ArticlePDF Available

Abstract

This research demonstrates the physical feasibility of constructing a single degree of freedom ocean-wave energy capturing device of extremely high efficiency, which serves also as an almost-perfect floating breakwater. The device consists of an asymmetric heaving floater and a power-take-off (PTO) system. A special geometry was first designed to have minimal effects from viscosity. As such, potential-flow analysis proved adequate for predicting the behavior of the device even in a real-fluid environment. Per ideal-fluid theory, at the heave resonance frequency, when the absorption damping of the PTO is matched with the radiation damping of the floater, an energy extraction efficiency of 96.34% can be achieved. At this high-efficiency condition, the transmitted waves beyond the floater are 12.5% of the incident-wave amplitude (or a mere 1.56% of the incident-wave energy). A working two-dimensional physical unit of 0.227m beam and 0.8m draft was designed and fabricated to work with the permanent magnet linear generator developed in (Yeung et al., 2012). The floater-PTO system was tested at The Model-Testing Facility of the University of California (UC), Berkeley. Experiments showed that when the PTO operates at even just 48% of the optimal damping, the device yields already an energy-capturing efficiency of 82%, with only 2% of the incident-wave energy transmitted. These latter values are in agreement with the theoretical predictions. Restraining lateral force and pitching moment are shown, as well as how wave energy is directed to the PTO.
Abstract
This research demonstrates the physical feasibility of constructing a single degree of freedom ocean-wave energy capturing
                

    


               



 


Keywords


1 Introduction
                
 emission levels from
 
 

The “Berkeley Wedge”: an asymmetrical energy-capturing floating breakwater of
high performance*
Farshad Madhi1, Meghan E. Sinclair2, and Ronald W. Yeung3





Manuscript submitted to MS&OT on August 15, 2013. Accepted on October 10, 2013. Editor: Marcelo A. S. Neves.
Article posted online on December 16, 2013: URL: www.sobena.org.br/msot/volume.htm
* US Provisional Patent No. 61/883,274 (UC No. BK-2014-037-1) URL: http://techtransfer.universityofcalifornia.edu/NCD/23530.html
Vol. 9 No. 1 pp. 05-16 June 2014
Marine Systems & Ocean Technology 5
USPTO Patent #9416766B2
(Aug,2016)
         
  
at a given site is available 
     


      

technical potential to serve as clean renewable energy sources


         
    
with the stipulation that when operating at resonance
   

        
        
       



device consists of foils rotating about a shaft perpendicular
   


      
      
                   
     

       

   

        


    

     
        
      


               

      
    
     
       
        
 

              
      
       
      
     
     





reducing complications arisen from wetness of the electrical

                  



       
        
      



2 Theoretical framework
We consider a two-dimensional body with motion restricted to

         
    


where A and k are the wave amplitude and wave number
      

to k in a water depth h

with g        
     k =
/g    
    (x,y,t) that
     

contour B and of the free surface y

time-harmonic factors




a is the
The “Berkeley Wedge”: an asymmetrical energy-capturing floating breakwater of high performance
Farshad Madhi, Meghan E. Sinclair, and Ronald W. Yeung
6 Marine Systems & Ocean Technology
Vol. 9 No. 1 pp. 05-16 June 2014
 
       
potential is typically decomposed as

The terms




     
      


body surface B

B





where j
waves for unit-velocity of heave motion as depicted in
    f y     


The solution of

enables us to calculate the heave added
       


B
where





B



        
        
R and T be computed




j and k are the indices associated with any
 
problem
 
does not need to be solved to obtain R and T
    

2.1 Plausible asymmetric floater shape
         

       
     

       
         

by manipulating a shape function F   
and        
calm-water line being 

F 
The constants ABC can be found by applying the
F  F =
F _=F d* where = d* is the inflection-point
     A=+C
B= _ _C and C = d*d*+_ d* _ 
inflection point of d* = _ 
   

F 
       
variable is replaced by _ e where e was chosen to be
      
        
  

