Conference Paper

Droop gains selection methodology for offshore multi-terminal HVDC networks

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

This paper presents a methodology for selecting the droop gains of the voltage source converters (VSCs) in multi-terminal high-voltage direct current (MT HVDC) transmission system. The droop gains are selected to improve the DC voltage transient and steady state dynamics performance. The proposed methodology relies on improving the small signal stability of the HVDC network, which is performed by selecting the droop gains values that increase minimize the real part of the system critical eigenvalues, while maintaining the steady state voltage deviation within limits. The proposed methodology has been tested on the CIGRE B4 DC grid test system. Furthermore, the simulation results confirm the effects of selecting the proper droop gains on the DC voltage dynamics.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... However, these are not easily applied and require a suitable construction of the Lyapunov storage function. Lastly, the roots of the system can be derived from the eigenvalues of its state-space matrix [19,[33][34][35][36]. This approach, which is also used in this paper, relies on the validity of averaging, linearizing, and simplifying the power electronic converter. ...
Article
Full-text available
Instability caused by low inertia and constant power loads is a major challenge of DC distribution grids. Previous research uses oversimplified models or does not provide general rules for stability. Therefore, a comprehensive approach to analyze the stability of DC distribution systems is desired. This paper presents a method to algebraically analyze the stability of any DC distribution system through the eigenvalues of its state-space matrices. Furthermore, using this method, requirements are found for the stability of three example systems. Additionally, a sensitivity analysis is performed, which considers the effect of several system parameters on the stability and disputes some overgeneralized conclusions of previous research. Moreover, various simulations are performed to illustrate the dynamic behavior of a stable and an unstable DC distribution system.
Article
Full-text available
Droop control is the basic control method for load current sharing in dc microgrid applications. The conventional dc droop control method is realized by linearly reducing the dc output voltage as the output current increases. This method has two limitations. First, with the consideration of line resistance in a droop-controlled dc microgrid, since the output voltage of each converter cannot be exactly the same, the output current sharing accuracy is degraded. Second, the dc-bus voltage deviation increases with the load due to the droop action. In this paper, in order to improve the performance of the dc microgrid operation, a low-bandwidth communication (LBC)-based improved droop control method is proposed. In contrast with the conventional approach, the control system does not require a centralized secondary controller. Instead, it uses local controllers and the LBC network to exchange information between converter units. The droop controller is employed to achieve independent operation, and the average voltage and current controllers are used in each converter to simultaneously enhance the current sharing accuracy and restore the dc bus voltage. All of the controllers are realized locally, and the LBC system is only used for changing the values of the dc voltage and current. Hence, a decentralized control scheme is accomplished. The simulation test based on MATLAB/Simulink and the experimental validation based on a 2 × 2.2 kW prototype were implemented to demonstrate the proposed approach.
Article
Full-text available
This paper discusses the modeling and control of Voltage Source Converter High Voltage Direct Current (VSC HVDC) systems in a multi-terminal configuration (MTDC). Both steady-state interactions, as well as transient stability modeling and control are addressed. Simulation results show that adequately modelling the DC voltage droop characteristics or a distributed voltage control in both the power flow algorithm and in the transient stability models allows to simulate the steady-state results of the dynamic simulation by means of power flow software algorithms.
Article
Full-text available
A model suitable for small-signal stability analysis and control design of multi-terminal dc networks is presented. A generic test network that combines conventional synchronous and offshore wind generation connected to shore via a dc network is used to illustrate the design of enhanced voltage source converter (VSC) controllers. The impact of VSC control parameters on network stability is discussed and the overall network dynamic performance assessed in the event of small and large perturbations. Time-domain simulations conducted in Matlab/Simulink are used to validate the operational limits of the VSC controllers obtained from the small-signal stability analysis.
Article
Full-text available
This paper describes the use of voltage source converter (VSC)-based HVDC transmission system (VSC transmission) technology for connecting large doubly fed induction generator (DFIG)-based wind farms over long distance. The operation principles of the proposed system are described, and new control strategies for normal and grid fault conditions are proposed. To obtain smooth operation, the wind farm side VSC (WFVSC) is controlled as an infinite voltage source that automatically absorbs power generated by the wind farm and maintains a stable local ac network. Fault ride through of the system during grid ac faults is achieved by ensuring automatic power balancing through frequency modulation using WFVSC and frequency control using DFIG. PSCAD/EMTDC simulations are presented to demonstrate robust performance during wind speed and power variations and to validate the fault ride through capability of the proposed system.
Article
This paper focuses on the droop-based dc voltage control design for multiterminal VSC-HVDC grid systems, considering the ac and the dc system dynamics. The droop control design relies on detailed linearized models of the complete multiterminal grid, including the different system dynamics, such as the dc grid, the ac grid, the ac connection filters, and the converter inner controllers. Based on the derived linear models, classical and modern control techniques are applied to design the different controllers, including a multivariable frequency analysis to design the grid voltage droop control. In combination with the droop control, a dc oscillation damping scheme is proposed in order to improve system performance. The control design is validated through simulations of a three-terminal system.
