ArticlePDF Available
y ()~O"'f'taJ..J..OU~'Yta
Hydrometallurgy ~IArPAMMATA KATANOMHL
IONTQN ~ILeENOYL XAAKOY
LE YMTIKA AMMQNIAKA
~IAAYMATA
~. ~. TIANIAL, M. KOKKOAAKHL,
I. rIANNOTIOYAOY, I. TIALTIAAIAPHL"
nEPIAHlVH
'Eva am> Ta mo OUXVc:XE:pwTllJIaTa TTOUKaA£i-
Tal va aTTaVTlloE:10 xllJIIKoe; I'J JInaAAoupyoe; JIIl-
xaVIKOe; OTav 6IaxE:lpi~nal U6aTlKc:X61aMJIaTa
TTpo"iovTa xllJIIKWV KaTE:pyaOlwv £iVai JIE: TTOIc:X
JIOpCPI'JaTTaVTWVTaI Ta JInaAAIKc:XIOVTa OTa 61a-
MJIaTa aUTc:XKal TTOIc:X11KaTaVOJII'JTOUe;ouvapTI'J-
OE:ITOU 6uvaJIIKOU u6poyovou aUTWV TWV 6laAu-
JIc:XTWV.
ATTc:XVTIlOIlOTa E:pWTI'JJIaTa aUTc:X6ivnal JItow
TWV6IaypaJIJIc:XTWVKaTaVOJII'Je;IOVTWVJIE:Ta oTToia
uTToAoyi~nal TO TTOOOOTOTOUJInc:XUou TTOU6pi-
OKnai 61aAuJItvo OTO 61c:XAuJIaJIE:TIlV JIOpCPI'JoAwv
TWV TTlOavwv IOVTWV, aTT Awv Kal OUJITTAOKWV, 00-
vapTI'JOE:1TOU6uvaJIIKOUu6poyovou.
1:TIlVTTapouoa E:pyaoia aVTlJInwTTi~nal ooOTIl-
JIaTIKc:XTO TTpo6AIlJIa Tile; KaTaOKE:UI'Je; TWV 6laypaJI-
JIc:XTWVKaTaVOJII'Je; IOVTWV KaTaOKE:Uc:X~OVTae; Ta
6laypc:XJIJIaTa KaTaVOJII'Je; TWV IOVTWV 6100E:VOUe;
xaAKOU OTa aJIJIWVlaKc:X 61aMJIaTa oovapTl')OE:1 Tile;
avaAuTI~I'Je; OUYKtVTpwOIle; aJIJIwviae;.
na TIlV aVc:XTTTU(1laUTWV TWV 6IaypaJIJIc:XTWV E:AI')-
cpOlloav UTT0lJ'lloAa Ta oUJITTAoKa IOVTa, JIOVOTTU-
PIlVIKc:XKal TToAuTTUPIlVIKc:X,TTOUoxllJIaTi~oVTaI OTa
UTTOOOOTI'JJIaTa Cu2+ -NH) Kal Cu2+ -OH- aTTOTa
oTToia aTToTE:A£iTaiTO oUOTIlJIa Cu2+ -NH)- H20.
1. ElOUY(J)Yt]
H 6LOI!T)xaVLa JtaQaywYT]~ 't'U1tWI!EVWV X'UXAWl!a-
'twv XQT)OLI!01tOLELE'UQu'ta'ta al!l!WVlaXa OLaAUl!a'ta
* EpyaOttjeLO METa)J.oupyla~ EMn
OPYKTO[ n/\OYTO[/MINERAL WEALTH 116/2000
Ta OTTou6a1oTE:paOUJITTE:pc:XOJIaTa aTTo Tllv JIE:-
AtTIl TWV 6IaypaJIJIc:XTWV KaTaVOJII'Je; IOVTWV £ivai
Ta TTapaKc:XTW:
i. Ta aJIIVOoUJITTAoKa TOU 6100E:voue; xaAKOU,
Cu(NH) /+, aTToTE:Aouv TTpaKTIKc:XTie;E:TTlKpa-
TOUOE:e;Kal JIOva61Kte; JIopcpte; JIE:Tie; OTToiE:e;
aTTavTc:XTai0 xaAKOe; OTa E:Aacppwe; o(lva twe;
OTa IOXUpWe;aAKaAIKc:XaJIJIWVlaKc:X61aMJIa-
Ta.
ii. To IOVCu(NH)/+ £ivai TO oTTou6a.oTE:po IOV
OTO ouoTIlJIa Cu2+ -NH) -H20. EJICPavi~E:1E:U-
pUTaTIl TTE:pIOXI'JOTaOE:pOTIlTae; TTOUKUJIaivE:-
Tal aTTO Ta E:Aacppwe; o(lva 61aMJIaTa JIE:pH
5 twe; Ta IOXUpWe; aAKaAIKc:X61aMJIaTa JIE:
pH 14.
iii. Ta u6pO(UOuJITTAoKa TOU 6100E:voue; xaAKou
aTTaVTwvTa. OTO oUOTI"JJIaCu2+ - NH) - H20
JIOVOOTa TToM IOXUpWe;aAKaAIKc:X61aMJIa-
Ta JIE:pH JIE:yaMTE:po TOU 12 Ka. OTa apa.c:X
aJIJIwvlaKc:X 61aMJIaTa JIE:OAIKI'JooYKtVTPW-
OI"JaJIJIwviae; JIIKpOTE:plle;aTTo 0.1 M.
iv. ° xaAKOe; aTTavTc:XTai OTa aJIJIwvlaKc:X 61aM-
JIaTa JIE:Tl"Jv JIopcpl'J TWV E:AE:uOE:pwVIOVTWV
TOU, Cu2+, JIovo OTa TToAu o(lVa U6aTlKc:X61a-
MJIaTa.
YLa 'tT)v a1tOl!axQ'UVOT) 'to'U XaAXOU am) 'ta 't'U1tWI!E-
va x'UxAWl!a'ta xa'ta 'tT)v ~aOT) 'tT)~ a1tOXaAXWOT]~
'to'U~. Ta OLaAul!a'ta 1t0'U 1tQOXU1t'to'Uv a1tO 'tT)v ~aoYJ
'tT)~ a1tOXaAXWOT)~ EXO'UV 'U"VT)AT]O'UYXEV'tQWOT)OE
xaAxo 1t0'U XWaLvE'taL o'tT)v 1tEQLOXT]'twv 130 -
47
--- ---- - - - - ---
160 gr 11 XaL E:1tL01']~ 'U'V1']A:ll O'UYXEV'tQW01'] OE af1f1w-
vLa 't1']~ 't(X~EW~ 'twv 150 gr/l. Ta OLaA:Uf1a'ta a'U't(x
xaQax't1']QL~OV'taL oav E:1tLXLvO'Uva a:1tOoA1']'ta :1t0'U
:1tQE:1tELva 'U:1too'tO'lJV :1tQoxa'tEQyaoLa :1tQLV OLa'tE-
Souv O'tO :1tEQLOaA.A.Ov.Ha va OQESEL 0 xa'taAA1']AO~
'tQO:1tO~ OLaXELQL01']~a'U't(ov 'twv a:1tOoAtl'tWV ELVaL
avayxaLo va f1EAE't1']SELmpEvo~ f1EV 1'] f10QCPtl f1E 't1']V
O:1tOLa a:1tav'twv'taL 'ta Lov'ta OLOSEVOU~ xaAxou OE
a'U'ta'ta af1f1WvLaxa OLaAUf1a'ta xaSw~ E:1tL01']~XaL 1']
xa'tavof1tl 'to'U~ o'UvaQ'ttloEL 'to'U OUVaf1LXOU'UoQoyo-
VO'U a'U'twv 'twv oLaA'Uf1a'twV.