The “Berkeley Wedge”: an asymmetrical energy-capturing floating breakwater of high performance
Farshad Madhi, Meghan E. Sinclair, and Ronald W. Yeung
Vol. 9 No. 1 pp. 05-16 June 2014
Marine Systems & Ocean Technology 7
D
b
2(t)
h
y
x
A
(x,t) =A Re{-ie }
i(kx - t)
Aj
-e-ikx Aj
+eikx
x1x2
E
E
1
2
O
B
 
 sec
 Dba
8 Marine Systems & Ocean Technology
Vol. 9 No. 1 pp. 05-16 June 2014
54321 0 1 2 3 4 5
t/T=4
CMML
UC BERKELEY
t/T=4
CMML
UC BERKELEY
5 0 5
2
1.5
1
0.5
0
0.5
1
1.5
2
54321 0 1 2 3 4 5
t/T=4.25
CMML
UC BERKELEY
t/T=4.25
CMML
UC BERKELEY
5 0 5 2
1.5
1
0.5
0
0.5
1
1.5
2
54321 0 1 2 3 4 5
t/T=4.5
CMML
UC BERKELEY
t/T=4.5
CMML
UC BERKELEY
5 0 5 2
1.5
1
0.5
0
0.5
1
1.5
2
54321 0 1 2 3 4 5
t/T=4.75
CMML
UC BERKELEY
t/T=4.75
CMML
UC BERKELEY
5 0 5 2
1.5
1
0.5
0
0.5
1
1.5
2
                     
                [sec1]
          D  b  a2 
4
The “Berkeley Wedge”: an asymmetrical energy-capturing floating breakwater of high performance
Farshad Madhi, Meghan E. Sinclair, and Ronald W. Yeung
dimensions of Db

resonance period of 
       
  


 



   

      
        
     
        
  

       
        
only minimal effects on the motion of our particular design
       
   
  
motion amplitude of am
2.2 Equation of motion, response
amplitude operator, and efficiency
         





where Kg and Bg     

         


K=
gb and
body mass M=
As where As is the submerged cross-sectional

in footnote        


where         Bg to the



e
 

 
where the group velocity is given by Vg = g
 
   


          
 
   
       
  




           
       




e          
radiation 
radiation
i.e.        


i.e. 
       

of
jj
  and ij


Vol. 9 No. 1 pp. 05-16 June 2014
Marine Systems & Ocean Technology 9
The “Berkeley Wedge”: an asymmetrical energy-capturing floating breakwater of high performance
Farshad Madhi, Meghan E. Sinclair, and Ronald W. Yeung
2.3 Long-wave approximation of X2 and
corresponding RAO

        




  

of kb



gb
    
k =

g 



where 


These predictions are consistent with the results given in


3 Design and fabrication of the
floater

    
    

   

         




was designed to be attached to the carriage located above the
    
          
       

where wf


         

         
       
  

        



10 Marine Systems & Ocean Technology
Vol. 9 No. 1 pp. 05-16 June 2014
 and hydrodynamic shape factor
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0
0.1
0.2
0.3
0.4
0.5
0.6
|A±
j|
¯σ

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0
0.5
1
γ
γ-RWYADMXA
γ-FSRVM
|A
j|-RWYADMXA
|A+
j|-RWYADMXA
|A
j|-FSRVM
|A+
j|-FSRVM
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
¯σ
¯µ22 ,¯
λ22

¯µ22 -RWYADMXA
¯
λ22 -RWYADMXA
¯µ22 -FSRVM
¯
λ22 -FSRVM

 and radiation damping
The “Berkeley Wedge”: an asymmetrical energy-capturing floating breakwater of high performance
Farshad Madhi, Meghan E. Sinclair, and Ronald W. Yeung
The material for the mounting structure was chosen to be
         
 


      



3.1 Permanent magnet linear generator
(PMLG)
        
 was obtained to be
     
of  
   
        
         


       
          
 

The stator has two columns of metallic teeth with coils
winding around them and two sets of ball bearings which

    
between the coils and stator and by changing the resistance of
   
    

 
         
     
        
The actual values of the generator damping for the gap of
       Bg N _ s /
m     Bg
N _ s / m = 

    
Bg
N _ s / m


       

 
 
 
 
Vol. 9 No. 1 pp. 05-16 June 2014
Marine Systems & Ocean Technology 11
 
 
The “Berkeley Wedge”: an asymmetrical energy-capturing floating breakwater of high performance
Farshad Madhi, Meghan E. Sinclair, and Ronald W. Yeung
3.2 Restraining forces and moments
on mounting structure

      
moment analysis was conducted to obtain an estimation of the
moment acting on the bearings induced by hydrodynamic and




where Fext and Mext are the restraining sway force and pitching
       
          M
  whereas M= xg M     
and moment are exerted by the bearings that guide the heave
       
force and moment at the coordinate origin O





 



