substance Abuse Division, Rhode Island Hospital,
Providence, RI, United States
Z. Telliog˘lu Brown University, Alpert Medical School,
Rhode Island Hospital, Providence, RI, United States
S. Tesfaye Academic Department of Diabetes and
Endocrinology, Sheffield Teaching Hospitals NHS Foundation
Trust, Sheffield, United Kingdom
L. Thornton NHMRC Centre for Research Excellence in
Mental Health and Substance Use, National Drug and Alcohol
Research Centre, University of New South Wales, Randwick,
NSW, Australia
B. Thylstrup Center for Alcohol and Drug Research,
Aarhus University, Copenhagen Department, Copenhagen,
Denmark
P.G. Tibbo Department of Psychiatry, Dalhousie University,
Halifax, NS, Canada
G. Todd School of Pharmacy and Medical Sciences,
University of South Australia, Adelaide, SA, Australia
LIST OF CONTRIBUTORS xxiii
M. Torrens Addiction Program, Institute of Neuropsychiatry
and Addiction—INAD, and Hospital del Mar Medical
Research Institute—IMIM, Barcelona, Spain
J. Tsai Department of Preventive Medicine, Keck School of
Medicine, University of Southern California, Los Angeles, CA,
United States
H.-H. Tseng Centre for Addiction and Mental Health
(CAMH), Research Imaging Centre, Toronto, ON, Canada;
Department of Psychosis Studies, Institute of Psychiatry,
King’s College London, London, United Kingdom
A. Turner Priority Research Centre for Translational
Neuroscience and Mental Health, University of Newcastle,
Callaghan, NSW, Australia
S.S. Tuv Department of Drug Abuse Research, Division
of Forensic Sciences, Norwegian Institute of Public Health,
Oslo, Norway
F. Ullah Laboratory of Neuroanatomy & Neuropsychobiology,
Department of Pharmacology, Ribeirão Preto Medical School of
the University of São Paulo (FMRP-USP), Ribeirão Preto, São
Paulo, Brazil
T. Van der Linden Department Drugs and Toxicology,
National Institute of Criminalistics, Brussels, Belgium
A.L. Van Gasse Faculty of Medicine and Health Science,
Department of Immunology-Allergology-Rheumatology,
University of Antwerp, Antwerp, Belgium
P. Vega Instituto de Adicciones, Madrid, Spain
G. Vera Area of Pharmacology and Nutrition, Faculty
of Health Sciences, University Rey Juan Carlos, Alcorcón;
Associated Unit I+D+i of the Institute of Medicinal Chemistry
(IQM) and of the Institute of Research in Food Sciences
(CIAL), Spanish National Research Council (CSIC), Madrid,
Spain
M. Verdichevski Northern Medical Program, University
of Northern British Columbia, Prince George, BC, Canada
T.R. Vieira Sousa Center for Drug and Alcohol Research,
Hospital de Clinicas de Porto Alegre, Federal University of
Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
L.R. Vilela Department of Pharmacology, ICB, Federal
University of Minas Gerais, Belo Horizonte, Minas Gerais,
Brazil
V. Vindenes Department of Drug Abuse Research, Division
of Forensic Sciences, Norwegian Institute of Public Health,
Oslo, Norway
Z. Walsh Psychology Department, IKBSAS, University of
British Columbia, Kelowna, BC, Canada
K. Watanabe Department of Hygienic Chemistry, Faculty
of Pharmaceutical Sciences, Hokuriku University, Kanazawa;
Pharmaceutical Education Support Center, Daiichi University
of Pharmacy, Fukuoka, Japan
L.R. Watterson Department of Psychology, Arizona State
University, Tempe, AZ, United States
J.M. White School of Pharmacy and Medical Sciences,
University of South Australia, Adelaide, SA, Australia
N.E. Wright Department of Psychology, University of
Wisconsin-Milwaukee, Milwaukee, WI, United States
M. Yücel Melbourne Neuropsychiatry Centre, The University
of Melbourne and Melbourne Health, Melbourne; Brain &
Mental Health Laboratory, Monash Institute of Cognitive
and Clinical Neurosciences, School of Psychological Sciences,
Monash University, Clayton, VIC, Australia
I. Yamamoto Hokuriku University, Kanazawa, Japan
S. Yamaori Department of Pharmacy, Shinshu University
Hospital, Matsumoto, Japan
A. Zalesky Melbourne Neuropsychiatry Centre, The
University of Melbourne and Melbourne Health, Melbourne,
VIC, Australia
D. Zalman Division of Oncology, Rambam Health Care
Campus and Faculty of Medicine, Technion—Israel Institute
of Technology, Haifa, Israel
J. Zhang Neuroscience Center of Excellence, School of
Medicine, Louisiana State University Health Sciences Center,
New Orleans, LA, United States
Y. Zhang Department of Medicinal Chemistry, School of
Pharmacy and Institute for Structural Biology and Drug
Discovery, Virginia Commonwealth University, Richmond,
VA, United States
R. Zoccali Department of Biomedical, Dental Sciences and
Morpho-functional Imaging, University of Messina, Messina,
Italy
C.F. Zorumski Department of Psychiatry; The Taylor
Family Institute for Innovative Psychiatric Research,
Washington University School of Medicine, St. Louis, MO,
United States
A.W. Zuardi Department of Neuroscience and Behavior,
Ribeirão Preto Medical School, University of São Paulo,
Ribeirão Preto, Sao Paulo, Brazil
Page left intentionally blank
xxv
Preface
Cannabis is probably one of the most commonly
used drugs of misuse. It has a wide range of adverse
effects including impairing learning and memory. At
the same time, the medical use of cannabis has been
advocated due to its ability to relieve pain as an ex-
ample. Understanding the nature of the pleasure-
seeking, disinhibition, and other effects have also
paved the way for the specialized field of cannabis
pharmacology. This includes elucidating the nature
of cannabinoid receptors, which has led to the devel-
opment of synthetic cannabinoid agonists. However,
the aforementioned is a rather simplistic synopsis.
The long-term use of cannabis may also increase the
risk of schizophrenia, paranoia, and other psychoses.
Its use can affect cells, organs, individuals, families,
subcultures, groups, and communities. This is be-
cause the interrelationships between cannabis and in-
dividual components, diagnosis, screening, social and
community effects, psychopathology, neuropathol-
ogy, non-CNS effects, polydrug use, medicinal appli-
cations, treatments, and pharmacology are complex.
Furthermore, although the active agents in cannabis
are known, the individual steps between exposure
by ingestion or inhalation and effects on cells and the
body are multifactorial, and cut across many scientific
disciplines. It is thus important to learn from these
interrelationships to embrace a multidisciplinary ap-
proach to understand all the threads and ramifications
of cannabis use, misuse, and applications. For exam-
ple, some cellular mechanisms elucidated by studying
one anatomical CNS component may also be relevant
to other areas of the CNS, or other fields of cannabis
toxicity and pharmacology. Another example relates
to the impact of cannabis on social dysfunction, which
may also be relevant to other psychosocial scenarios,
or useful in devising new treatment strategies. An ad-
ditional example relates to preclinical studies which
may be relevant to understanding clinical patholo-
gies, psychomorbidities, or therapeutic drugs. Un-
raveling these complex relationships is difficult, as
there is a wide myriad of material related to canna-
bis. In simple terms, the material on cannabis use and
misuse has hitherto been either scattered, diffused,
or crosses different disciplines. These limitations are,
however, addressed in The Handbook of Cannabis and
Related Pathologies: Biology, Pharmacology, Diagnosis,
and Treatment which embraces all aspects of canna-
bis in a one-stop-shop approach. Where appropriate,
positive aspects of cannabis and related metabolites
are described.
The book is divided into eight major parts as follows:
1. Setting the Scene, Botanical, General, and
International Aspects
2. Personal, Social, and Community Aspects of
Cannabis Use
3. Cannabis, Behavior, Psychopathology, and
Neuropathology
4. Cannabis, Organs, Tissues, and non-CNS Aspects
5. Pharmacology and Cellular Activities of
Cannabinoids and Endocannabinoids
6. Effects of Specific Natural and Synthetic
Cannabinoids
7. Medicinal Cannabis Use
8. Screening, Diagnosis, and Treatments
The Editor recognizes the difficulties in ascribing
chapters to particular sections, and even their location
within separate sections. This is because some chapters
can be categorized in many ways. However, this issue
is resolved with the excellent indexing carried out by
Elsevier.
The Handbook of Cannabis and Related Pathologies: Biol-
ogy, Pharmacology, Diagnosis, and Treatment transcends
both multiple disciplinary and intellectual divides, as
each chapter has:
Key Facts
Mini-Dictionary
Summary Points
Finally, there is a chapter on Resources and Recom-
mended Reading, suggested by some of the book’s con-
tributors.
The Handbook of Cannabis and Related Pathologies:
Biology, Pharmacology, Diagnosis, and Treatment has been
designed for those working in the field of cannabis
and cannabinoids, drug abuse workers, neurologists,
specialists in addictive behaviors, health scientists,
public health and community workers, doctors,
xxvi PREFACE
pharmacologists, research scientists, and other special-
ists. The book is valuable as a personal reference book,
and also for academic libraries that cover the domains
of health sciences or addictions. Contributions are from
leading national and international experts, including
those from world renowned institutions. It is suitable
for undergraduates, postgraduates, lecturers, and aca-
demic professors.
Professor V.R. Preedy, BSc, PhD, DSc,
FRSB, FRSH, FRIPHH, FRSPH, FRCPath, FRSC
King’s College London, London, United Kingdom
PART I
SETTING THE SCENE, BOTANICAL,
GENERAL AND INTERNATIONAL
ASPECTS
1 The cannabis plant: Botanical aspects 3
2 The biosynthesis of cannabinoids 13
3 Increasing plant concentrations of THC and
implications on health related disorders 24
4 Age as a predictor of cannabis use 33
5 Lifetime cannabis use and cognition in psychosis
spectrum disorders 44
6 A profile of synthetic cannabinoid users 53
7 Dual disorders in cannabis misuse 61
8 Cannabis use and cognitive function 70
9 Cannabis, migration, and psychosis onset 79
10 The global epidemiology and disease burden
of cannabis use and dependence 89
11 International aspects of cannabis use and
misuse: the australian perspective 101
12 International aspects of cannabis use and
misuse: Egypt 110
13 Cannabis body packing: A caribbean perspective 122
Page left intentionally blank
CHAPTER
3
Handbook of Cannabis and Related Pathologies. http://dx.doi.org/10.1016/B978-0-12-800756-3.00001-6
Copyright © 2017 Elsevier Inc. All rights reserved.