L't1']V :1taQouoa EQyaoLa, YLVE'taL OLoALOYQacpLxtl
E:1tLOXO:1t1']01'] OAWV 'twv :1tLSaVWV O'Uf1:1tAOXWV LOV'tWV
Cu2+- OH- XaL Cu2+-NH3 :1t0'Ua:1tav'twv'taL o'ta <>La-
AUf1a'ta'to'U o'Uo'ttlf1a'tO~Cu2+- NH3 - H20 xaSw~
E:1tL01']~XaL 'tWV O'taSEQWV OX1']f1a'tLOf10U'to'U~ 0'tO'U~
25T. E:1tL01']~, avamUOOE'taL 1'] f1ESOOOAOYLa xa'ta-
OXE'Utl~'tWV OLaYQaf1f1a'twv xa'taVOf1tl~ LOV'twvll.2J XaL
xa'taOXE'Ua~ov'taL 'ta OLaYQaf1f1a'ta xa'taVOf1tl~ 'tWV
LOV'tWV<>LOSEVOU~xaAXOU OE af1f1WVLaxa OLaAUf1a'ta
o'UvaQ'ttlOEL 'to'U o'Uvaf1LXOU 'UOQoyovo'U (pH) XaL 't1']~
O'UYXEV'tQW01']~'t1']~ af1f1wvLa~ a'U'twv 'twv oLaA'Of1a-
'twv.
2. nE~LY~(UpiJ 'to'U (J\!(J'tiJ~Ul'tO~Cu2+- NH3 - HP
To ouo't1']f1a Cu2+ - NH3 - H20 a:1tO'tEAEL'taLa:1to
OVo 'U:1tOo'Uo'ttlf1a'ta, 'to 'U:1tOouo't1']f1aCu2+ - NH3
XaL 'to 'U:1tOouo't1']f1aCu2+ - OH-, :1t0'U:1tEQLYQacpOV'taL
avaA'U'tLxa :1taQaxa'tw.
2.1. IIE{}ty{}acp1j mv ovaT1j/laTo~ Cu2+ -NH3
To a'tof1o 'to'U a~w'tO'U o'to f10QLO 't1']~ af1f1WVLa~
(NH3) OLaSE'tEL Eva aou~E'Ux'tO ~EUYO~ 1']AEX'tQOVLWV
:1tQaYf1a :1t0'U xaSLo'ta 't1']V af1f1WvLa LOX'UQOO'Uf1:1tAO-
XO:1tOL1']'tLXOf1EOO OX1']f1a'tL~oV'ta~ IlEYaAo aQLSf10
O'Uf1:1tAOXWVLOV'tWV IJ.E oAa oXEMv 'ta LoV'ta f1E'taA-
AWV o'ta 'UOa'tLxa OLaAUf1a'ta.
H :1tQw't1']cpao1'] 't1']~ EQyaoLa~ amtl~ :1tEQLEAaf1oavE
OLoAwYQacpLxtl. E:1tLOXO:1t1']01']'twv O'taSEQWV 0X1']f1a'tL-
0f10U 'twv OUf1:1tAOXWVLOV'tWV[3,4,5,6,7,8J:1t0'U OX1']f1a'tL-
~ov'taL 0'tO ouo't1']f1a Cu2+ - NH3' OL o'taSEQE~ OX1']-
f1a'tLOf10U :1t0'U oQES1']xav a:1to 't1']V OLoAwYQacpLa EL-
Val OL aXOA.o'USE~:
2.2. IIE{}ty{}acp1jmv avaT1j/lam~ Cu2+-OR-
To LOV 'UOQO~ELOLO'U(OR) ELVaL 0 :1tL0 XOLVO~ O'U-
f1:1tAOXO:1tOL1']'ttl~:1t0'U a:1taV'ta'taL o'ta 'UOa'tLxa OLaAu-
f1a'ta. To LOV 'UOQO~ELOLO'UOX1']f1a'tL~ELOUf1:1tAOXa f1E-
'tQLa~ O'taSEQo't1']'ta~ f1E oAa 'ta f1E'taA.A.LXa LOV'ta
o'ta 'UOa'tLxa OLaAUf1a'ta.
Ano 't1']v OLoALOYQacpLa oQES1']XaV OL O'taSEQE~ oX1']-
f1a'tL0f10U OAWV 'twv :1tLSavwv f10VO:1t'UQ1']VLXWVO'U-
f1:1tAOXWVLOV'tWV[3,4.5.6.7,8] :1t0'U OX1']f1a'tL~OV'taL o'to
ouo't1']f1a Cu2+ - OR. OL O'taSEQE~ a'U'tE~ ELVaLOL
aXOA.o'USE~:
Cu2++ HP = CuOH+ + H+ *0/ = 10-75 (6)
Cu2++ 2H20 = CU(OH)20 + 2H+ *02= 10-14.8 (7)
Cu2++ 3H20 = Cu(OH)/- + 3H+ *03 = 10-271 (8)
Cu2++ 4HP = CU(OH)42-+ 4H+ *04 = 10-39.6 (9)
Ta LOV'ta OLOSEVOU~ xaAXOU, Cu2+, EXO'UV 't1']V Lxa-
VO't1']'ta va OX1']f1a'tL~OUV XaL :1tOA'U:1t'UQ1']VLXaOUf1:1tAO-
xa f1E 'ta LOV'ta 'UOQO~ELOLO'U O'ta 'UOa'tLxa OLaAUf1a-
'ta. L'UVtlSW~ 1'] O'taSEQO't1']'ta 'tWV :1tOA'U:1t'UQ1']VLXWV
O'Uf1:1tAOXWV ELVal aQXE'ta f1LXQO'tEQ1'] a:1tO a'U'ttl 'tWV
f10VO:1t'UQ1']VLXWV O'Uf1:1tAOXWV XaL YLa a'U'to 'tOY AOYO
O'UVtlSw~ 'ta :1tOA'U:1t'UQ1']VLxa OUf1:1tAOXa af1EAOUV'taL
xa'ta 't1']V X1']f1LXtl :1tEQLYQacptl 'tWV 'UOa'tLXWV 0'U0't1']-
f1a'twv XaL 't1']V xa'taOXE'Utl 'tWV OLaYQaf1f1a'twv xa-
'taVOf1tl~ 'tWV LOV'tWV ouvaQ'ttlOEL 'to'U OUVaf1LXOU
'UOQOYOVO'U 'tWV oLaA'Uf1a'twV. To O:1tO'UOaLO'tEQO :1t0-
A'U:1t'UQ1']VLXOOUf1:1tAOXO 'twv LOV'tWV OLOSEVOU~ xaA-
xou f1E 'ta LOV'ta 'UOQO~ELOLO'U ELVaL 'to Cu/OH)/+
XaL 1'] o'taSEQa oX1']f1a'tL0f10U 'to'U ELVaL 1'] axoAo'US1']:
2Cu2++ 2H 0 = Cu (OH )2+ + 2H+ *0 = 10-10.6
(10)
2 2 2 22
3. AUly~a~~a xa'tavo~iJ~ 'twv LOV'tWV bL(J6EVOtJ~
xaAxotJ (J\!va~'tiJ(JEL 'to\! b\!Va~LxotJ \!b~oyovo\! (J'to
(JtJ(J'tt)~a Cu2+ - NH3 - H20
To X1']f1LXOouo't1']f1a Cu2+ - NH3 - H20 :1tEQLYQa-
cpE'taL a:1to 'tL~ Xt)f1LXE~ E~LOWOEL~(1) - (10). L'tO
ouo'tt)f1a amo 0 OLaA'Uf1EVO~OLOSEVtl~ xaAXO~ 'U:1taQ-
XEL f1E 't1']v f10QCPtl 'tWV EAEUSEQWVLOV'tWV'to'U XaL f1E
'tt)v f10QCPtl 'tWV O'Uf1:1tAOXWVLOV'tWV 'to'U f1E NH3
(af1LVOOUf1:1tAOxa) XaL OR ('UoQo~'UOUf1:1tAOxa).