Article
Wind power is one of the most developed renewable energy resources worldwide. To integrate offshore wind farms to onshore grids, the high-voltage direct current (HVDC) transmission cables interfaced with voltage source converters (VSCs) are considered to be a better solution than conventional approaches. Proper DC voltage indicates successive power transfer. To connect more than one onshore grid, the DC voltage droop control is one of the most popular methods to share the control burden between different terminals. However, the challenges are that small droop gains will cause voltage deviations, while higher droop gain settings will cause large oscillations. This study aims to enhance the performance of the traditional droop controller by considering the DC cable dynamics. Based on the backstepping control concept, DC cables are modelled with a series of capacitors and inductors. The final droop control law is deduced step-by-step from the original remote side. At each step the control error from the previous step is considered. Simulation results show that both the voltage deviations and oscillations can be effectively reduced using the proposed method. Further, power sharing between different terminals can be effectively simplified such that it correlates linearly with the droop gains, thus enabling simple yet accurate system operation and control.
Conference Paper
In this paper, an analysis of the dc dynamics of multiterminal VSC-HVDC systems using the small signal modeling method is presented. Usually, the VSC controllers are designed under the consideration that they operate independently of each other. However, the possible interactions among them and the dc grid should be studied, especially in multi-terminal topologies. In this paper, three VSC-HVDC systems are modeled and, after linearization, the eigenvalues of the system are calculated for different loading conditions. The results from this analysis are compared to those obtained from more detailed models using PSCAD. It is shown that the operating point, the gains of the direct-voltage controller and the cable dynamics have an impact on the system performance.
Article
This paper discusses the impact of dc transmission voltage drops on the distribution of dc grid balancing power when dc voltage droop control is applied. DC line voltage drops in a multiterminal VSC-HVDC (MTDC) system result in nonuniform variations of dc bus voltages when changes in dc grid power flow occur. This in turn affects the distribution of instantaneous balancing power in a MTDC that uses dc voltage droop control. The values of dc voltage droop constants determine the degree of impact that dc voltage drops will have on the sharing of balancing power in the dc grid. In this paper, an analytical expression for estimating the distribution of balancing power which accounts for dc line voltage drops is derived. A five-terminal MTDC was modelled in PSCAD for demonstrating the effects of dc line voltage drops as well as for validating the proposed analytical expression which estimates balancing power distribution.
Article
This paper discusses the extension of electromechanical stability models of voltage source converter high voltage direct current (VSC HVDC) to multi-terminal (MTDC) systems. The paper introduces a control model with a cascaded DC voltage control at every converter that allows a two-terminal VSC HVDC system to cope with converter outages. When extended to an MTDC system, the model naturally evolves into a master-slave set-up with converters taking over the DC voltage control in case the DC voltage controlling converter fails. It is shown that the model can be used to include a voltage droop control to share the power imbalance after a contingency in the DC system amongst the converters in the system. Finally, the paper discusses two possible model reductions, in line with the assumptions made in transient stability modeling. The control algorithms and VSC HVDC systems have been implemented using both MatDyn, an open source MATLAB transient stability program, as well as the commercial power system simulation package EUROSTAG.
Article
Voltage-source-converter (VSC) technologies present a bright opportunity in a variety of fields within the power system industry. New modular multilevel converters (MMCs) are expected to supersede two- and three-level VSC-based technologies for HVDC applications due to their recognized advantages in terms of scalability, performance, and efficiency. The computational burden introduced by detailed modeling of MMC-HVDC systems in electromagnetic-transients (EMT)-type programs complicates the study of transients especially when these systems are integrated into a large network. This paper presents a novel average-value model (AVM) for efficient and accurate representation of a detailed MMC–HVDC system. It also develops a detailed 401-level MMC-HVDC model for validating the AVM and studies the performance of both models when integrated into a large 400-kV transmission system in Europe. The results show that the AVM is significantly more efficient while maintaining its accuracy for the dynamic response of the overall system.
Article
This paper addresses the control of multiterminal voltage-source converters at high-voltage direct current in the context of offshore wind farms. Droop control is commonly used to regulate the dc voltage in this kind of grid, and droop parameters are selected on the basis of steady-state analyses. Here, a control design methodology is proposed based on the frequency-response analysis. This methodology provides a criterion to select the droop gains, taking into account the performance specifications [i.e., the desired voltage errors and the maximum control inputs (currents)]. The application of the methodology is illustrated with a four-terminal grid.
Optimizing DC Voltage Droop Settings for AC/DC System Interactions
  • R Eriksson
  • J Beerten
  • M Ghandhari
  • S Member
Adaptive Droop Control for Effective Power Sharing in Multi-Terminal DC (MTDC) Grids
  • N R Chauhuri
  • B Chauhudri