1
The Cannabis Plant: Botanical Aspects
S. Farag, O. Kayser
Technical University Dortmund, Technical Biochemistry Dortmund, Dortmund, Germany
SUMMARY POINTS
• Thischapterfocusesonthebotanicalaspectsof
Cannabis.
• Cannabistrichomescancomeinglandularand
nonglandularshapes,includingoilresin.
• Resinglandsarethemainproducerof
cannabinoids.
• Recently,hybridcannabisstrainshavebeen
developed.
• Modernhydroponictechniques,coupledwith
selectivearticiallighting,areusedinorderto
solvetheissueoflow-potencycannabis.
• However,wearguethatitisnecessarytoapply
transgenicCannabisplantstofacilitatethe
metabolicpathwayforcannabinoidproduction
oragronomictraits.
KEY FACTS
 MostpopularvarietiesofCannabisareacombination
oftwoorthreeofC. sativa,C. indicaorC. ruderalis.
Cannabiscultivatedforberoroil,ornarcotics
production.
 Cannabinoidsarethemainactiveingredient.
 Cultivationandbreedingofnarcoticstrainsisnot
permittedinmostcountries.
 Onlyfemaleplantsareeconomicallyimportantfor
producingresininnarcoticstrains.
 Indoorhorticulturallightingisanewsystemtomimic
sunlight.
 Indoorhydroponictechnologyisusedformaximizing
cannabinoids.
LIST OF ABBREVIATIONS
CBD Cannabidiol
CBDA Cannabidiolicacid
CBN Cannabinol
GPP Geranylpyrophosphate
GRIN GermplasmResourcesInformationNetwork
ISSR Intersimplesequencerepeat
NPGS NationalPlantGermplasmSystem
RAPD Randomampliedpolymorphic
RFLP Restrictionfragmentlengthpolymorphism
RH Relativehumidity
RFLP Restrictionfragmentpolymorphisms
THCA Tetrahydrocannabinolicacid
THC9-Tetrahydrocannabinol
USDA UnitedStatesDepartmentofAgriculture
INTRODUCTION
Cannabis sativa L. (marijuana; Cannabaceae) is an
annual dioeciously owering plant. The rst appear-
anceofCannabiswasbelievedtobecentralAsiaabout
5000BC.Formillennia,theplanthasalsobeenusedfor
ber,oilproduction,and traditional uses. Itcontainsa
numberofmedicinallyimportant compounds,suchas,
cannabinoids (Appendino, Chianese, & Taglialatela-
Scafati,2011),terpenoids (Ross &ElSohly,1996),avo-
noids (Vanhoenacker, Van Rompaey, De Keukeleire, &
Sandra, 2002), alkaloids (Turner & Elsohly, 1976), and
others (Brenneisen, 2007). Cannabinoids are a unique
classofterpenophenoliccompoundstoCannabisplants,
accumulated mainly in the cavity of trichomes (Kim
& Mahlberg, 1997). More than 80 cannabinoids have
beenisolatedfromC. sativa(Elsohly&Slade,2005).The
mainpsychoactive compound is9-tetrahydrocannabi-
nol(THC),withwell-knownmedicinaleffects(Elbatsh,
4 1. THE CANNABIS PLANT: BOTANICAL ASPECTS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
Moklas,Marsden,&Kendall,2012).Atpresent,cultiva-
tionandbreedingofCannabisisprohibitedinmostcoun-
tries,exceptbypermissionforpurposesofresearchand
pharmaceuticaluses(ElSohly,2002).Cannabisplantsare
usuallypropagatedthroughtheseed(sexualreproduc-
tion;outdoorcultivation)orbyvegetativepropagation,
usingstem cuttings(asexual reproduction;indoor cul-
tivation)(Potter,2004).However,bothtechniqueshave
advantagesanddisadvantages.Thischapterisdedicat-
edtobotanicalaspects,includingmorphology,taxono-
my, genetics, conservation, geographical distribution,
andcultivationforms.
BOTANY OF CANNABIS
Macroscopical Features
Informationwaspublishedelsewhere,givingdetailed
technicaldescriptionsofCannabismorphology(Clarke,
1981;UNODC,2009)Fig.1.1.However,thisinformation
hasbeensimpliedinthepresenttext.C. sativaisanan-
nual,dioeciously(ie,maleandfemaleowersarefound
onseparateplants),pollinatedplantwithstrongtaproot,
erect stems. The stems are usually angular, furrowed,
branched,withwoodyinterior,sometimeshollowinthe
internodes,andvaryfrom1to6minheight.Thebranch-
ingiseitheroppositeoralternate.Therootsareadvanta-
geous,withbranchedtaproot,generally30–60cmdeep,
upto2.5minloosesoils,veryneartothesurface,and
morebranchedinwet soils. Leavesaregreenandpal-
mate(sevenlobes).However,thesizeandshapeofthe
leaetsdiffersmarkedly,accordingtogeneticorigin.The
leafarrangementiseitheropposite,oralternateorspiral.
Theleaetsare6–11cm(length)and2–15mm(width).
Leafmarginsarecoarselyserrated.Theadaxialandabax-
ialsurfacesaregreen,withscattered,resinoustrichomes.
Inorescences consist of numerous ower heads that
canbe foundon long, leafy stems from eachleaf axil.
Thestaminate(maleower)consistsofvepale-green,
hairysepalsabout2.5–4mm long, andvependulous
stamens,withslenderlamentsandstamen.Thepistil-
late(femaleowers)arealmostsessile,andareinpairs.
Thefruit(seed),isanachene,containsasingleseedwith
ahardshelltightlycoveredbythethinwalloftheovary,
andit is ellipsoid, slightly compressed,smooth, about
2–5mmlong,generallybrownishandmottled.
FIGURE 1.1 (A)femaleC. sativa;(B)portionofthefemaleowers;(C)pistillatefemaleower(stigmas,style,perigonalbract,andstipule);(D)
portionofthefemaleowersshowanther;(E)matureseed.
BOTANY OF CANNABIS 5
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
Microscopical Features
Ingeneral,Cannabistrichomescompriseadiverseset
ofstructuresanddifferenttypesoftrichomes(eg,glan-
dularandnonglandular)onasingleleaf,whenviewed
through a hand lens (Fig. 1.2). Cannabis trichome re-
searchers have commonly described two types of the
nonglandular trichome that have not been associated
with terpenoid development (Table 1.1). Three types
of glandular trichome have been described on female
plants, namely bulbous, sessile, and capitate stalked
(Happyanaetal.,2013).Maleplantshavebeenfoundto
exhibitafourthtype—theantherialglandulartrichome,
whichhasonlybeenfoundonanthers(Fairbairn,1972).
Glandulartrichomesaremadefromaseriesofdifferenti-
atedcellswithdifferentfunctionalproperties,namelythe
secretorycells,andstalkcells(Kim&Mahlberg,1991).
Classification of Cannabis
The rst ofcial publication which recorded the use
ofLatin binomials is Linnaeus’s Species Plantarum, and
itcanbedatedbacktotheyear1753.Afterward,thein-
ternationalcommunity acknowledged it as the starting
point for modern botanical nomenclature. The species
nameCannabismeanscane-like,”whilethegenusname
sativa”hasthemeaningplanted or sown,”andsignies
thattheplantispropagatedfromseed,andnotfrompe-
rennial roots (Raman, 1998). According to the modern
system of classication, Cannabis belongs to the family
of Cannabaceae, along with the Humulus genus (hops)
(Turner,Elsohly,&Boeren,1980a,b).Differentvarietiesof
Cannabishavebeendeveloped overthecourseofmany
centuries,astheresultofbreedingandselection.How-
ever, the Cannabis processed by these methods creates
many debates about further botanical classication. So
far,there isno general agreementabout thetaxonomic
rankof various groupswithin the genusCannabis, and
consequentlyitsmonospecic or polyspecic character,
sincethetimeofLinnaeus(late18thcentury)(Hazekamp,
Justin,Lubbe,&Ruhaak,2010).UNODC(1956)divided
domesticatedCannabisintothreedifferentgroups:
 berhemp,long,unbranchedplants,withpoorseed
production
 oilseedhemp,short,earlymaturingplants,withrich
seedproduction
 drughemp,short,stronglybranchedplants,with
smalldarkgreenleaves.
Schultes,Klein,Plowman,&Lockwood(1974)distin-
guishedthreespecieswithin the genus:C. sativa L., C.
indicaLam., and C. ruderalis.Other authors referredto
thesametaxaonlyatsubspeciclevelwithinonesingle
species,C. sativa(Hoffmann,1961).SmallandCronquist
(1976)dividedthesinglespeciesC. sativaintothesub-
speciessativa andindica, eachconsisting ofa domesti-
cated(Table1.2)andwildvarieties.Withinthesubspe-
ciessativa,the domesticatedandthe wild varietiesare
C. sativasubsp.sativavar.sativa(domesticated),C. sativa
subsp.sativavar.spontama(wild),C. sativasubsp.indica
var. indica (domesticated), and C. sativa subsp. indica
var. kafiristanica (wild). However, it is commonly ac-
ceptedthatCannabisismonotypic,andconsistsonlyof
a single species: C. sativa(Brenneisen, 1983; Beutler &
Dermarderosian,1978).
FIGURE 1.2Microscopic photographs of C. sativa trichomes.(A)Trichomesontheower;(B)capitate-stalkedtrichome;(C)capitate-sessile
trichome;(D)bulboustrichome;(E)trichomesonthebract;(F)trichomesonthestem;(G)trichomesontheadaxialsurfaceofaoralleaf.Abig
capitate-sessiletrichomeisindicatedwithanarrow;(H)trichomesontheabaxialsurfaceofaleaf.Presentabundantsmallcapitate-sessileand
bulboustrichomes.Source: Adapted from Happyana et al. (2013).
6 1. THE CANNABIS PLANT: BOTANICAL ASPECTS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
TABLE 1.2 Synopsis of C. sativa Sectional Species, Subspecies, and Varieties Recognized Based on Chemical, Genetic, and
Morphological Variation
Section sativa Section spontanea
C. sativa(L.)a
C. chinensis(Delile)
C. gigantea(Delile)
C. americana(Houghton)
C. sativasubsp.Intersita(So.)
subsp.culta(Serebr)
 subsp.Sativa(L.)
 var. sativa
var. praecox
 var. monoica
 var. gigantea
 var. Chinensis
 var. pedemontana
C. ruderalis(L)a
C. sativasubsp.spontanea(Serebr.)
 var. spontanea
 var.ruderalis
Section indica
C. indica(Lam.)a
C. macrosperma(Stokes)
C. sativasubsp.indica(Lam.)
var. indica
 var. kif
 var. afghanica
 var. kafiristanica
a Includes the endemic and domesticated populations (Raman, 1998; Sytsma et al., 2002; Hillig, 2005).