Ha 't1']v xa'taoxE'Utl 'to'U oLaYQaf1f1a'to~ xa'tavof1 tl~
'twv LOV'tWV 'to'U OLOSEVOU~ xaAxou 'U:1tO/.,OYL~OV'taL
'ta :1toooo'ta 'to'U xaSE LOV'tO~ OLOSEVOU~ xaAxou,
a:1tAOU tl O'Uf1:1tAOXO'U,o'ta O:1tOLa xa'taVEf1E'taL 0 O'U-
VOALXO~OLaA'Uf1EVO~xaAxo~ :1t0'U 'U:1taQXELo'to OLaA'U-
f1a. Ta :1toooo'ta a'U'ta ExcpQa~ov'taL W~ axoAouSW~:
OPYKTOL nAOYTOL!MINERAL WEALTH 116/2000
Cu2++ NH3 = Cu(NH3)2+ o = 104.1 (1)
/
Cu2++ 2NH = Cu(NH ) 2+ o = 107.5 (2)
3 3 2 2
Cu2+ + 3NH = Cu(NH ) 2+ o=1010.7 (3)
3 3 3 3
Cu2+ + 4NH = Cu(NH ) 2+ o=1013 (4)
3 3 4 4
Cu2+ + 5NH = Cu(NH ) 2+ o=1012.4 (5)
3 3 5 5
48
ao = [CU2+]/CUT
an = [Cu(NH3)n2+]/C~ n=I,. ..,5
a. = [Cu(OH) (2-Y)]/Cu
Ty=I,.. .,4
y y
a22= 2[Cu2(OH)/+]/CuT
(11)
(12)
(13)
(14)
3.1. Y:n:OAOYLO~O<;'toov ouyx.£v'tQwo£oov 'toov LOV'tooV
'tOUxaAxov om vbanx6 btaAvlla
Y:n:08E'tOv'ta<; O'tL 'to OL<iAU~a £i.Val X.OQ£O~EVO
CU(OH)2(S)' 11 ouyx.EV'tQOOOl1 'toov £A£u8£QOOv LOV'tooV
oL08£vou<; xaAx.ou o'to uOa'tLx.o a~~oovLax.o OL<iAU~a
U:n:OAOYL~£'taLa:n:o 'tllv 0'ta8£Qa 'tou YLVO~EVOUOLa-
AU'toP"'tar- 'tou Cu (OH)K =10-19.3[3.8] OUlimoo-
'1 ~ 2(s)' sp , r''t'
va 'tllv £~LOOOOl1(15):
[Cu2+] =K,; .[H+]2
Kw
o:n:ou K W £LVal 11 0'ta8£Qa au'tOOLao'taoll<; 'tOU V£-
QOu :n:ou o'tou<; 25°C £i.VaL LOll 10-14.
OL ouyx.£V'tQWO£L~ 'toov a~LVoou~:n:AOX.OOV'tou OL-
08£vou<; XaAX.OU U:n:OAOYL~OV'taLa:n:o 'tL<; £x.cpQaO£L<;
'toov 0'ta8£Qwv LOOQQo:n:La<;'toov aV'tLOQao£oov 0Xll-
~a'tLO~OU 'toov X.aL Y£VLX.£U~EVll ~OQcp~ OLVOV'taL
a:n:o 'tllv :n:aQax.a'too £~LOOOOl1(16):
(15)
.(16)
n = 1,.. .,5
O:n:ou,
6n £LVaL11 0'ta8£Qa oXll~a'tLO~ou 'tou x.a8£ ou-
~:n:Mx.ou LOV'tO<; o:n:oo<; au'to<; :n:£QLYQacpE'taL O'tL<;
£~LOWO£L<; (1) - (5).
n £i.VaL 0 aQL8~o<; ~oQLax.~<; ouv'ta~l1<; :n:ou £x.-
cpQa~£L'toov aQL8~o 'toov ~OQLOOVa~~oovLa<; :n:ou
oXll~a't~01JV Xll~LX.Oo£O~o 'to X.£V'tQLX.Oa'to~o
'tOU OU~:n:AOX.OU.
[] £x.cpQa~£L'tllV ouyx.Ev'tQOOOl1'tou x.a8£ oLaAu~E-
vou £i.oou<;, LOV'tO<;
~~OQLOU, ~oQLax.o'tll'ta
x.a'ta oyxo, M.
OL ouyx.£V'tQWO£L<; 'tOOVuOQo~uou~:n:Mx.oov 'tou OL-
08£vou<; xaAxou U:n:OAOYL~OV'taLa:n:6 'tL<; £x.cpQao£L<;
'toov 0'ta8£Qwv WOQQo:n:La<; 'toov av'tLOQao£oov 0Xll-
~a'tLo~ou T,OOVX.aL Y£VLX.£1J~EVll~oQcp~ OLVOV'taL
a:n:o 'tllV £~LOOOOl1(17):
[Cu2+]
[
CU(OH)(2-Y) ]=.~ .- (17)
Y Y [H+Y
y = 1,...,4
OPYKTOr nI\OYTOI:/MINERALWEALTH116/2000
O:n:ou,
*6 £LVaL11 o'ta8£Qa OXlllLa'tLO~OU'tou x.a8£ ou-
Y
IL:n:AOXOU LOV'tO<; o:n:w<; amo<; :n:£QLYQacp£'taL 0'tL<;
£~LOWO£L<; (6) -(9).
y £i.VaL0 aQL8~o<; ~oQLax.~<; OUV'ta~l1<;'tou ou-
~:n:Mx.ou LOV'tO<;:n:ou £x.cpQa~£L 'tOV aQL8~o
LOV'tooV UOQO~£LOLOU :n:ou EX01JV Xll~Lx.a o£O~£u-
8£L o'to x.£v'tQLx.6a'to~o 'tou LOV'tO<;.
[] £x.cpQa~£L 'tllv ouyx.EV'tQOOOl1 'tou xa8£ OLaAu-
~EVOULOV'tO<; ~oQLax.o'tll'ta x.a'ta oyx.o, M.
H ouYX.EV'tQOOOl1 'tou :n:oAu:n:UQllVLx.ou OUIL:n:AOX.OU
LOV'tO<; CuiOH)22+ OLV£'taL a:n:o 'tllV £~LOOOOl1 (18).
(18)
H OALX.~ouyx.Ev'tQOOOl1'tou OLaAu~EvoU xaAXOU,
CUT' LOOU'taL 'to a8QoLoILa 'toov ouyx.£v'tQwo£oov
OAOOV 'toov LOV'tooV, a:n:Awv X.aL OU~:n:AOX.OOV, 'tL<;
O:n:OL£<; 0 xaAx.o<; 6QLOX.£'taL OLaAuILEvo<; o'to uOa'tLx.o
a~~oovLax.o OLaAuILa XaL £x.cpQa~£'taL a:n:o 'tllv £~L-
000011(19).