 
Fext
and pitch moment Mext

of


 
4 Experimental findings and
concept confirmation
The heave wave-exciting force was measured by restricting
          

xx


force X obtained from the present model tests for a wave
      

       

resonance 
the computed results for longer waves as one would
 
long-wave approximation results are in agreement with the




  

          
   

          
represents the case when 

      
       
 



 

D
>
6)
the experimental
       
consistent with the measurements of
X

            




where RT and TT are the complex wave amplitudes propagating

and
e

R2 T 2
    
D.

  
three values of constant damping Bg
The valley in the RT curves around resonance suggests that

TT
12 Marine Systems & Ocean Technology
Vol. 9 No. 1 pp. 05-16 June 2014
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0
2
4
6
8
10
|Mext|
¯σ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0
2
4
6
8
10
|Fext|
|Fext
|¯
f=0
|Fext
|¯
f=1
|Mext
|¯
f=0
|Mext
|¯
f=1
The “Berkeley Wedge”: an asymmetrical energy-capturing floating breakwater of high performance
Farshad Madhi, Meghan E. Sinclair, and Ronald W. Yeung

D b 
 
Bg


       
 
achieve
e . 
e 
this experiment with 
 
 
the TT value over T      




Wedge mounted on the bottom of the moving outer cylinder


         
 
        

 



 
5 Conclusions
       
   
      
        
     


Bg of the generator is matched with the radiation damping
             

  

       

   
For the case of Bg  

res  

 
      
Bg =
Vol. 9 No. 1 pp. 05-16 June 2014
Marine Systems & Ocean Technology 13
0.4 0.5 0.6 0.7 0.8 0.9 1
0.2
0.4
0.6
0.8
1
1.2
1.4

¯σ
!
!¯
X2!
!
|¯
X2|RWYADM XA
|¯
X2|Long Wave Aprx
|¯
X2|Expt.
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

¯σ
!
!
!
a2
A
!
!
!
!
!
!
a2
A
!
!
!¯
f=0
!
!
!
a2
A
!
!
!¯
f=0.2652
!
!
!
a2
A
!
!
!¯
f=0.4818
!
!
!
a2
A
!
!
!¯
f=1
Expt.!
!
!
a2
A
!
!
!¯
f=0
Expt.!
!
!
a2
A
!
!
!¯
f=0.2652
Expt.!
!
!
a2
A
!
!
!¯
f=0.4818
2.2
3.6
λ
2.8
4.9
7.1
0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0
0.2
0.4
0.6
0.8
1
ηe
¯σ

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0
0.25
0.5
0.75
1
|T|,|R|,|TT|,|RT|
|TT|¯
f=1
|RT|¯
f=1
|TT|¯
f=0.4818
|RT|¯
f=0.4818
|T|
|R|
Expt. |T|¯
f=0.4818
ηe|¯
f=1
ηe|¯
f=0.4818
Expt. ηe|¯
f=0.4818

Bg values
The “Berkeley Wedge”: an asymmetrical energy-capturing floating breakwater of high performance
Farshad Madhi, Meghan E. Sinclair, and Ronald W. Yeung

resBg 

res
 
    
        

     

      


 
the restraining force and moment do get transferred to the


6 Acknowledgements

        
        
      
      
       

  
    
     
     

References
AmAr
   

AubAult
 
st


bedArd


bessho        
     

brito-melo
of wells turbine design parameters by numerical simulation
      

evAns 

FAgley          
“Computational investigation of irregular wave cancellation
      
st

he

     

JiAng
of rolling cams for wave-energy capture in a viscous
     st
     

KAnner

     nd


KeArny

 
KoutAndos    
     

liAo        
     

mAdhi                 
      


mAlArA       
an u-oscillating water column and performance in random

14 Marine Systems & Ocean Technology
Vol. 9 No. 1 pp. 05-16 June 2014
The “Berkeley Wedge”: an asymmetrical energy-capturing floating breakwater of high performance
Farshad Madhi, Meghan E. Sinclair, and Ronald W. Yeung
Video Clip
https://www.youtube.com/watch?v=D_wPAhw-cu0
mørK     
     
th
     

shugAn
    

siegel

      
st


sinclAir
   

son
and validation of a two-coaxial cylinders system as a wave-
    
rd

teh
      
     

tom
      
   st  
     

uzAKi
        

       