TABLE 1.1 A Summary of Cannabis Trichomes Classification, Structure, Distribution, Timing of Development, and Lifespan
Trichomes
Classification Structure Distribution
Timing of
development/
density Lifespan References
Nonglandular
trichomesa
(1)Noncystolithic trichomes:
long,unicellular,smooth,
curved,covering
trichomes
Lowersideof
vegetativeleaves
andpistillate
bracts
Decreases
withage
Theviabilityand
functioning
secretionis
correlatedwith
senescenceof
epidermalcells
(Fairbairn,1972;
Hammond&
Mahlberg,1977;Turner
etal.,1977,1980b,1981;
Croteau,1988;
Werker,2000;Guy&
Stott,2005;Happyana
etal.,2013)
(2)Cystolithic trichomes:
moresquat,unicellular,claw
shape,cystolithcovering
trichomes,containing
calciumcarbonate
Glandular
trichomesb
(1)Bulbous:
withsmallestgland
Vegetativeleaves
andpistillate
bracts
(2)Capitate-sessile (unstalked):
thestructureiscommonly
simple,andthetrichomes
headconnecteddirectlyto
themesophyllcells.
(3)Capitate-stalked:
thestructuremorecomplex,
theydevelopedresin
head(alsoknownas
theglandularhead)
thatresemblesagolf
ballsittingonatee(the
trichome’sstalk).
Bractsandoral
leaves
Increaseswith
age
Antherialsessile
trichomesc
Largesize,withadiameter
ofapproximately
70–80µm
Undersideofthe
antherlobes
a Nonglandular trichomes lack cannabinoids.
b Glandular trichomes are the principal or sole site of storage of most cannabinoids, the content of 9-THC in pistillate flowers ranged between 10 and 12%, and in leaves ranged
between 1 and 2%.
c Male plants are of no consequence in medicine production because they develop few glandular trichomes and, consequently, produce few cannabinoids or terpenes.
BOTANY OF CANNABIS 7
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
The current scientific classification of Cannabis (Sytsma
et al., 2002)
 Class  Hamamelidae
  Subclass   Rosales
   Order    Cannabaceae
    Family Cannabis
Genus sativa
      Species
Other Recent Taxonomic Studies
CHEMOTAXONOMIC CLASSIFICATION
Recently, chemotaxonomic classication splits the
phenotypesbasedonthequantitativedifferencesinthe
cannabinoidratiooftetrahydrocannabinolicacid(THC),
cannabinol(CBN),andcannabidiol(CBD),intheratioof
[THC]+[CBN]/[CBD].Iftheratioexceeded1,plantsare
classiedas“chemo-type,”otherwiseas“ber-type,”and
thiswastherststudytodifferentiatebetweenthedrug-
andber-type,byFettermanetal.(1971).Therefore,this
ratiowassubsequentlyusedtodiscriminatechemotype,
intermediatetype,andber-type(Turner,Cheng,Lewis,
Russell, & Sharma, 1979). Hillig and Mahlberg (2004)
splitCannabisintoputativespeciesandsubspecies,us-
ingmultivariatedataanalysis.Moreover,itwasreported
that,dependingonage,theCannabisplantcanbeclassi-
edintodifferentmorphotypes,atdifferenttimepoints
ofitsdevelopment.Althoughthisclassicationwasnot
comprehensive enough to elucidate infrageneric taxo-
nomicstructure,anddoesnotdenethecontentsofcan-
nabinoidsforeachchemotype,itprovidesausabletool
forclassication(Hazekampetal.,2010).
MOLECULAR CLASSIFICATION
Severalmoleculartechniqueshavebeenevaluatedto
establishthegeneticrelationshipamongdifferentvariet-
iesofCannabisplants.Somerecentstudieshaveclassi-
edandidentiedC. sativasamplesthatcannotbedif-
ferentiatedbyHPLCanalysis alone, byusinggenomic
DNA, random amplied polymorphic DNA (RAPD),
andrestrictionfragmentpolymorphisms(RFLP)analy-
sis,butlittleworkappearstohavebeenconductedwith
markertypesthatwouldbeusableforbreeding(Gillan,
Cole,Linacre,Thorpe,&Watson,1995;Faeti,Mandolino,
&Ranalli,1996).Recently,Kojoma,Iida,Makino,Sekita,
andSatake(2002)reportedthatdifferentCannabiswere
identied by means of inter simple sequence repeat
(ISSR).ISSR is a technique offeringthe reproducibility
andsimplicityofRAPDswithhighreliability(Galvan,
Bornet,Balatti,&Branchard,2003).
Current Cannabis Varieties
Recently, Cannabis growers have become more
awaretocreatevariations betweendifferentstrains for
developingnewvarieties.Newly hybrid varietieshave
been developed as a result of the crossbreds, such as,
super-sativa”(Clarke& Watson,2002;deMeijer,2004).
Recently, varieties of Cannabis have been licensed to
GW Pharmaceuticals Ltd, as part of indoor breeding
programs(deMeijer&Hammond,2005).IntheUnited
States,the majority ofCannabis cultivars wereselected
fromsinglelandracesources,orfrommultihybridprog-
enies made from different landraces (de Meijer, 2004).
The marijuana potency monitoring project at the Uni-
versity of Mississippi (USA) is breeding Sinsemilla,
Skunk 1, Four Way, Four Way-F, Thai/Skunk, Terbag
W1,K2,and MX Cannabisof hybrid varieties(ElSohly,
Holley,&Turner,1985;Elsohly,Holley,Lewis,Russell,&
Turner,1984).IntheNetherlands,therearethreediffer-
entCannabisvarietiesfromsativa:Bedrocan,Bedrobinol,
andBediol, and one variety from C. indica is Bedica –
allstudiedandregisteredbyBedrocanBV(Fischedick,
Hazekamp,Erkelens,Choi, & Verpoorte,2010).Nowa-
days, many Cannabis hybrid cultivars (Table 1.3) and
someselectedpurestrainshavebeencommercializedin
manyprivate companies, and there areup to 20more
orlesswelldenedstrainsforeitherindoororoutdoor
cultivation,inTheNetherlands,butasufcientdataset
isnotavailable,duetoillegalcultivation.Today,thecul-
tivationandproductionofhempisrestrictedandcon-
trolledbecauseofitsassociationwithnarcoticuse.Most
ofthehempbreederscultivateberhemp with the ul-
timategoaltoreduceTHCcontentbelow0.2%,oreven
togetnoncannabinoidplantsbybreedingandcrossing
experiments(deMeijer,1995).
Genetics of Cannabis
Genome of Cannabis sativa
ThegenomeofCannabis(2n=18+XXforfemale,and
2n=18+XYformale)hasakaryotypecomposedofnine
autosomesandapairofsexchromosomes(XandY).Sex
chromosomeschangesduringthedevelopmentalstages
areclaimedtooccurinmanydioeciousplants,asastrat-
egy for survival (Flemming et al., 2007). The genome
wasmeasuredinbothfemale(XX)andmaleplants(XY)
(Vyskot&Hobza,2015).Theestimatedhaploidgenome
sizesare818Mbforfemaleplants,and843Mbformales
(Sakamotoetal.,1998).Thegenomicresourcesavailable
forCannabisaremainlyconnedtotranscriptomeinfor-
mation:theNCBIdatabasecontains12,907ESTsand23
unassembledRNA-SeqdatasetsofIlluminareads(Marks
etal.,2009).Thegeneticbasisofcannabinoidvariationin
C. sativashowedthattheamountofTHCversusCBDis
likelygovernedbyone locus withtwocodominantal-
leles,B(d)andB(t)(deMeijeretal.,2003).Onepossible
explanationfor these resultsisthat the two alleles en-
codeeither THCAorCBDAsynthaseso that homozy-
gousplantswouldcontaineithertetrahydrocannabinolic
8 1. THE CANNABIS PLANT: BOTANICAL ASPECTS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
acid(THCA)orcannabidiolicacid(CBDA)asthemajor
cannabinoid,andheterozygoteswouldhaveanapproxi-
matelyequalmixtureof thetwo(Fig.1.3).Anotherex-
planationisthatTHCAandCBDAsynthasesareclosely
linked genes, perhaps produced as a result of a gene
duplication event. A recent study analyzed the THCA
synthase sequences from drug (high-THC) and ber
(low-THC)varieties,andfoundthattheaminoacidse-
quenceofTHCAsynthasefromhigh-THCvarietiesdif-
feredby37 major substitutions, comparedtolow-THC
varieties(Kojoma,Seki,Yoshida,&Muranaka,2006).
Geographical Distribution
Small and Cronquist (1976) state that genus Canna-
bisgeographically growsto the north of latitude 30°N
andsouthof latitude 60°N(Hillig,2005). The genusis
believedtohaveoriginatedintheNorthwestHimalayas,
andoccurswidelyinAfrica.
Agricultural Status
Nowadays, ber hemp is cultivated in a number
of countries around the world, and China represents
thelargest producer of hemp with focuson ber-type
(Mediavilla,Bassetti,&Leupin,1999).Nevertheless,cul-
tivationof medicinal Cannabisis prohibited in mostof
countries,exceptbypermissionforpurposesofresearch
andpharmaceuticaluses.
Conservation Initiatives
Cannabispopulationsarefacing the threatofgenetic
drift—which has a direct effect on the changes to the
phenotypeandchemicalprole,duetoallogamous(de
Meijer&Vansoest,1992). The conservation of Cannabis
germplasmisdivided into two mainstrategies:in situ
andexsitu.
Ex Situ Conservation in Gene Banks
The Cannabis gene bank at Vavilov Research Insti-
tute of Plant Industry (St. Petersburg, Russia) main-
tainedabout200accessions,formorethan50years(de
Meijer,1998). In addition,theHungarian gene bankat
the Research Center for Agrobiodiversity (Tápiószele,
Hungary)maintainedabout70accessions.Collectionsof
upto20accessionsarepreservedinotherdepositoriesin
Germany,Turkey,andJapan.Incomparisonwithother
crops,theavailablenumberofwell-documentedCannabis
accessionsislimited(deMeijer&Vansoest,1992).Now-
adays,severalaccessionsaremaintainedbytheUnited
States Department of Agriculture (USDA)/National
PlantGermplasm System (NPGS),and associated data
canbe accessedfrom the Germplasm Resources Infor-
mationNetwork(GRIN)database.