C~ = [Cu2+] + [Cu(NH3)2+] + [Cu(NH3)/+] +
+ [Cu(NH3)t] + [Cu(NH3)42+] +
+ [Cu(NH3)s 2+]+ [CuOH+] +
+ [CU(OH)20] + [CU(OH)3-1] +
+ [Cu(OH)/] + 2[Cu2(OH)/+] (19)
Av'tLx.a8LO'twV'ta<; 'tL<; ouyx.£V'tQWO£L<; 'toov OUIL:n:AO-
x.oov LOV'tooV'tou oL08£vou<; xaAx.ou, o:n:oo<;au'tE<; £i.-
Val £x.cpQao~Ev£<; ~EOOO 'toov £~wwo£oov (16), (17)
X.aL (18), o'tllV £~LOOOOl1(19) :n:QOX.U:n:'t£L11 £~LoOOOl1
(20) o'tllv o:n:oLa 11 OALX.~ouYX.EV'tQOOOl1'tou OLaAuILE-
vou xaAx.ou, CUT' £x.cpQa~E'taL oav 01JVaQ'tll0ll 'tOOV
ouyx.£V'tQWO£OOV 'toov £A£u8£QOOv LOV'tooVxaAx.ou, 'tll<;
aOLaO'ta'tll<; a~~OOVLa<; X.aL 'toov UOQoyOVO'(OV'toov 'tou
OLaAu~a'to<;.
CUT =[CU"j.[1 + t. ~ANH3]"
+t. '~Y"urr +)3,,[Cu" ].[Irr' J(20)
fLa va U:n:OAOYLO'tOUV'ta :n:oooo'ta 'tou x.a8£ LO-
V'tO<; IL£ 'ta o:n:OLa 0 OLaAuILEVO<; XaAX.O<; u:n:aQX£L o'to
OLaAu~a 01JVaQ't~O£L'tou 01JVa~Lx.ou UOQOYovou 8a
:n:QE:n:£Lva ,!:n:OAOYW't£L 11 ouyx.EV'tQOOOl1 'toov aOLa-
o'ta'toov ~OQLOOValL~OOVLa<;01JVaQ't~O£L 'tou pH 'tou
oLaAu~a'to<;.
49
3.1.1. Y.1l"OAOYLa/lO~avyxiv"C~waYJ~ ac5uiam"Cwv /lO-
~iwv a/l/lwvia~ am vc5anxo c5taAV/la
H a!!!!WVLa W~ aOeEVTJ~ 1']t...EX'tQOA:lJ't1']~'UcpLo'ta'taL
oL<xo'taa1'] o'to 'UOa'tLxo OLat...'U!!a ov!!cpwva !!E 't1']V
naQaxa'tw X1']!!LXTJE!;LOW01'].
(21)
H o'taeEQa OLao'ta01']~ 't1']~ a!!!!WVLa~, Kb, 0'tO'U~
25°C ELVaLKb=1.8xlO'S [3.8].Ano 't1']VExcpQa01']'t1']~
O'taeEQa~ OLao'ta01']~ 't1']~ a!!!!WVLa~ 'UnOt...OYL~E'taL 1']
O'UYXEV'tQW01'] 'tWV LOV'tWV a!!!!WVLO'U !!EOW 't1']~ E!;L-
OWOEW~ (22).
K
[NH;] =l. [NH3]' [H+]
Kw (22)
HOt...LXTJ(avat...'U'tLXTJ) O'UYXEV'tQW01'] a!!!!WVLa~, NT'
ELVaL 'to aeQOLO!!a Ot...wv 'tWV !!OQCPWV !!E 'tL~ onOLE~
1']a!!!!WVLaanav'ta'taL o'to OLat...'U!!aXaL OLVE'taLano
't1']v E!;LOW01'] (23).
5 .
NT =[NH3]+[NH;]+ I.[Cu(NH3)~+] (23)
n=1
ME o'UVo'Uao!!o 'tWV E!;LOWOEWV(15), (16), (22)
XaL (23) nQoxvn'tEL 1'] E!;LOW01'](24), ano 't1']V onOLa
'Unot...oYL~E'taL 1'] O'UYXEV'tQW01']'twv aOLao'ta'twv !!O-
QLWVa!!!!WVLa~ o'UVaQ'tTJOEL't1']~ O'UYXEV'tQW01']~'twv
'UoQoyovo'(ov'twv XaL 't1']~ Ot...LXTJ~O'UYXEV'tQW01']~a!!-
!!WVLa~ 0'tO 'UOa'tLxo oLat...'U!!a.
~~p .[H+]2 -[~I~n '[NH3r]
w
Kb +
+-.[NH3].[H ]+[NH3]-NT =0
Kw (24)
H E!;LOW01'](24) ELVaL nE!!Jt'to'U oae!!OV W~ nQo~
't1']V O'UYXEV'tQW01']'twv aOLao'ta'twv !!OQLWV a!!!!w-
vLa~ XaL 1'] mLt...'UOTJ't1']~ !!EOW 1']t...EX'tQOVLXOV'Unot...o-
YLO'tTJ !!E 't1']v OOTJeELa xa'tat...t...1']t...wv !!ae1']!!a'tLxwv
nQoYQa!!!!a'twv (nx mathcad, mathematica) OLVEL
nEv'tE t...VOEL~EX 'tWV onoLwV nav'ta OL 'tEOOEQEL~
ELVaLaQV1']'tLXE~XaL aJtOQQLn'tOV'taL XaL 1'] !!La eE'tL-
XTJ XaL YLVE'taL anOOEX'tTJ.
3.2. E:n:U.\JofJ 'to\J :n:(?ool..1)Jl.a'to;
o nQoooLOQLO!!O~ 'twv :n:oooo'twv 'to'U xaeE LOV'tO~
!!E 'ta onoLa 0 oLat...'U!!EVO~xat...xo~ 'UnaQXEL 0'tO OLa-
t...'U!!a YLVE'taL ov!!cpwva !!E 'tOY at...yoQL8!!0 no'U nEQL-
YQacpE'taL o'to OXTJ!!a 1.
50
()pta~l6s 6EOOfl£VooV TOU 1tpof3AlwaTOs
NT. Ksl" Kin K". Ii,,, 'Ii" '1hz
KaOopl(}'fl6e; Tlfl~e;
0uYK£VTpoomle; uopoyov0l6vTWV
1:1ti),uml !:~I(}'W(}'1le; (24) KUl 1tpO(}'6LOpta~ll)e;
TIle; GUYK£VTpwmle; [N II, I
1:1t1AUml E~IG([)GT]S(15) Kat 1tpO(},OLOpta~ll)S
TllS (}'UYK£VTPoo(}'11S[Cu2+1
I:1Ii/,uml E~I(}'wmlS ( I q) Kat 1tp006LOPl0~ll)(
Tlls 0UYKt.VTpwmlS ICu(NH1)" 2'1
1:1ti),uml E~I(}'([)(}'1le;(17) Ka11tpO(},OlUpl(J~ll)S
Tlls 0uYK£VTp(OmlC; [Cu(OH) (2'»)J
E1tlAUml E~IGW(}'11C; (20) Kat 1tPUGOLUPl(}'fl6C;
TllS 0UYK{:VTPW(}'11C; TOU OAlKOl) XUAKOlJ. Cu I
I:1t1AUml E~l(J(U(},E([)V( I 1) - ( 14) KUl
1tpOG6LOplG~l6e; TooV1t0GOGTWVU". u", U \. Un
~XE6lCl(}'fl6C; oLUypaflfl<lTooV KUTavo~111e; Tel)V
l<')VTWV OLGOEVOl)C; xaAKOlJ GUVUPT1l(}'El TOU
6uva~llKou u6poy6vou <no 6l<lAUflU
~XHMA 1: AAyofJLellO~En{}..v01J~TWV EgLOwoEwv LOOfJ-
fJonia~ TWVLOVTWVTaV t5toeEvov~ XaA"ov
OEv()an"d ()WAvlla-ra allllwvia~.