WehAusen

WehAusen



yeung       
      
st

yeung         
from  to        
  th   

yeung      
      
  

yeung         

notes for course  

Appendix A. Derivation of heave
wave-exciting force using the long-
wave approximation
The heave wave-exciting force can be calculated using the


B
       X = X2
F +
X2
D X2
F includes the incident wave potential
and
X2
D includes the diffraction potential

corresponds to the



where 
as follows

The term f ( y)
ekix+yikxkykixy
ik2xy to simplify the



B



Vol. 9 No. 1 pp. 05-16 June 2014
Marine Systems & Ocean Technology 15
The “Berkeley Wedge”: an asymmetrical energy-capturing floating breakwater of high performance
Farshad Madhi, Meghan E. Sinclair, and Ronald W. Yeung
For obtaining the X2
D  
conditions for
and


B B B


B
B and
hdenotes the
bottom boundary and F  
The contributions due to and F can be discarded
because
and
satisfy the same boundary conditions on
h can also be discarded because


B B


B
We can once again use the
 
evaluate 

B
where the terms of and   
of the long wave approximation kb     

to evaluate X2
D and obtain

 X2
F+X2
Dk =

g and non-dimensional
        
wave-exciting force

16 Marine Systems & Ocean Technology
Vol. 9 No. 1 pp. 05-16 June 2014
The “Berkeley Wedge”: an asymmetrical energy-capturing floating breakwater of high performance
Farshad Madhi, Meghan E. Sinclair, and Ronald W. Yeung
Article
We propose a novel Triple Coaxial-cylinder Wave-Energy Converter (TCWEC) system, as an evolution of the commonly deployed dual-coaxial cylinder WEC (DCWEC). TCWEC consists of one inner cylinder and two concentric outer cylinders, characterized by two coupled resonant frequencies, improving wave power absorption. A semi-analytical model, based on potential flow theory and matched eigenfunction expansions, is developed to analyze the 3-Degrees of Freedom (DOF) system. The viscous drag coefficients are determined by Computational Fluid Dynamics (CFD) simulations and employed as equivalent linear damping. Analysis of impact of the viscous flow-separation factor fvis on the capture width indicates that the higher energy-absorption capability of TCWEC is not merely attributed to a smaller fvis value, but rather a planned split of the outer cylinder in DCWEC design into two cylinders in TCWEC, so as to produce an effectively broader resonance property. Under identical sea conditions, it is found that, compared to DCWEC, the optimal capture width of TCWEC is increased by as much as 77% in regular waves. In irregular waves, the optimal capture width is increased up to 40% across the entire frequency range. These findings suggest that the energy absorption efficiency of TCWEC is promising and its potential for real-world applications.
Article
Full-text available
Enhancing the survival performance of wave energy converters (WECs) in extreme wave conditions is crucial, and reducing wave loads is a key aspect of this. Placing the device underwater has been recognized as a beneficial strategy, yet the determination of the optimal submerged depth and the effects of varying wave conditions remain ambiguous. To address this, the study numerically analyzes the total forces in both horizontal and vertical directions, along with their harmonic components, across different wave configurations. A computational fluid dynamics method is employed to investigate a triangular-baffle bottom-shaped oscillating floater, which is known for its high energy conversion efficiency. The findings indicate that submerging the device to a depth equivalent to half the actual focused amplitude (1/2Ab) is the most effective strategy in the given sea state, offering superior wave force reduction vertically and robust performance horizontally. The analysis of harmonics reveals the significant contribution of high-order components to the total wave forces. Additionally, the study examines the impact of focused wave amplitudes and peak frequencies, showing that although force reductions are lessened in more extreme conditions, the optimal submerged depth of 1/2Ab still yields near 30% reduction in total vertical force and 22% in total horizontal force. This research provides theoretical insight that can guide the enhancement of WECs' survival capabilities in practical engineering applications.
Article
Two asymmetric types of floating breakwaters integrated with a wave energy converter (WEC-FBs), a floating square box with a triangle (trapezoidal type) or a wave baffle (L type) attached to its rear side, have been proposed. In this research, the hydrodynamic performance, including capture width ratio (CWR), wave transmission coefficient, heave motion, and force coefficient, were studied and compared between the two types. A numerical simulation model based on the Navier–Stokes equation was employed. The effects of power take-off (PTO) damping coefficient, wave periods, and draft/displacement on the hydrodynamic performance of the two structure shapes were simulated and investigated. The results reveal that the L type performs better in shorter wave periods, and the trapezoidal type exhibits a higher CWR in intermediate wave periods. This study offers knowledge of the design and protection of the two WEC-FB types.