FIGURE 1.3Inheritance of chemical phenotype in C. sativa “co-
dominant monogenic control,” homozygous THC producing BtBt
genotypes are typically selected for recreational use.Source: From de
Meijer et al. (2003).
TABLE 1.3 Origin of Hemp Varieties Were Reported in
Literaturea
Variety Country
Finola Finland
Glukhov33,Kuban,Uso11,Zenica,USO13,USO
15,USO31,YUSO14,YUSO16
Ukraine
Asso,Carmagnola,CS(CarmagnolaSelezionata),
Carmono,Carma,Codimono,ElettaCampana,
Ferrara,Ermes,Fibrimor
Fibranova
Italy
Fasamo,Ferimon Germany
Santhica27,Epsilon68,Fedora17,Fedora19,
Fedrina74,Felina32,Felina34,Fibrimon21,
Fibrimon24,Fibrimon56,Futura,Futura77,
Futura75,Santhica23,Dioica88
France
KompoltiSargaszaru,Kinaiunisexualis,Kompolti,
KompoltiHybridTC,KompoltiHyper,Elite,
Fibriko
Hungary
Fibramulta151,Irene,Lovrin110,Moldovan,
Secuieni1
Romania
Beniko,Bialobrzeskie,LKCSD,Dolnoslaskie Poland
Chamaeleon,Dutch“Yellow”line Netherlands
ErmakovskayaMestnaya Russia
Delta405,Delta-llosa Spain
Kenvir Turkey
Swissmix Swiss
Ratslaviska Czech
Silistrensi,Mecnajacopt Bulgaria
Pesnica Slovenia
Flajsmanova,Novosadksa,Novosadskaplus,
Novosadskakonoplja
Former
Yugoslavia
KinaiEgylaki,KinaiKetlaki China
KozuhuraZairai Japan
a Low THC cultivars, less than 0.2% dry weight.
BOTANY OF CANNABIS 9
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
In Situ Conservation as In Vitro Gene Banks
In vitro conservation of encapsulated microcuttings
ofCannabisshootletswasattemptedunderslowgrowth
conditions between 5 and 15°C (Lata, Chandra, Khan,
& ElSohly, 2008; Lata, Chandra, Mehmedic, Khan, &
ElSohly, 2012), but adaptation to in vitro conditions
could induce mutants of the offspring plants, causing
geneticandchemicaldrift(Larkin&Scowcroft,1981).
Cultivation Techniques of Cannabis
Outdoor Cultivation
Cannabis plant can be propagated from seeds, and
thelifecycleiscompleted within4–6months,depend-
ingonthetimeoftheplantationandthevariety.Itcan
reachupto5m(16ft.)inheight,ina4–6monthsgrow-
ingseason(Raman,1998;Clarke&Watson,2002).Her-
maphroditic varieties of this plant have been bred for
industrial hemp production, as this allows more uni-
formcrops(Leggett,2006).Theprocessofgerminationis
usuallycompletedin3–7days(Clarke&Watson,2002).
Theseedlingstageiscompletedwithin2–3months.Lat-
er,theplantischaracterizedbyincreasedbiomassand
total growth under long day time lengths (vegetative
growth).Itiseasytorecognizethemaleandfemalesex
atthis stage.Later insummer,thereproductivephase
ofCannabis begins when the plant is exposedto short
daytimelengths(lesslightperdaythandarkness)of12–
14horless,dependingonitslatitudeandgeneticorigin
(Brenneisen,1983).Oncethemaleowersripenedand
pollinated, the female owers died directly. The pro-
ducedseedsafteroweringhavecombinationsoftraits
fromtwoparents,asaresultofcrossfertilization(Clarke
&Watson,2002).Thismethodismostlyusedforthecul-
tivationofCannabisforhempber,orCannabisseedwith
lessthan0.2%THC.
Indoor Cultivation
Thismethodof breedingisusedforincreasingresin
potency,andavoidingunwantedmaleplants(Chandra,
Lata,Khan,&ElSohly,2010). The complete growthcy-
cle, quality, and quantity of biomass can be regulated
undercontrolledenvironmentalconditions(6–8weeks).
Thesuccessful indoorsystem requiresan effective hy-
droponic system to deliver nutrients and oxygen, and
supporttheplants’growth(Fig.1.4).However,thereisa
numberofdifferenttechniquesthathavebeenproposed
fortheindoorhorticultureofCannabis,forexample,the
standingaeratedtechnique,nutrientlmtechnique,and
aeroponicstechnique.Inhydroponicgrowing,thenutri-
entsolutionisbestatapHwithinacertainrange(5.5–
6.5)formaximumuptakeandgoodplantgrowth(Argo
&Fischer,2002).IndoorCannabiscropcultivationneeds
articial light and compressed CO2 gas for photosyn-
thesis,andforcontrollingoweringandplantbiomass
(Jones,1997).Here,selectivevegetativefemaleplantsare
usedformakingclones.Later,allclonesarekeptunder
standardenvironmentalconditions (light,temperature,
RH,andCO2concentration)inagrowingroomforvegeta-
tion(18h/dayphotoperiod)andforowering(12h/day
photoperiod).
In vitro Micropropagation
The micropropagation system offers a number of
clear advantages, including (1) human-controlled
method with fast propagation in a comparably short
time, due to high potential multiplication rates, (2) it
isindependentof seasonal factorslike climate and ge-
ography, and (3) the produced plants are usually free
from microorganism-borne diseases (Zafar, Aeri, &
Datta,1992).Ontheotherhand,invitropropagationof
C. sativathroughtheseedispossibleinmostofcultivars,
althoughthegreatestproblemwithsuchamethodisthe
FIGURE 1.4Indoor cultivation of C. sativa.Source: Photo provided from Bedrocan BV, the Netherlands.
10 1. THE CANNABIS PLANT: BOTANICAL ASPECTS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
highlevel of heterozygositythatcould lead toa rapid
and dramatic prole shift of secondary metabolites
fromonegenerationtothenext (Chandra et al.,2010).
Infact, in vitropropagation using explants or somatic
embryogenesishasbeenreported(Lataetal.,2002).Be-
sides the progress in the eld of plant biotechnology,
verylittleprogresshasbeenmadetodatetowarddevel-
opinganin vitro regenerationfromC. sativa.Previous
reports on de novo organogensis of C. sativa emerged
inearly1980s(Fisse,Braut,Cosson,&Paris,1981),and
subsequentlyfromcallusofdifferentgenotypesandex-
plantsources,includingcotyledonsandstem(Wielgus,
Luwanska, Lassocinski, & Kaczmarek, 2008), young
leaves (Lata, Chandra, Khan, & ElSohly, 2010), inter-
nodes, and axillary buds and petioles (Slusarkiewicz-
Jarzina,Ponitka,&Kaczmarek,2005),androots(Ranalli
& Mandolino, 1999). Alternatively, the use of meriste-
maticcallusformicropropagationwasstudiedrecently
(Farag&Kayser,unpublishedresults,Fig.1.5).
Recommendations for Future Action
Giventhe high therapeutic and commercialvalue of
Cannabis,legalindoorbreedingstartedinsomepharma-
ceuticalcompanies.Thebiotechnologicalresearchforge-
neticimprovementhasbeenminimaltodate.Researches
ontransgenicCannabisisstillneededtofacilitatethemet-
abolicengineeringofcannabinoidsandagronomictraits.
MINI-DICTIONARY
Encapsulation Invitrotechniquefortheproductionofsynthetic
seeds(Ca-alginatebeads)forlong-termstorageofgermplasm.
Genome Thecompletesetofchromosomalandextra-
chromosomalDNA/RNAofanorganism,acell,anorganelle,
oravirus.
Inter simple sequence repeats (ISSR) Amoleculartechnique
forevolutionarybiology.Itssimplesequencerepeats(SSR),also
knownasmicrosatellites,aretandemrepeatsofafewbasepairs
distributedthroughoutthegenome.
Micropropagation Invitrotechniqueformultiplyingplanttissues
throughinvitroculture,eitherindirectly(withinterveningcallus
stage)ordirectly(withoutaninterveningproliferativestage).This
isachievedbyalteringtheconcentrationofgrowthregulators,
mainlyauxinsandcytokinins.
Random amplified polymorphic DNA (RAPD) Amolecular
techniquefortherapidassignationofDNA-basedcharacterstates
forphylogeneticanalysis.Thetechniqueusesthepolymerase
chainreaction(PCR)toamplifyanygenomicregioncontaining
singleprimerofnucleotidearbitrarysequence.
Restriction fragment length polymorphism (RFLP) Amolecular
techniqueforgenomemapping,andvariationanalysis(genotyping,
forensics,paternitytests,hereditarydiseasediagnostics,etc.).The
techniqueusesrestrictionofendonucleasestocutDNAatspecic
(generally4–6bp)recognitionsites.
Trichome Denedashair-likestructuresthatextendfromthe
epidermisofaerialtissues;arepresentonthesurfaceofmost
terrestrialplants.
References
Appendino, G., Chianese, G., & Taglialatela-Scafati, O. (2011). Can-
nabinoids:occurrenceand medicinal chemistry.Current Medicinal
Chemistry,18(7),1085–1099.
Argo,W.R.,Fischer,P.R.(2002).UnderstandingpHmanagementfor
container-growncrops.Meister,Willoughby,Ohio.
Beutler, J.A., & Dermarderosian, A. H. (1978). Chemotaxonomy of
Cannabis.1.CrossbreedingbetweenCannabis sativaandCannabis
ruderalis, with analysis of Cannabinoid content. Economic Botany,
32(4),387–394.
Brenneisen,R.(1983).Psychotropicdrugs.I.Cannabis sativaL.(Canna-
binaceae).Pharmaceutica Acta Helvetiae,58(11),314–320.
Brenneisen,R.(2007). Chemistry and analysis of phytocannabinoids
andotherCannabisconstituents.InM.A.Elsohly(Ed.),Marijuana
and the cannabinoids(pp.17–49).Totowa:HumanaPress.
Chandra,S.H.,Lata, I.,Khan,A.,& ElSohly,M.A.(2010).Propagation
ofeliteCannabis sativafortheproductionof9-Tetrahydrocannabinol
(THC)usingbiotechnologicaltools.InA.Rajesh(Ed.),Medicinal Plant
Biotechnology(pp.98–114).UK:CABI.