FIGURE 1: Algorithm for the solution of equations
at the equilibrium of Copper(II) ions in
aqueous ammoniacal solution.
2:v!!cpwva I-lE a'U'to 'tOy at...YOQLe!!O, 'ta noooo'ta
'to'U xaeE LOV'tO~ 'to'U OLOeEVOV~ xat...xov o'ta onoLa
ELVaL xa'taVE!!1']!!EVO~ 0 O'UVOA.LXO~OLaA.'U!!EVO~xaA.-
XO~ no'U 'UnaQXELo'to OLaA.'U!!aExcpQa~ov'taL o'UvaQ-
'tTJOEL OVo !!E'taot...1']'twv. 't1']~ O'UYXEV'tQW01']~ 't1']~ O'U-
VOA.LXa oLat...'U!!EV1']~ a!!!!WVLa~ NT XaL 'to'U pH 'to'U
OLaA.V!!a'to~.
2:'ta OXTJ!!a'ta2 - 5 OLVOV'taL'ta oLaYQa!!!!a'ta
xa'tavo!!TJ~ 'twv LOV'tWV OLOeEVOV~xaA.xov o'UvaQ'tTJ-
Oft 'to'U o'Uva!!LXOV 'UoQoyovo'U OE oLacpoQE'tLXTJ~ O'U-
OPYKTOr. n/\OYTO[/MINERAL WEALTH 116/2000
24 6 8 10 12 14
pH
LXHMA 2a: ,1uiY{Japp,a "a-ravop:rk TWVLOVTWVc5t08EvoVt;XaA"OV ovva{JTiJoELTOVbvvaflL"ov vb{J0Yovov
OEaflflwvw"O c5tcXAvflaflE OVy"iVT{JWOTJOAL"iJt;btaAVfliVTJt;aflflwviat; O.lM
FIGURE 2a: Speciation diagram of Copper(II) ions in aqueous ammoniacal solution containing
0.1Mtotal ammonia versus pH.
lJ
CU(OH)2
Cu(OH)"'
6 8 In 12 14
pH
LXHMA 26: ,1uiY{Jaflfla "a-ravofliJt; TWV LOVTWVc5w8Evovt; XaA"ov ovva{JTiJoEL -rov c5vvaflL"ov vc5{J0Yovov
OE aflflwvw"O c5uiAvfla flE OVy"iVT{JWOTJ OAL"iJt;c5wAVfliVTJt; aflflwviat; O.lM
FIGURE 2b: Speciation diagram of Copper(II) ions in aqueous ammoniacal solution containing
0.1Mtotal ammonia versus pH.
YXEV'tQWOt]<;al-.II.lWvLaxCLbLat..Uj..lam. H Ot..LXi)OUYXE-
v'tQwot] bLat..Uj..lEvt]<;aj..lj..lWvLa<;o'ta bLat..Uj..la'ta au'tCL
XUj..laLVE1aL roto a.1M EW<; 6M.
OL Jtt..t]QOCPOQLE<;Jtou JtQoxuJt'tOuv roto 'ta bLa-
YQCLj..lj..la'ta au'tCL EXOUV JtOLO'tLXO XaL OXL JtOOO'tLXO
xaQax'ti)Qa bLO'tL xa'tCL 'tt]V xa'taoxEui) 'tou<; bEV
EXOUV t..t]cpeEi. uJto'\jJt] OL EVEQYO'tt]'tE<; 'tWV LOV'tWV
at..t..CLOL OUYXEV'tQOOOEL<;'tou<;. TIaQot..a. au'tCL t] XQt]-
OPYKTOI: nAOYTOL!MINERAL WEALTH 116/2000 51
\,0
0,9
O,S
0.7
0
...
.6 0,6
'0
b n,s
0
g0,4
c::
0,3
0.2
0,\
o.n
0
QS
Q45
Q4
5
0Q3
...
5
'0 Q
...
0
0,2
0
c::
0,\:'1
0.1
),
0,05 I
2H-
0
4
0 2
h
Cu(NH,f
-I
Cu(OH),
246 8 10 12 14
pH
~XHMA 3a: L1uiY{.JaI1P,axaT:avol1:il~ iWV toV'Z"wvb£OeEVOV~xaAxov ovva{.JiiJoEt iOV bvval,UXOV vb{.J0Yovov
OE al1P,wvtaxO btaAVj1-a j1-EOVYXEVi{.JWOTjOAtXiJ~ btaAVj1-EVTJ~aj1-j1-wvia~ O.6M
FIGURE 3a: Speciation diagram of Copper(II) ions in aqueous ammoniacal solution containing
.O.6M total ammonia versus pH.
CU(OH)211
)1
ClI2(OH)2 -
Cu(OH)'
246 8 10 12 14
pH
~XHMA 36: L1taY{.Jaj1-j1-aXaiaVOj1-iJ~ iWV toV'Z"wv btoeEvov~ XaAxov avva{.JiiJoEt 'fOV bvvaj1-txov vb{.J0Yovov
OE aj1-j1-wvta"o btaAVj1-a j1-EOVYXEV'Z"{.JWOTjOAt"iJ~ btaAVj1-EVTJ~aj1-j1-wvia~ O.6M
FIGURE 3b: Speciation diagram of Copper(II) ions in aqueous ammoniacal solution containing
O.6M total ammonia versus pH.
OLl!otTJta a'Ut.wv trov OLaYQal!l!<ltrov, TJ 03to'UOaLO-
tTJta to'U~ 'X.aLTJa;LOnLotia to'U~ 3taQaI!Evo'Uv 3tOA:U
I!EY<lAE~OLotLI!a~ 3taQE:Xo'UvEu'X.oAaI!ia EL'X.ovaYLa
tTJv 3tEQLO?Ctl Ota8EQOtTJta~ to'U 'X.<l8E O'UI!3tAO'X.O'U
LOVtO~ OtO 'UOatL'X.o OL<lA'Ul!a XroQi~ va a3taLtELtaL 0
3tELQal!atL'X.o~ 3tQOOOLOQLOI!O~to'U~ I!EOc.o avaA'UtL-
52 OPYKTO[ nAOYTO[/MINERAL WEALTH 116/2000
1,0
0,9
0,8
0,7
0
t: 0,6
'0
'0
b0,5
0
t) 0,4
0,3
0,2
0,1
0,0 °
0,035
0.D3
0,025
0
I-
;;..
'0 0,02
'0
l-
t)
g0,015
0
t::
0,01
0,005
0
()
246 & 10 ]2 14
pH
LXHMA 4u: ,1uiy{!upp,a 'Xamvo/liJr; TWV LOVTWVbLo8EVOVr;XaA'Xov avva{!TiJoEL TOV c5VVa/lL'Xovvc5{!oyovov
'OE a/l/lWVLa'Xo c5uiAv/la /lE OVY'XEVT{!WO"lOAL'XiJr;c5LaAV/lEV'Yfr;a/l/lwviar; 1M.
FIGURE 4a: Speciation diagram of Copper(II) ions in aqueous ammoniacal solution containing 1M
total ammonia versus pH.
LXi ~!"lA 46: ,1Lay{!a/l/la 'XaTaVO/liJr; TWV LOVTWV bLo8EVOVr; xaA'Xov avva{!TiJoEt TOV c5vva/lt'Xov vc5{!Oyovov
OE a/l/lWVLa'Xo c5LaAV/la /lE OVYXEVT{!WO"l OAt'XiJr; bLaAV/lEV'Yfr; a/l/lwviar; 1M
FIGURE 4b: Speciation diagram of Copper(II) ions in aqueous ammoniacal solution containing 1M
total ammonia versus pH.