Clarke,R.C.(1981).Marijuana botany. An advanced study: the propagation
and breeding of distinct cannabis.Berkeley,CA:And/OrPress.
Clarke,R.C.,&Watson,D.P.(2002).BotanyofnaturalCannabismedi-
cines.InF.Grotenhermen, &E.Russo(Eds.),Cannabis and canna-
binoids: pharmacology, toxicology, and therapeutic potential(pp.3–13).
NewYork:TheHaworthPress.
Croteau,R.(1988).Catabolismofmonoterpenesinessentialoilplants.
Developments in Food Science,18,65–84.
FIGURE 1.5In vitro micropropagation of leaf-derived calli from C. sativa L.(A)Callusculture,(B)meristemoidformation,(C)shootlets
multiplicationonGamborg’sB5mediumsupplementedwithvariouscombinationsofauxinsandcytokinins.Source: Photos provided from Sayed
Farag PhD project, Technische Universität Dortmund.
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
REFERENCES 11
deMeijer,E. P.M.,& Vansoest,L.J.M. (1992). The CPRO Cannabis
germplasmcollection.Euphytica,62(3),201–211.
deMeijer,E.P.M.(1995).Fibrehempcultivars:asurveyoforigin,an-
cestry,availabilityandbriefagronomiccharacteristics.Journal of the
International Hemp Associaiton,2(2),66–73.
deMeijer,E.(1998).Cannabisgermplasmresources.InP.Ranalli(Ed.),
Advances in hemp research.NewYork:HaworthFoodProductsPress,
p.272.
deMeijer,E.P.,Bagatta,M.,Carboni,A.,Crucitti,P.,Moliterni,V.M.,
Ranalli, P., & Mandolino, G. (2003). The inheritance of chemical
phenotypeinCannabis sativaL.Genetics,163(1),335–346.
deMeijer,E. (2004). Thebreedingofcannabis cultivars for pharma-
ceuticalenduses.InG.W.Guy,B.A.Whittle, &P.Robson(Eds.),
Medicinal uses of cannabis and cannabinoids (pp. 55–70). London:
PharmaceuticalPress.
deMeijer,E.P.M.,&Hammond,K.M.(2005).Theinheritanceofchem-
icalphenotypeinCannabis sativaL.(II):cannabigerolpredominant
plants.Euphytica,145,189–198.
Elbatsh, M. M., Moklas, M. A., Marsden, C. A., & Kendall, D.A.
(2012).Antidepressant-like effectsofdelta(9)-tetrahydrocannab-
inol and rimonabant in the olfactory bulbectomised rat model
of depression. Pharmacology Biochemistry and Behavior, 102(2),
357–365.
ElSohly,M.A.(2002).ChemicalconstituentsofCannabis.InF.Groten-
hermen,&E.Russo(Eds.),Cannabis and cannabinoids: pharmacology,
toxicology, and therapeutic potential(pp.27–36).NewYork,NY:The
HaworthPress.
Elsohly,M.A.,Holley,J.H.,Lewis,G.S.,Russell,M.H.,&Turner,C.E.
(1984).ConstituentsofCannabis sativaL.24.Thepotencyofcons-
catedmarijuana,hashish,andhashoilovera10-yearperiod.Jour-
nal of Forensic Science,29(2),500–514.
ElSohly,M.A.,Holley,J.H.,&Turner,C.E.(1985).ConstituentsofCan-
nabissativaL.XXVI. Thedelta-9-tetrahydrocannabinolcontentof
conscatedmarijuana,1974–1983.InD.J.Harvey(Ed.),Marijuana
’84’(p.37).Oxford:IRLPress.
ElSohly,M.A.,&Slade,D.(2005).Chemicalconstituentsofmarijuana:
thecomplexmixtureof natural cannabinoids. Life Sciences, 78(5),
539–548.
Faeti,V.,Mandolino,G.,&Ranalli,P.(1996).GeneticdiversityofCan-
nabis sativa germplasm based on RAPD markers. Plant Breeding,
115(5),367–370.
Fairbairn,J.W.(1972).TrichomesandglandsofCannabis SativaL.Bul-
letin on Narcotics,24(4),29–33.
Fetterman,P.,Keith, E. S., Waller,C. W.,Guerrero,O., Doorenbo,N.
J.,&Quimby,M. W.(1971).Mississippi-grownCannabis sativaL-
preliminaryobservation onchemicaldenition ofphenotypeand
variations in tetrahydrocannabinol content versus age, sex, and
plantpart.Journal of Pharmaceutical Sciences,60(8),1246–1249.
Fischedick,J.T.,Hazekamp,A.,Erkelens,T.,Choi,Y.H.,&Verpoorte,
R.(2010).Metabolic ngerprinting of Cannabis sativa L., cannabi-
noidsand terpenoidsforchemotaxonomicand drugstandardiza-
tionpurposes.Phytochemistry,71(17-18),2058–2073.
Fisse,J.,Braut, F.,Cosson, L., &Paris, M. (1981). Étude in vitro des
capacitésorganogénétiquesdetissusdeCannabis sativaL.;Effetde
différentes substances de croissance. Plantes Médicinales et Phyto-
therapie,15,217–223.
Flemming,T.,Muntendam,R.,Steup,C.,&Kayser,O.(2007).Chemis-
tryandbiologicalactivity oftetrahydrocannabinolanditsderiva-
tives.InM.T.H.Khan(Ed.),Topics in heterocyclic chemistry: Bioactive
heterocycles IV(pp.1–42).(Vol.10).Berlin:Springer-Verlag.
Galvan,M. Z.,Bornet,B.,Balatti,P.A.,&Branchard,M. (2003).Inter
simplesequencerepeat(ISSR)markersasatoolfortheassessment
of both genetic diversity and gene pool origin in common bean
(Phaseolus vulgarisL.).Euphytica,132(3),297–301.
Gillan, R., Cole, M. D., Linacre, A., Thorpe, J. W., & Watson, N. D.
(1995).Comparison ofCannabis sativaby randomamplicationof
polymorphicDNA(RAPD)andHPLCofcannabinoids:aprelimi-
narystudy.Science and Justice,35(3),169–177.
Guy,G.W.,&Stott,C.(2005).ThedevelopmentofSativex®-anatural
cannabisbasedmedicine. In R.Mechoulam,&J. Bruinrels(Eds.),
Cannabinoids as therapeutics milestones in drug therapy(pp.231–263).
Berlin:Springer.
Hammond,C.T.,&Mahlberg,P.G.(1977).Morphogenesisofcapitate
glandularhairsofCannabis sativa(Cannabaceae).American Journal
of Botany,64(8),1023–1031.
Happyana,N.,Agnolet,S.,Muntendam, R.,VanDam,A., Schneider,
B., & Kayser,O. (2013). Analysis of cannabinoids in laser-micro-
dissectedtrichomes ofmedicinalCannabis sativa usingLCMSand
cryogenicNMR.Phytochemistry,87,51–59.
Hazekamp,A.,Justin,T.F.,Lubbe,A.,&Ruhaak,R.L.(2010).3.24-Chem-
istryofCannabis.Comprehensive Natural Products II,3,1033–1084.
Hillig,K.W.(2005).GeneticevidenceforspeciationinCannabis(Can-
nabaceae).Genetic Resources and Crop Evolution,52(2),161–180.
Hillig,K.W.,&Mahlberg,P.G.(2004).Achemotaxonomicanalysisof
cannabinoidvariationinCannabis(Cannabaceae).American Journal
of Botany,91(6),966–975.
Hoffmann,W.(1961).Hanf, Cannabissativa L. Handbuch der Pflanzen-
züchtung(vol5).Berlin:PaulParey.
Jones,J.B. (1997). Hydroponics: a practical guide for the soilless grower.
BocanRaton:CRCPress.
Kim,E.S.,&Mahlberg,P.G.(1991).Secretorycavitydevelopmentin
glandulartrichomesof Cannabis sativa L(Cannabaceae). American
Journal of Botany,78(2),220–229.
Kim,E. S.,&Mahlberg,P.G.(1997).Immunochemicallocalizationof
tetrahydrocannabinol (THC) in cryoxed glandular trichomes of
Cannabis(Cannabaceae).American Journal of Botany,84(3),336–342.
Kojoma,M.,Iida,O.,Makino,Y.,Sekita,S.,&Satake,M.(2002).DNA
ngerprintingofCannabis sativausinginter-simplesequencerepeat
(ISSR)amplication.Planta Medica,68(1),60–63.
Kojoma,M., Seki,H.,Yoshida,S.,&Muranaka,T.(2006). DNApoly-
morphisms in the tetrahydrocannabinolic acid (THCA) synthase
genein“drug-type”and“ber-type”Cannabis sativaL.Forensic Sci-
ence International,159(2-3),132–140.
Larkin,P.,&Scowcroft,W.(1981).Somaclonalvariationanovelsource
ofvariabilityfromcell culturesfor plantimprovement.Theoretical
and Applied Genetics,60,197–214.
Lata,H.,Bedir,E.,Hosick,A.,Ganzera,M.,Khan,I.,&Moraes,R.M.
(2002).In vitroplantregenerationfromleaf-derivedcallusofCimi-
cifuga racemosa.Planta Medica,68(10),912–915.
Lata,H.,Chandra,S.,Khan,I.A.,&ElSohly,M.A.(2008).Propagation
ofCannabis sativaL.usingsyntheticseedtechnology.Planta Medica,
74(3),328–1328.
Lata,H.,Chandra, S., Khan, I.A.,& ElSohly,M.A.(2010).Highfre-
quencyplantregenerationfromleafderivedcallusofhighdelta(9)-
tetrahydrocannabinol yielding Cannabis sativa L. Planta Medica,
76(14),1629–1633.
Lata, H., Chandra, S., Mehmedic, Z., Khan, I. A., & ElSohly, M. A.
(2012). In vitro germplasm conservation of high Delta(9)-tetrahy-
drocannabinolyieldingeliteclonesofCannabis sativaL.underslow
growthconditions.Acta Physiologiae Plantarum,34(2),743–750.
Leggett,T.(2006).Areviewoftheworldcannabissituation.Bulletin on
Narcotics,58(1–2),1–155.
Marks,M.D.,Tian,L.,Wenger,J.P.,Omburo,S.N.,Soto-Fuentes,W.,He,
J.,Gang,D.R.,Weiblen,G.D.,&Dixon,R.A.(2009).Identication
of candidate genes affecting 9-tetrahydrocannabinol biosynthesis
inCannabis sativa.Journal of Experimental Botany,60(13),3715–3726.