XWV ItESOOWV nou EcpOOOV U1t(xQXouv ELVaL ouv~Sw~
oanaV'IlQE~ XaL anaL'tmJv 't'llv unaQs'll ESELOLXEUltE-
vwv OUOXEUWV.
4. I;\Jf13tEQaa,...a'ta .
~ultCPwva ItE 'ta oLaYQaltlta'ta xa'tavolt~~ LOV'tWV,
o xaAxo~ anav'ta'taL ItE 't'llV ltoQCP~'twv EAEUSEQWV
OPYKTO[ nI\OYTO[/MINERAL WEALTH 116/2000 53
1,0
0,l)
O,X
0,7
0
f- 0,6
..
'0
' 0,5
0
g0,4
t::
0,3
0,2
0, I
0,0 °
0,014
0,012
0,01
0
f-
...
0,00& I
'+ . II
'0 ClI2(OH)2- CU(OH)2
f-
g 0,006
0
t::
0,004
0,002 1+
CuOH
°°24 6 & 10 ]2 14
pH
24 6 10 14
12
8
pH
~XHMA. Sa: L1~ay~app,a xawvo/liJ~ TWV~oVrwv &O(JEVOV~xaAxov ovva~TiJoE~ TOV bvva/l~xOV vbl':IOYovov
. OE a/l/lwv~axo b~aAV/la /lE OVYXiVT~WOTJ OA~XiJ~btaAV/liVTJ~ a/l/lwvia~ 6M
FIGURE Sa:.Speciation diagram of Copper(II) ions in aqueous ammoniacal solution containing 6M
.total ammonia versus pH
Cu(OHh 0
268 10 1412
4
pH
~XHMA 56: L1~ay~a/l/la xawvo/liJ~ TWV~OVTWV&O(JEVOV~xaAxov ovva~TiJoE~ TOV bvva/l~XOV vb~oyovov
OE a/l/lwv~axo &aAV/la /lE OVyxiVT~WOTJ OA~XiJ~&aAv/liVTJ~ a/l/lwvia~ 6M .
FIGURE 5b: Speciation diagram of Copper(II) ions in aqueous ammoniacal solution containing 6M
total ammonia versus pH
54 OPYKTO[ nI\OYTO[/MINERAL WEALTH 116/2000
1,0
0,9
0,8
0,7
0
!: 0,6
'0
-
.0,5
0
g04
c: '
0,3
0,2
0,1
0,0
0
0,007
0,006
0,005
0
...
. 0004
- ,
'0
...
.g 0,003
0
c:
0,002
0,001
00
lOWCWV'to\!, CU2+, !AOVOO1:a 1tOA:UO~LVa \!Oa'tlXa
OlaA:U!Aa1:a.H 1t£QloX1)o't1']V01tOLa £1tlxQa'tEL 'to lOV
CU2+ Xal a1tO't£A£L 1tQaX'tlXa 't1']V!AOVaOlx1)!AOQcp~
!A£'t1']V01tOLa a1tav'ta'tal 0 OlaA\!!AEVO~Cu 0'tO Ola-
A\!!Aa£~aQ'ta'tal a1tO 't1']v OAlX~ O\!YXEV'tQW01']'t1']~
OlaA\!!AEV1']~a!A!AWVLa~,NT' a'U'to. Kaew~ 1'] NT
a\!~aV£l a1to 0.1 6M 1'] 1t£QLOX~o'tae£Qo't1']w~
'to\! Cu2+ O\!QQlXVWVE'tala1to pH !AlXQo't£Qo'to\! 4
OE pH !AlXQo't£Qo'to\! 2.
Ta a!AlVOO'lJ!A1tAOXa'to\! OLOe£VOU~ xaAxou,
Cu(NH3\ 2+, a1to't£AoUV 1tQax'tlxa 'tl~ £1tlxQa'tOuo£~
Xal !AOVaOlXE~!AOQcpE~!A£'tl~ 01tOL£~a1tav'ta'tal 0
XaAxo~ o'ta £AacpQw~ o~lva EW~ o'ta LOX\!QW~aAxa-
Alxa a!A!AWVlaXaOWAU!Aaw. H 1t£QLOX~o'tae£Qo't1']-
w~ 'to\! xae£ O\!!A1tAOXO\!£~aQ'tawl a1to 't1']VOAlX~
O\!YXEV'tQW01'] 't1']~ OWA\!!AEV1']~ a!A!AWvLa~, NT' o'to
OlaAwa.
i. To lOV Cu(NH/+ £!AcpavL~E'tal o't1']V 1t£QLOX~
'tl!AWV pH a1to 2-8 !A£ 'tao1'] !AE'taXLV1']01']~'t1']~
1t£QLOX~~ o'tae£Qo't1']'ta~ 'to\! 1tQo~ w1t£QLOOO-
't£QO o~lva Ol~AU!AaW xaew~ 1'] NT a\!~aV£l
a1to 0.1 6M.
11. To lOV Cu(NH3)22+ 1tQaX'tlXa O£V X\!QWQXEL
1tO'tE O'to OlaA\!!Aa Xal £!AcpaVL~E'tal O't1']V 1t£-
QLOX~ 'tl!AWV pH a1to 3.5-8.5 !A£ 'tao1'] !AE'taXL-
V1']01']~ 't1']~ 1t£QlOX~~ o'tae£Qo't1']'ta~ 'to\! 1tQO~
'ta 1t£QLOOO't£QO o~LVa OlaAU!Aa'ta xaew~ 1'] NT
a\!~aV£l a1to 0.1 6M.
iii. To lOV Cu(NH3)t £!AcpavL~E'tal o't1']v 1t£QLOX~
'tl!AWV pH ano 6-12 !A£ 'tao1'] !AE'taXLV1']01']~'t1']~
1t£QLOX1)~owe£Qo't1']'ta~ 'to\! 1tQo~ w1t£QLOOO-
't£Qo o~LVa OlaAU!AaW xaew~ 1'] NT a\!~aV£l
a1to 0.1 6M. E1tL01']~ ELVal 'to £1tlxQa'tOuv
lOV o't1']v 1t£QLOX~ 'twv O\!OE't£QWV olaAwa'twv
!A£pH 6-8.
iv. To lOVCu(NH3)t ELVal'to 01t0\!Oalo't£QolOV
o'to ouo't1']!AaCu2+ - NH3 - Hp. E!AcpavL~£l
£'UQuw't1']1t£QLOX~owe£Qo't1']'ta~ 1t0\! X\!!AaLv£-
Wl a1to 'ta £AacpQw~o~LVa OlaAU!Aa'ta !A£ pH
5 EW~'ta LOX\!QW~aAxaAlxa OlaAU!Aa'ta !A£pH
14 !A£ 'tao1'] !AE'taXLv1']01']~ 't1']~ 1t£QLOX1)~ o'tae£-
QO't1']'ta~ 1tQo~ 'ta 1t£QLOOO't£QOaAxaAlxa Ola-
AU!Aa'ta xaew~ 1']NT a\!~aVEl ano 0.1 6M.
ELVal 1tQax'tlxa 'to !AOVaOlxolOV o't1']v 1t£QLOX~
'tl!AWVpH a1to 8 EW~ 11 !A£'to 01tOLOa1tav'ta-
'tal 0 xaAxo~ o'ta \!oa'tlxa a!A!AWVlaXaolaAu-
!Aa'ta !A£ OAlX~ O\!YXEV'tQW01']OlaA\!!AEv1']~a!A-
!AWVLa~,NT' a1to 0.1 EW~ 6M.
v. To lOV Cu(NH3)t £!AcpavL~E'tal o't1']V1t£QLOX~
'tl!Awv pH a1to 8-14 !A£'tao1'] !A£WXLV1']01']~'t1']~
1t£QLOX~~o'tae£Qo't1']W~ 1tQo~ 'ta 1t£QLOOO't£QO
OPYKTOr nI\OYTOr/MINERAL WEALTH 116/2000
aAxaAlxa OlaAU!Aaw xaew~ 1']NT a\!~aVEl a1to
0.1 6M. To lOV a'U'to a1tox'ta O\!V£XW~a\!-
~avo!A£V1']01t0\!Oalo't1']'ta o'to ouo't1']!Aa Cu2+ -
NH3 - HP xaew~ 1'] OAlX~ O\!YXEV'tQW01']'t1']~
OlaA\!!AEV1']~a!A!AWVLa~,NT' a\!~aVE'tal a1to 0.1
6M. MaAlo'ta ow 1tOAU1t\!xva a!A!AWVlaXa
OlaAU!AaW !A£ oAlX1) O\!YXEV'tQW01']a!A!AWVLa~
!A£yaAu't£Q1']~ano 6M YLVE'tal Xal 'to £1tlxQa-
'touv lOV o'to OlaA\!!Aa.
Ta \!OQo~\!OU!A1tAOXa'to\! OlOe£VOU~xaAxou a1ta-
V'twv'tal o'to ouo't1']!Aa Cu2+ - NH3 - H20 !AOVOo'ta
1tOAULOX\!QW~aAxaAlxa OlaAU!AaW !A£pH !A£yaAu-
't£Qo 'to\! 12 Xal o'ta aQala a!A!AWVlaXaOlaAu!Aa'ta
!A£ oAlx1) O\!YXEV'tQW01'] a!A!AWVLa~ !AlXQo't£Q1']~ a1to
O.IM.
i. To lOV Cu(OHt a1tav'ta'tal a!A£A1']'tEaa\!-
YXEV'tQW01']o'to ouo't1']!Aa Cu2+ - NH3 - H20
xaeOOOV 1']1t£QlOX1)owe£QO't1']'ta~ 'to\! OW1tL-
1t'tEl !A£ 't1']v 1t£QLOX1)o'tae£QO't1']'ta~ 'tWV a!ALVO-
O\!!A1tAOXWV'to\! xaAXOU 'ta 01tOLa '\!1t£QlOXUO\!V
a1tOA\!'ta.
ii. To CU(OH)20 £!AcpavL~E'talo't1']v 1t£QlOX1)'tl!AWV
pH 11 EW~ 14 Xal a1tav'tawl !A£yaA1']a\!-
YXEV'tQW01']o'to ouo't1']l!a Cu2+ - NH3 - H20
!AOVOo'ta aQala a!!!!WVlaXa OlaAU!!aW !!£ OAl-
x1) O\!YXEV'tQW01']a!!!!WVLa~ !!lXQO't£Q1']~a1tO
O.IM.
iii. To lOV CU(OH)31. £!!cpavL~£wl o't1']v 1t£QlOX1)
'tl!!WV pH ano 12 EW~ 14 Xal anav'tawl
!!£yaA1']O\!YXEV'tQW01']o'to ouo't1']!!a Cu2+ - NH3
- H20 !!OVOo'ta aQala a!!!!WVlaXaOlaAU!!a'ta
!!£ OAlX1) O'\!YXEV'tQW01'] a!!!!WVLa~ !!lXQO't£Q1']~
a1to 1M.
iv. To lOV Cu(OH)t £!!cpavL~£wl o't1']v 1t£QLOX1)
'tl!!WV pH a1to 12 EW~ 14 Xal ELVal'to £1tlxQa-
'touv lOV o'to ouo't1']!!a Cu2+ - NH3 - H20 o'ta
1tOAULOX\!QW~aAxaAlxa OlaAU!!aW !!£ pH !!£-
yaAu't£Qo 'to\! 13 Xal ow aQala a!!!!WVlaXa
olaAU!!aW !!£ OAlX~ O\!YXEV'tQW01']a!!!!WVLa~
!!lXQO't£Q1']~a1to 1M.
v. To 1tOA\!1t\!Q1']VlXOlOV Cu2(OH)22+ £!!cpavL~£wl
!!OVO o'ta o~LVa OlaAU!!aW o't1']v 1t£QlOX1)'tl-
!!WVpH a1to 0 EW~6 Xal1'] OX£'tlXt]01t0\!OalO-
't1']'ta 'to'\! a\!~aV£l !!£ au~1']o1'] 't1']~ oAlX1)~ a\!-
YXEV'tQW01']~a!!!!WVLa~ o'to \!oa'tlxo olaAwa.
TIQax'tlxa O!!W~ !!1tOQ£Lva a!!£A1']e£Lo'to ou-
o't1']!!a Cu2+ - NH3 - H20 £1t£1(1) 'to 1t0000't0
'to\! xaAXOU 1t0\! 6QLOXE'tal O\!!!1tAOX01tOl1']!!EVO
a\!'to 'to lOV O£V ~£1t£Qva 1tO'tE 'to 0.7% 'to\!
oAlxa OlaAWEVO\! xaAXOU.
55
BIBAIOrPAcJ>IA
1. e. IT XATZHIQANNOY, llotOTLu1jAWIAvo1]UaL
X1]J,tLu1jIoo~~o1ria,A81jva, 1976, pp. 107-109.
2. l.P. PANKO"\¥,Aquatic Chemistry Concepts, Lewis
Publishers Portland, Oregon, 1991, Chapter 18,
pp. 359-389.
3. 1.C BAILAR lR ,T. MOELLER, 1. KLEINBERG,
CO. GUSS, M.E. CASTELLION, CMETZ,
Chemistry, 3rd edition, HBl, Publishers and its
subsidiary, Academic Press
4. S. KELEBEK, "Effect of polyamines on mineral
separationof nickel-copper ores:Chelation equilibria
in colectorless flotation with DETA': Transactions
of IMM, Section C, Vol. 105, 1996, pp. 77.
5. P.MM MOREL, Principles of Aquatic Chemistry,
1. WILEY &SONS, 1983, pp. 261-264.
6. L.G. SILLEN, A.E. MARTELL, Stability Constants
of Metal-Ion Complexes, The Chem. Soc. London,
1971, pp. 26, 84, 176.
ZSKOOG, WEST, HOLLER, Fundamental of
Analytical Chemistry, 5th edition, Saunders College
Publishing, International edition, pp. 819-820 .
8. Outokumpu, HSC Chemistry for Windows, Chemical
Reaction and Equilibrium software with extensive
Thermochemical Database, Version 1.1 1993 .
ABSTRACT
SPECIATION DIAGRAMS OF COPPER (II) IONS
IN AQUEOUS AMMONIACAL SOLUTIONS
Dr. D. Panias, M. Kokolakis,I. Giannopoulou,
I. Paspaliaris.
Copper(II) aqueous ammoniacal solutions .are
commonly used as etchants in printed circuit board
industry. The spent ammoniacal etching solutions
resulting from the ammoniacal etching process have a
high content in copper and also in ammonia. This
liquor is classified as hazardous material and has to
be treated before it is disposed to the environment.
Speciation diagrams of copper(lI) ions in aqueous
ammoniacal solutions are very important. They offer
us information about the composition of solution
determining the percent amount of each copper(lI)
bearing ion, simple or complex, relative to the total
copper(lI) content of the solution as a function of the
solution pH. This a very crucial information when
the management of the spent ammoniacal etching
solutions are under consideration.
In this paper, speciation diagrams of copper(lI) ions
in aqueous ammoniacal solutions are developed for
several analytical concentrations of ammonia in solution
varying between O.IM to 6M. In developing these
diagrams, the Cuz+-NH3 and Cu2+ -OH- subsystems
have been taken into consideration.