Mediavilla,V.,Bassetti,P.,&Leupin,M.(1999).Agronomiccharacter-
isticsofsomehempgenotypes.Journal of the International Hemp As-
sociation,6,45–53.
Potter,D.J.(2004).Growthandmorphologyofmedicinal Cannabis.In
G.W.Guy,B.A.Whittle,& P.J.Robson(Eds.),The medicinal uses of
Cannabis and cannabinoids(pp.17–54).London:PharmaceuticalPress.
12 1. THE CANNABIS PLANT: BOTANICAL ASPECTS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
Raman,A. (Ed.), (1998). TheCannabisplant:botany,cultivation,and
processing for use. In Cannabis: The Genus Cannabis (pp. 29–54).
Amsterdam:HarwoodAcademicPublishers.
Ranalli,P.,&Mandolino,G.(1999).Advancesinhempresearch.InP.
Ranalli(Ed.),Advances in biotechnological approaches for hemp breeding
and industry(pp.185–208).NewYork:TheHaworthPress.
Ross,S.A., & ElSohly,M.A. (1996). The volatile oil composition of
freshandair-driedbudsofCannabis sativa.Journal of Natural Prod-
ucts,59(1),49–51.
Sakamoto,K.,Akiyama,Y.,Fukui,K.,Kamada,H.,&Satoh,S.(1998).
Characterization: genome sizes and morphology of sex chromo-
someinhemp(Cannabis sativaL.).Cytologia,63,459–464.
Schultes,R. E.,Klein,W.M., Plowman,T.,&Lockwood, T.E.(1974).
Cannabis:anexampleoftaxonomicneglect.Harvard University Bo-
tanical Museum Leaflets,23,337–367.
Slusarkiewicz-Jarzina, A., Ponitka, A., & Kaczmarek, Z. (2005). In-
uenceofcultivar,explantsource and plant growthregulatoron
callusinductionandplantregenerationof Cannabis sativa L.Acta
Biologica Cracoviensia Series Botanica,47(2),145–151.
Small,E.,&Cronquist,A.(1976).Apracticalandnaturaltaxonomyfor
Cannabis.Taxon,25,405–435.
Sytsma,K.,Morawetz,J.,Pires,J.,Nepokroeff,M.,Conti,E.,Zjhra,M.,
Hall,J.,&Chase,M.(2002).Urticaleanrosids:circumscription,ro-
sidancestry,and phylogenetics based on rbcL, trnL-F,andndhF
sequences.American Journal of Botany,89(9),1531–1546.
Turner,C.E.,&Elsohly,M.A.(1976).Anhydrocannabisativine,anew
alkaloidisolatedfromCannabis sativa.Lloydia,39(6),474–1474.
Turner,J. C.,Hemphill,J.K.,&Mahlberg,P.G. (1977). Glanddistri-
bution and cannabinoid content in clones of Cannabis sativa L.
American Journal of Botany,64(6),687–693.
Turner,C.E.,Cheng,P.C.,Lewis,G.S.,Russell,M.H.,&Sharma,G.K.
(1979).Constituents ofCannabis sativa.15.Botanical andchemical
proleofIndianvariants.Planta Medica,37(3),217–225.
Turner,C.E.,Elsohly,M.A., &Boeren,E.G.(1980a).Constituentsof
Cannabis sativaL.17.areviewofthenaturalconstituents.Journal of
Natural Products,43(2),169–234.
Turner,J.C.,Hemphill,J.K.,&Mahlberg,P.G.(1980b).Trichomesand
cannabinoidcontentofdevelopingleavesandbractsofCannabis sa-
tivaL(Cannabaceae).American Journal of Botany,67(10),1397–1406.
Turner,J.C.,Hemphill,J.K.,& Mahlberg, P.G.(1981). Interrelation-
shipsofglandulartrichomesandcannabinoidcontent.2.Develop-
ingvegetativeleavesofCannabis sativaL(Cannabaceae).Bulletin on
Narcotics,33(3),63–71.
UNODC,UnitedNations,(2009).Recommendedmethodsforidenti-
cationandanalysisofcannabisandcannabisproducts,NewYork.
http://www.unodc.org/documents/scientic/ST-NAR-40-Ebook.
pdf
UNODC,UnitedNations(1956).Problemsofmodernhempbreeding,
withparticularreferencetothebreedingofvarietiesofhempcontain-
inglittle ornohashish,NewYork.http://www.unodc.org/unodc/
en/data-and-analysis/bulletin/bulletin_1956-01-01_3_page007.html
Vanhoenacker, G., Van Rompaey,P., De Keukeleire, D., & Sandra, P. 
(2002).Chemotaxonomicfeaturesassociatedwithavonoidsofcan-
nabinoid-freecannabis(Cannabis sativasubspsativaL.)inrelationto
hops(Humulus lupulusL.).Natural Product Letters,16(1),57–63.
Vyskot,B., & Hobza, R. (2015). The genomics of plant sex chromo-
somes.Plant Science,236,126–135.
Werker,E. (2000). Trichome diversity and development. Advances in
Botanical Research,31,1–35.
Wielgus,K., Luwanska,A.,Lassocinski,W.,&Kaczmarek,Z. (2008).
Estimationof Cannabis sativaL.tissue cultureconditionsessential
forcallusinductionandplantregeneration.Journal of Natural Fibers,
5(3),199–207.
Zafar,R.,Aeri,V.,& Datta,A. (1992).Application ofplanttissue and
cellcultureforproductionofsecondarymetabolites.Fitoterapia,63,
33–43.
CHAPTER
13
Handbook of Cannabis and Related Pathologies. http://dx.doi.org/10.1016/B978-0-12-800756-3.00002-8
Copyright © 2017 Elsevier Inc. All rights reserved.
2
The Biosynthesis of Cannabinoids
F. Degenhardt, F. Stehle, O. Kayser
Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering,
TU Dortmund University, Dortmund, Germany
SUMMARY POINTS
• Thischapterfocusesonthepathwaywhichleads
tothebiosynthesisofphytocannabinoidsin
C. sativaL.
• CBGAisthecentralprecursorof
phytocannabinoidbiosynthesisinCannabis.
• CBGAS,onlythreeenzymes—THCAS,CBDAS,
andCBCAS—areinvolvedinthebiosynthesisof
phytocannabinoidsinCannabisplants.
• SequencesofCBDASandTHCASareknown.
• ThecarboxylgroupinCBGAseemstobe
essentialfortheenzymaticreactionscatalyzedby
CBDAS,CBCAS,andTHCAS.
• Thediversityofmorethan60cannabinoidsisthe
resultofnonenzymaticmodications.
• Propylcannabinoidsoccurbytheprenylationof
divarinicacid(DA)withgeranyldiphosphate
(GPP).
LIST OF ABBREVIATIONS
AAE Acyl-activatingenzyme
BBE Berberinebridgeenzyme
CBC Cannabichromene
CBCA Cannabichromenicacid
CBCAS Cannabichromenicacidsynthase
CBCVA Cannabichrovarinicacid
CBD Cannabidiol
CBDA Cannabidiolicacid
CBDAS Cannabidiolicacidsynthase
CBDV Cannabidivarin
CBDVA Cannabidivarinicacid
CBG Cannabigerol
CBGA Cannabigerolicacid(3-geranylolivetolate)
CBGAS Cannabigerolicacidsynthase
CBGVA Cannabigerovarinicacid
CBN Cannabinol
CBNRA Cannabinerolicacid(cis-CBGA)
CHS Chalconesynthase
CsAAE1C. sativahexanoyl-CoAsynthetase1
CsAAE3C. sativahexanoyl-CoAsynthetase2
CsHCS1C. sativahexanoyl-CoAsynthetase1
CsHCS2C. sativahexanoyl-CoAsynthetase2
DA Divarinicacid
DABB Dimericα+βbarrel
DMAPP Dimethylallyldiphosphate
KEY FACTS OF
PHYTOCANNABINOIDS—BESIDES
C. SATIVA
 Phytocannabinoidsareplant-derivednaturalcompounds
thatactasligandstocannabinoidreceptors(CB1andCB2)
orsharechemicalsimilaritywithcannabinoids.
C. sativaL.isintensivelyinvestigatedforthepresence
ofphytocannabinoids.Todate,onlyafewplantsare
discoveredthatcontainphytocannabinoidsotherthan
theonesknownfromCannabis.
 TheNewZealandliverwortRadula marginataand
JapaneseliverwortRadula perrottetiicontainperrotteti-
nene,anaturallyoccurringbibenzylcannabinoid.
 Twocannabigerol-likecompoundsweredetectedin
theaerialpartsofHelichrysum umbraculigerumLess.,a
plantcommonintheeasternpartsofSouthAfrica.
N-alkylamides(cannabinomimetics),foundinthe
medicinalplantsEchinaceae angustifoliaandEchinaceae
purpurea(purplecornower),areknowntointeract
withtheCB2receptor.
14 2. THE BIOSYNTHESIS OF CANNABINOIDS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
DOXP 1-Deoxy-d-xylulose-5-phosphate
GOT Geranylpyrophosphate:olivetolate
geranyltransferase
GPP Geranyldiphosphate
HTAL Hexanoyltriaceticacidlactone
IPP Isopentenyldiphosphate
MEP 2C-methyl-d-erythritol-4-phosphate
MVA  Mevalonate
NPP Neryldiphosphate
OA Olivetolicacid
OAC Olivetolicacidcyclase
OLS Olivetolsynthase
PKS Polyketidesynthase
SNP Singlenucleotidepolymorphism
STS Stilbenesynthase
THC Tetrahydrocannabinol
THCA Tetrahydrocannabinolicacid
THCAS Tetrahydrocannabinolicacidsynthase
THCV Tetrahydrocannabivarin
THCVA Tetrahydrocannabivarinicacid
INTRODUCTION
Cannabis sativaL. (hemp) is one of the oldest do-
mesticplants in thehistory of mankind,and hasbeen
cultivated for at least 10,000 years (Schultes, Klein,
Plowman,&Lockwood,1974). TogetherwithHumulus
lupulus (hop), C. sativa belongs to the small family of
Cannabaceae.Cannabisisanannual,usually dioecious,
wind-pollinatedherb,withbothmaleandfemaleow-
ersgrowingonseparateplants.Theplantiswellknown
forthebiosynthesisofcannabinoids,theterpenopheno-
licconstituentsthatshowpsychoactiveeffects.Butsince
otherplantsalsohavesecondarymetabolitesthatinter-
actwiththehumancannabinoidreceptors,anewdeni-
tionhadtobemade.Hence,phytocannabinoidsarenow
dened as any plant-derived natural compound that
canactasaligandtohumancannabinoidreceptors(CB1
andCB2)orsharechemicalsimilaritywithcannabinoids
(Gertsch,Pertwee,&Di Marzo, 2010).Interestingly,all
partsoftheCannabisplant,withtheexceptionofseeds,
cancontaincannabinoids, but theymainly accumulate
in the glandular trichomes of female owers (Gagne
etal.,2012;vanBakeletal.,2011).
The following chapter focuses on the pathway that
leadstotheenzymaticbiosynthesisofcannabinoids.For
a long time, it was postulated that the key intermedi-
ateiscannabidiol(CBD)orcannabidiolicacid(CBDA),
both resulting from a condensation of a monoterpene,
andolivetolorolivetolicacid(OA),respectively.In1964,
Gaoni and Mechoulam postulated cannabigerol (CBG)
asthekeyintermediate,thecondensationproductofge-
ranyldiphosphate(GPP),andolivetolorOA.Basedon
this,theyconcludedthatthecannabinoidsCBD,tetrahy-
drocannabinol(THC)andcannabinol(CBN) areallde-
rivedfromCBG,andjustdifferinthewayofcyclization
(Gaoni&Mechoulam,1964).Finally,incorporationstud-
ieswith 13C-labeled glucosehaveshown thatGPPand
OAareindeedtheprecursorsforformationofcannabig-
erolicacid(CBGA).Thus,thegeneralstructureofcanna-
binoidsisassembledbytwoparts:(1)adiphenol(resor-
cin)carryinganalkylchain(OA);and(2)amonoterpene
moiety (GPP) (Fig. 2.1). Subsequently, Fellermeier and
FIGURE 2.1General structure of cannabinoids and their precursors, olivetolic acid, and geranyl diphosphate.Cannabinoidsarecomposed
oftwoparts:acyclicmonoterpenepart(red),andadiphenol(resorcin)part,carryinganalkylchain(blue).Thedibenzopyran-numberingsystem
isused.
CANNABINOID PRECURSOR BIOSYNTHESIS 15
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
coworkerspostulatedCBGAasthecentralcannabinoid
precursor(Fellermeier,Eisenreich,Bacher,&Zenk,2001;
Fellermeier&Zenk,1998).Interestingly,freeOAhasnev-
erbeendetectedinCannabisplantmaterialuntilnow.
Itisworthytonotethat,althoughmorethan60can-
nabinoidsareknown,onlythreeenzymes,besidescan-
nabigerolicacidsynthase(CBGAS),namelytetrahydro-
cannabinolicacidsynthase(THCAS),cannabidiolicacid
synthase(CBDAS),andcannabichromenicacidsynthase
(CBCAS),areinvolvedincannabinoidbiosynthesis.The
resultingacidiccannabinoidsarethemostabundantones
accumulatinginCannabis.Theneutralandpsychoactive
formsarethe results of nonenzymatic decarboxylation
duringstorage,heatorsunlight;explainingtheheating
ofplantmaterial(ie,smokingorbaking),duringCanna-
bisconsumption(Fischedick,Hazekamp,Erkelens,Choi,
&Verpoorte,2010;Tauraetal.,2007a).Thus,thebroad
diversityofthedifferentcannabinoidsismainlydueto
nonenzymatic transformation or degradation of both
acidic and neutral cannabinoids by the effects of light
(UVirradiation)andauto-oxidation(Crombie,Ponsford,
Shani, Yagnitinsky, & Mechoulam, 1968; Razdan,
Puttick,Zitko,&Handrick,1972).Itisstillunclearifall
theseformsarepresentinlivingplantsasnaturalorar-
tefacts,duetostorageandsamplepreparation(ElSohly
&Slade,2005).
CANNABINOID PRECURSOR
BIOSYNTHESIS
Polyketide Pathway Toward Olivetolic Acid
The origin of hexanoate in trichomes has not been
elucidatedsofar.Suzuki,Kurano,Esumi,Yamaguchi,and
Doi(2003)showedthatthe side-chain moietyofalkyl-
resorcinolsisformedbyfattyacidunits,butitremains
unclearifthemoietyistheresultofbiosynthesisordeg-
radationoffattyacids.Studiesregardingtheincorpora-
tionof13C-labelsintocannabinoidsindicatethathexano-
ateissynthesizedfromacetyl-CoAasastarterunit,and
vemolecules of malonyl-CoA. These building blocks
areprecursorsofthefattyacidbiosynthesis(Fellermeier
etal.,2001).
Based on this, two pathways are feasibly possible,
after analysis of a cDNA/EST library generated from
femaleowers(glands)ofC. sativa.First,thehexanoyl
residuecouldbeobtainedbyanearlyterminationofthe
fattyacidbiosynthesis.Subsequently,thehexanoylmoi-
etyoftheresultinghexanoyl-ACPwouldbecleavedbya
thioesteraseortransferredtoCoAbyanACP-CoAtrans-
acylase.Finally,acyl-CoAsynthetasewouldcatalyzethe
conversionoftheobtainedn-hexanoltohexanoyl-CoA
(Marks et al., 2009). Second, n-hexanol could be pro-
ducedbythebreakdownofC18unsaturatedfattyacids
viathelipoxygenasepathway(Marksetal.,2009;Stout,
Boubakir,Ambrose,Purves,&Page,2012).Nevertheless,
furtherstudiesarenecessarytoclarifytheoriginofthe
hexanolmoiety.
Hexanoyl-CoAisamedium-chainfattyacyl-CoAthat
can be detected in high amounts in Cannabis owers
(Stoutetal.,2012).Itissynthesizedbyanacyl-activating
enzyme(AAE)called hexanoyl-CoAsynthetase(Marks
et al., 2009; Page & Stout, 2013). AAEs can use short,
medium,longaswellasverylong-chainfattyacidsas
carboxylic acid substrates. Two novel enzymes were
identied,C. sativahexanoyl-CoAsynthetase1(CsHCS1
or CsAAE1) and C. sativa hexanoyl-CoA synthetase 2
(CsHCS2 or CsAAE3) that are capable of producing
hexanoyl-CoAusing hexanoate andCoAas substrates.
Based on transcript levels, CsHCS1 seems to be tri-
chome-specic.AlthoughCsHCS2 exhibits lower tran-
scriptlevels,incomparisontoCsHCS1,itisabundantin
alltissues.ThegeneofCsHCS1consistsofa2163-nucle-
otideopenreadingframe,andencodesa720-aminoacid
polypeptidechain.ThegeneofCsHCS2iscomposedof
a 1632-nucleotide open reading frame, and encodes a
543-aminoacidpolypeptidechain.BothCsHCSsgener-
allyrequiredivalentcationsforactivity.Thiswasshown
byaddingMg2+,Mn2+,and Co2+ to theenzymeassays.
Thus,CsHCS1preferentiallyacceptsMg2+,andCsHCS2
Co2+.Thehighestenzymeactivitywasdetectedat40°C
andpH9forbothenzymes.Furthermore,bothenzymes
canbeinhibitedbyhighconcentrationsofCoA(Page&
Stout,2013;Stoutetal.,2012).
Taken together, the published data suggest that
CsHCS1isthe enzyme involvedin the biosynthesis of
cannabinoids: (1) it is the most abundant AAE in tri-
chomes;(2)itishighlyspecicforshort-chainfattyacyl-
CoA,particularlyhexanoate(KMvalueinthenMrange);
and(3)itislocalizedinthecytosol,assuggestedforthe
olivetolsynthase (see later).Incontrast, CsHCS2islo-
calizedintheperoxisomesandacceptsabroadrangeof
substrates,whileshowing a KMvaluefor hexanoate in
themMrange(Page&Stout,2013;Stoutetal.,2012).
The alkylresorcinol moiety of cannabinoids is de-
rived from OA, the product of polyketide synthases
(PKSs)thatcatalyzethealdolcondensationofhexanoyl-
CoAwiththreemoleculesofmalonyl-CoA(Fellermeier
etal.,2001;Raharjo,Chang,Choi,Peltenburg-Looman,
&Verpoorte,2004)(Fig.2.2).Thesecondprecursormal-
onyl-CoA is predominantly derived from acetyl-CoA
bycarboxylation. TheATP-dependentreactionis cata-
lyzedbyanacetyl-CoAcarboxylase(EC6.4.1.2).Theen-
zymeutilizestherststepinthefattyacidbiosynthesis
(Chen,Kim,Weng,&Browse,2011;Konishi,Shinohara,
Yamada,&Sasaki, 1996).Tauraetal.(2009)discovered
aplanttype III PKSin owers andrapidlyexpanding
leavesofC. sativa.Thegeneofolivetolsynthase(OLS)
encodesa 385-amino acid polypeptide chainthat does
16 2. THE BIOSYNTHESIS OF CANNABINOIDS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
notcontainasignalpeptide(Table2.1).TheOLSprotein
hasatheoreticalmolecularmassof43kDa,asconrmed
by SDS-PAGE analysis. However, size-exclusion chro-
matographyexperimentsrevealeda molecular mass of
about89kDa,indicatingahomodimericenzyme(Gagne
etal.,2012;Tauraetal.,2009).OLS(PKS-1)wasprelimi-
narilycrystallizedbyTaguchietal.(2008)andthestruc-
turewasnallypublishedbyYangetal.(2016).Itisof
interestthattheenzymedoesnotproduceOA,butolive-
tol,triketidepyrone,andtetraketidepyrone.Analysisof
theaminoacidsequencedisplayedahighsimilaritywith
those of Medicago sativa chalcone synthase (CHS), and
otherplantPKSs(60–70%).Additionally,thecatalytictri-
aderesiduesofCHS(Cys164-His303-Asn336)areconserved
(Tauraet al.,2009).SinceCHSscatalyzeintramolecular
C6C1Claisencondensations,Raharjo,andcoworkers
werethersttosuggestin2004(Raharjoetal.,2004)that
OLScouldbeastilbenesynthase(STS).Theseenzymes
catalyze C2  C7 aldol condensations, followed by a
decarboxylation step. Additionally, studies by Austin,
Bowman,Ferrer,Schröder,&Noel (2004) showed that
thecyclizationreactioncanbechangedfromaClaisen-
type(CHS) toan aldol-type(STS) bysubstitution ofa
fewaminoacidsinCHS(=aldolswitch).