The Cuz+-NH3 system consists of five complex ions
having the general formula Cu(NH3)nz+,where n is an
integer varied between 1 to 5.
* National Technical University of Athens, Laboratory of Metallurgy
Manuscript received from:
- the authors on 1.3.99
- the Review Committee on 24.6.99
56
I
--
The Cuz+- OH- system consists of four mononuclear
complex ions having the general formula Cu(OH) (Z-y),
y
where y is an integer varied between 1 to 4, and one
polynuclear complex ion having the formula
CUz(OH)/+. - - -
The most important conclusions that can be drawn
by this work are the following:
a. All complex ions of Cu(II) with ammonia
predominate in slightly acid to high base solutions.
More accurately, copper(II) exists wholly as
Cu(NH3)n2+in ammoniacal solutions with pH
varied between 2 to 13.
b. Cu(NH3)/+ is the most important ion having a
broad stability area extented from pH 5 to pH
14. Practically, this ion in the only copper(lI)
bearing ion in ammoniacal solutions with pH
varied between 8 to 11.
c. The hydroxo complexes of copper(lI) are not
important in ammoniacal solutions. Among them,
Cu(OH)t and Cu(OH)t are the most important.
Their stability area is located in strong alkaline
solutions with pH 12 to 14 and their percent
amount in solution increases as the analytical
concentration of ammonia decreases.
d. Uncomplexed copper(lI) ions, Cu2+,exist only in
high acid solutions.
TIaQaA-a6Tj EQyaoi.ae;:
- aQXLxTjano "to"e; o"YYQacpEi.e;oue; 1.3.99
- "tEA-LxTjano "'['flV KQL"tLxTj Em "tQonTj oue; 24.6.99
OPYKTOI n!\OYTOI/MINERAL WEALTH 116/2000
-
... It is known that the process of interaction of copper ions with ammonia is stepwise nature [21,22,23]: 12.4 This means that the solution will contain a mixture of several copper amminates, the proportion between which depends on the concentration of ammonia. ...
Article
Full-text available
The process of sorption-electrochemical cleaning of rinse waters, obtained after ammonia etching of printed circuit boards from copper ions, is proposed. Cation exchanger KU-2×8 and ampholyte Lewatit MonoPlus TP 207 for the extraction of copper were tested. Capacity up to breakthrough of Lewatit MonoPlus TP 207 is 0.11 g/g and a full dynamic exchange capacity for copper of 0.15 g/g. Various options of a pregnant ion exchanger desorption are considered. The best stripping ability has a 20% solution of sulfuric acid. The possibility of desorption by a partially de-coppered eluate was studied. This scheme allows the use of acid formed in the process of copper electro-winning. The effect of concentrations of NH4Cl and NH4OH on the sorption of copper was studied. It was shown that, with an increase in the concentration of NH4Cl to 100 g/dm³, the capacity of the ion exchanger decreases by 10.42%. Thus, the ion exchanger Lewatit MonoPlus TP 207 effectively absorbs copper even at high salt background. A combined sorption-electrochemical technology has been proposed for treatment of rinse waters. The proposed technology will reduce consumption of fresh water and ammonia for printed circuit boards washing and extract copper in the form of elemental metal.
... Ammonia acts as a molecular ligand for the formation of stable ammine copper(II) complexes. From the species distribution diagrams of copper(II) ions in aqueous ammoniacal solutions as a function of the solution pH [15], it was found that the ammine copper(II) complex ions, Cu(NH 3 ) n 2+ ...
Conference Paper
Full-text available
The present work aims at studying the electrolytic recovery of copper from the spent ammoniacal etching effluent of the printed circuit board production. The investigated spent ammoniacal etching effluent is an alkaline solution with total ammonia concentration of 9.5 M, copper concentration higher than 140g/l, and chloride concentration varying from 175 to 190 g/l. A pre-treatment of this effluent with a strong basic anionic exchange resin in order to reduce the high chloride concentra-tion to low level, allowing copper electrowinning without any corrosion problems created due to anodic oxidation of chloride ions, is examined. Moreover, the effect of operating parameters during copper electrowinning, including electrode arrangement, inter-electrode distance, electrolyte agita-tion rate, current density, etc. on current efficiency and copper recovery are investigated. The re-sults are used to determine the optimum conditions for economically feasible copper electrolytic recovery from the spent ammoniacal etching solutions.
... The high copper concentration of this wastewater makes of economic interest the recovery of copper in a way to reuse it as secondary raw material source into a process production or to sell it as metal. From the speciation diagrams of copper(II) ions in aqueous ammoniacal solutions as a function of the solution pH[6], it follows that the amino-complex ions of copper(II), Cu(NH3)n2+, are the prevailing ions in ammoniacal solutions with pH varied between 2 to 13. Among these amino-complex ions, the Cu(NH3)l+ is the most important, having a broad stability area extended from pH 5 to pH 14. Practically, the complex Cu(NH3)l+ is the unique copper (11)ion in ammoniacal solutions with pH varies from 8 to 11. ...
Conference Paper
Full-text available
Alkaline etching solutions and especially ammoniacal cupric chloride solutions are widely used in the printed circuit board (PCB) production to remove a portion of metallic copper from clad laminates. Spent solutions from the etching process have a typical copper content in the range of 130 - 160 gll and for that reason metal recovery from these wastes is environmentallyessential and economically interesting. This work aims at studying the electrolytic recovery of copper from spent ammoniacal etching solutions.The high chloride concentration of these solutions causes serious corrosion problems due to anodic oxidation of chloride ions. Therefore, a pre-treatment of the spent liquor with a strong basic anionic exchange resin is examined to remove the chloride ions prior the electrolyticrecovery of copper. Moreover, the effects of operating parameters during electrolysis of spent alkaline etching solutions including electrode material and geometry, copper initial concentration, current density, etc. on the recovery of copper are studied. The results are used to determine the optimum conditions for copper electrowinning from the spent ammoniacal etching solutions.
Article
The results of collectorless flotation tests carried out in the absence and presence of diethylenetriamine (DETA) are presented. A simplified Eh-pH diagram has been constructed to illustrate the extended stability of elemental sulphur and to explain the collectorless flotation of pentlandite and chalcopyrite. Copper and nickel ions, which are known to exist on the surface of pyrrhotite, promote the flotation of this mineral whether a collector is present or not. The chemistry of selective depression of pyrrhotite is discussed on the basis of stability relations determined for the Cu-Fe-S-DETA, Ni-Fe-S-DETA and Fe-S-DETA systems under various pH and Eh conditions. Thermodynamic computations indicate that the action of DETA involves the sequestration of copper and nickel ions from surfaces under a wide range of redox conditions. Analysis of filtrate samples taken during tests has confirmed this sequestering action, indicating as much as a twenty-fold increase in the concentration of nickel and copper ions. Once deactivated on removal of the copper and nickel ions pyrrhotite acquires a surface state that is characterized by a greater hydrophilic/hydrophobic ratio due to the formation of iron hydroxide(s) and/or lack of kinetic capability to form elemental sulphur (or polysulphides). Various relevant factors are examined in the discussion to explain the possible mechanism(s) that are involved in the depression of pyrrhotite.
\¥,Aquatic Chemistry Concepts
  • . P Panko
l.P. PANKO"\¥,Aquatic Chemistry Concepts, Lewis Publishers Portland, Oregon, 1991, Chapter 18, pp. 359-389.
HSC Chemistry for Windows, Chemical Reaction and Equilibrium software with extensive Thermochemical Database, Version 1
  • Outokumpu
Outokumpu, HSC Chemistry for Windows, Chemical Reaction and Equilibrium software with extensive Thermochemical Database, Version 1.1 1993.