Nevertheless,sinceOLSaloneisnotcapabletoform
OA, another enzyme/PKS might be involved in the
biosynthesis.ThemissingenzymeshouldcatalyzeaC2
C7 intramolecular aldol condensation uponwhich
thecarboxylatemoietyispreserved.Thisisimportant
sinceCBGASdoesnotacceptolivetol as a prenyldo-
nor(Fellermeier&Zenk,1998).Gagneetal.(2012)iso-
lated a gene encoding a 101-amino acid polypeptide
chain.Thissmallprotein(12kDa)showssimilaritiesto
apolyketide cyclase thatbelongs to thedimeric α+β
barrel (DABB)-type protein family. Furthermore, the
identiedgeneexhibitshighexpressionlevelsinglan-
dular trichomes. Together, this made the polyketide
cyclaseapromisingcandidateforthemissingolivetolic
acidcyclase(OAC).
Finally,usingbothOLSandOACwithhexanoyl-CoA
and malonyl-CoA in one assay, the formation of OA,
pentyldiaceticacid(triketidepyrone),and hexanoyltri-
aceticacidlactone(HTAL;tetraketidepyrone)couldbe
demonstrated(Page & Gagne, 2013) (Fig. 2.2). Itis as-
sumedthatOLScatalyzestheformationofaninterme-
diatethat is subsequently converted into OA by OAC
(Gagneetal.,2012;Taguchietal.,2008).
Biosynthesis of Geranyl Diphosphate
Themonoterpenemoietyofcannabinoids(Fig.2.2)is
derived from GPP. Its precursors, isopentenyl diphos-
phate (IPP), and dimethylallyl diphosphate (DMAPP),
are predominantly (>98%) biosynthesized via the
2C-methyl-d-erythritol-4-phosphate (MEP) pathway
[alsotermedasnonmevalonatepathwayor1-deoxy-d-
xylulose-5-phosphate (DOXP) pathway] (Fellermeier
etal.,2001).TheseresultsaresupportedbyMarksetal.
(2009). They isolated RNA from the glands of a tetra-
hydrocannabinolic acid (THCA)-producing Cannabis
strainandgeneratedacDNAlibrary.Aftersequencing,
theywereabletoidentifyallbutoneenzymeinvolved
in the MEP pathway.Additionally, Stout et al. (2012)
foundhigh expression ofMEP pathway genesin Can-
nabis owers. Furthermore, in higher plants the MEP
pathway, mainly involved in secondary metabolism,
is localized in plastids (described in detail elsewhere,
for example, Eisenreich, Bacher, Arigoni, & Rohdich,
(2004),orHunter(2007),whereasthemevalonate(MVA)
pathway, predominantly contributing to primary me-
tabolism,islocalizedinthecytosol.Thecompartmental
separationbetweenthesetwopathwaysisnotabsolute.
Themetabolitesofbothpathwayscanbetransportedbi-
directionallyacross the plastid membranes (Eisenreich
etal.,2004).
Subsequently, the head-to-tail condensation of IPP
and DMAPP to form GPP is catalyzed by geranyl di-
phosphatesynthase(Fig.2.2)(Burkeetal.,1999).
TABLE 2.1 Enzymes Involved In Cannabinoid Biosynthesis in C. sativa L
Enzyme Accession no.aEC no. References
Olivetolsynthase OLS AB164375 2.3.1.206 Tauraetal.(2009)
Olivetolicacidcyclase OAC AFN42527.1 4.4.1.26 Gagneetal.(2012)
Cannabigerolicacidsynthase CBGAS US2012/0144523
A1b
2.5.1.102 FellermeierandZenk(1998);
PageandBoubakir(2012)
Cannabichromenicacidsynthase CBCAS 1.3.3.- Morimotoetal.(1998)
Cannabidiolicacid
synthase
CBDAS AB292682 1.21.3.8 Tauraetal.(2007a)
Tetrahydrocannabinolicacidsynthase THCAS AB057805 1.21.3.7 Sirikantaramasetal.(2004)
ThetableliststheenzymesandthecorrespondingGenBankaccessionnumbersinvolvedinbiosynthesisofC. sativaphytocannabinoids.
aGenBank.
bPatent number.
CANNABINOID PRECURSOR BIOSYNTHESIS 17
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
Cannabigerolic Acid Biosynthesis
Cannabigerolicacidsynthase(CBGAS)orgeranylpy
rophosphate:olivetolate geranyltransferase (GOT) pre-
dominantlycatalyzesthe C-prenylation of OAbyGPP
toform CBGA(Fig.2.2). CBGAis presumed to be the
centralprecursorforcannabinoidbiosynthesis,sincedif-
ferentcyclization of the prenylmoiety leadsto THCA
oritsisomerscannabichromenicacid(CBCA)andCBDA
(Page & Boubakir, 2012; Sirikantaramas, Morimoto, &
Shoyama,2007).
FellermeierandZenk(1998)detectedtheenzymein
crudehomogenatesofrapidlyexpandingyoungleaves
ofC. sativa.Thispartoftheplantcontainsthelateren-
zymes of the THCA biosynthetic pathway (Morimoto,
Komatsu,Taura,&Shoyama,1997;Tauraetal.,1995a).
There are indications that CBGAS, like other prenyl-
transferases, is a membrane-bound prenyltransferase
(Yamamoto, Kimata, Senda, & Inoue, 1997). However,
FellermeierandZenk(1998)couldnotdetectanyenzyme
activityinparticulatefractions,butinthesolublefraction
ofthecrudeextract.Twomajorproductswereidentied
bymassspectrometry(MS)measurementsasCBGAand
itscis-isomercannabinerolicacid(CBNRA; Fellermeier
andZenk,1998,usedCBNAinsteadofCBNRA).Theen-
zymeactivitywasfoundtobeMg2+-dependent.CBGAS
seemstobespecicforOAasaprenylacceptor,butalso
acceptsdifferentprenyldonorslikeGPPand,toalesser
degree,neryldiphosphate(NPP)(Fig.2.2).Theproduc-
tion ratio of CBGA/CBNRA changes from 2:1 to 1:1
whenNPPisusedasaprenyldonorinsteadofGPP.
However, the aromatic prenyltransferase CBGAS
seemstobeasolubleenzyme,butFellermeierandZenk
(1998)couldnotcompletelyexcludeamembrane-bound
activity. Besides, two soluble hop prenyltransferases,
involvedinthebiosynthesisofhopbitteracids,arede-
scribedbyZuurbier,Fung,Scheffer,&Verpoorte(1998).
Nevertheless,thesearetheonlydescriptionsofsoluble
plantC-prenylatingenzymes;untilnow,itwasnotpos-
sibletogetthesequenceinformationortoisolatethecor-
respondinggenesorenzymes.
Contradictorily, all known sequences of plant aro-
matic prenyltransferases belong to membrane-bound
FIGURE 2.2Biosynthesis of cannabigerolic acid (CBGA).ThebiosynthesisofthecentralintermediateCBGAiscoloredindarkgreen.The
minorproductsCBNRAandCBGVAareshadedinlightgreen.Theprecursorpathwaysarehighlightedinlightblue(GPP)andblue(OA).MEP,
2C-methyl-d-erythritol-4-phosphate;DOXP,1-deoxy-d-xylulose-5-phosphate;MVA,mevalonate(Burke,Wildung,& Croteau, 1999; de Meijer
etal.,2009;Fellermeier&Zenk,1998;Page&Gagne,2013;Tauraetal.,2009).
18 2. THE BIOSYNTHESIS OF CANNABINOIDS
I. SETTINGTHESCENE,BOTANICAL,GENERALANDINTERNATIONALASPECTS
enzymes(Yamamotoetal., 1997; Yamamoto,Senda, &
Inoue,2000; Zhao, Inoue, Kouno, &Yamamoto,2003).
Thisisinaccordancewiththesecondreportdealingwith
theCBGAS(Page&Boubakir,2012).Theypublisheda
sequenceofCBGASthatwasmainlyexpressedinglan-
dular trichomes of female owers and young leaves
ofCannabisplants.Thegeneencodesa395-aminoacid
polypeptidechainshowingamembrane-boundtypeof
prenyltransferases.Theywereabletoexpresstherecom-
binantCBGASinSf9insectaswellasin Saccharomyces
cerevisiae cells, and veried the CBGAS activity in the
microsomalfractions. Using MSmeasurements, CBGA
(3-geranyl olivetolate; comparison with CBGA stan-
dard)wasidentiedasthemajorproduct,and5-geranyl
olivetolate(identicationonlybyLC-MSanalysis)asthe
minorproduct.Furthermore,PageandBoubakir(2012)
showedthatCBGASisspeciconlytoGPPasaprenyl
donor, and approves OA, olivetol, phlorisovalerophe-
none,naringenin,andresveratrolasprenylacceptor.Ad-
ditionally,theenzymereactionisdependentondivalent
cations, whereas the highest enzyme activity was ob-
tainedbyusingMg2+(Page&Boubakir,2012).
CANNABINOID PATHWAY
CBGA,thecentralprecursorofcannabinoid biosyn-
thesis,isconvertedbythreeenzymes(Fig.2.3):CBDAS,
CBCAS, and THCAS. They predominantly use CBGA
as substrate, and catalyze the stereoselective, oxida-
tivecyclizationofthemonoterpenemoietyofCBGAto
CBDA,CBCA,orTHCA,respectively.TheTHCASand
CBDASreactionsareoxygen-dependent,producinghy-
drogenperoxideproportionaltoeitherCBDAorTHCA
(Sirikantaramas et al., 2004; Taura et al., 2007b). Re-
markably,theCBCAS reactionis oxygen independent,
andcan beinhibited by hydrogen peroxide.Thus, the
enzymeseemsnotto be an oxygenaseora peroxidase
(Morimoto, Komatsu, Taura, & Shoyama, 1998). Fur-
thermore, all three enzymes also convert CBNRA, the
FIGURE 2.3Biosynthesis of cannabinoids.Theenzymaticallycatalyzedreactionsarehighlightedindarkgreen.Allnonenzyme-dependent
modicationsreactionsarecoloredinlightgreen.BiosynthesisofC3-cannabinoidsstartingfromcannabigerovarinicacid(CBGVA)iscarriedout
bythesameenzymesandforbetterclaritynotshown(Crombieetal.,1968;deMeijer,2011;Morimotoetal.,1998;Shoyama,Fujita,Yamauchi,&
Nishioka,1968;Shoyama,Oku,Yamauchi,&Nishioka,1972;Tauraetal.,1995a;1996).