Article
Full-text available
A free-surface semicircular breakwater (SCB) has been developed for protecting coastal and marine infrastructures against ocean waves. The hydrodynamic characteristics of the breakwater are investigated in irregular seas through an experimental program. A test model of the semicircular breakwater has been constructed with front wall porosity varied at 0 (i.e., no perforations), 9, 18, and 27%. The wave surface elevations are measured at different locations upstream and downstream of the models, and the coefficients of wave transmission, reflection, and energy dissipation are evaluated. Wave climate in the vicinity of the breakwater models and horizontal wave force on them are also measured. On the basis of the measured data, empirical models are proposed to provide design formulas for wave transmission, wave reflection, and horizontal wave force. The proposed empirical models show good agreement with the measured data; however, sensible engineering judgment must be taken while using these because the equations proposed are based on small-scale laboratory tests. The overall results indicate that the impermeable SCB model is an effective wave reflector, and the permeable SCB models are good energy dissipaters. DOI: 10.1061/(ASCE)WW.1943-5460.0000116. (C) 2012 American Society of Civil Engineers.
Article
Full-text available
Engineering designs in the ocean environment often involve bodies with thin or plate-like appendages. These are used as de-vices to inhibit flow-induced vibrations, enhance directional sta-bility, increase damping, or reduce excessive wave-induced motion. These phenomena all share the common characteristics that flow separation is important. An overview is given of the treatment of these physically similar problems, with the use of a recently devel-oped viscous-fluid solver called the Free-Surface Random-Vortex Method (FSRVM). This is an efficient nonlinear formulation that can include surface-wave effects and reproduce inviscid-fluid re-sults if the latter is desired. Vortex-induced vibration (VIV) of risers, roll-damping of bilge keels, free decay of a Floating Pro-duction Storage and Offloading (FPSO) barge are considered as examples. Comparisons with experiments are made where avail-able. Limitations and outlook are discussed.
Article
Full-text available
Wave propagation and damping mechanism due to elastic coating of the sea surface is considered. The hydrodynamic performance of an elastic plate is analyzed for various conditions in terms of wave reflection and transmission, plate deflection, and surface strain. Rigidity and geometrical scales of the coating plate essentially affect the wave transmission characteristics. The model of wave propagation and scattering is constructed in the long-wave approximation. The case of elastic plate with fixed edges is considered. It is shown that optimally designed horizontal flexible membrane can be a very effective wave barrier in a beach zone.
Article
The ability of a Cycloidal Wave Energy Converter (CycWEC) to cancel irregular deep ocean waves is investigated in a time integrated, inviscid potential flow simulation. A CycWEC consists of one or more hydrofoils attached eccentrically to a shaft that is aligned parallel to the incoming waves. The entire device is fully submerged in operation. A Bretschneider spectrum with 40 discrete components is used to model an irregular wave environment in the simulations. A sensor placed up-wave of the CycWEC measures the incoming wave height and provides a signal for the wave state estimator, a non-causal Hilbert transformation, to estimate the instantaneous frequency, phase and amplitude of the irregular wave pattern. A linear control scheme which proportionally controls hydrofoil pitch and compensates for phase delays is adopted. Efficiency for the design Bretschneider spectrum shows more than 99% efficiency, while non-optimum, off design operating conditions still maintain more than 85% efficiency. These results are in agreement with concurrent experimental results obtained at a 1:300 scale.
Article
Experiments were conducted to investigate the performance of two newly designed coaxial cylinders as a wave-energy extractor system in regular waves. The coaxial-cylinder design as a point-absorber consists of a tension-tethered vertical inner cylinder and a heaving outer or toroidal cylinder moving in the vertical direction. The relative heave motion between the two cylinders is used to convert the wave-induced response to electrical energy. The first-order heave response of the outer cylinder is used as the mathematical model in the frequency domain and the predicted results are compared with experimental measurements taken in a wave basin. The analytical solutions for the hydrodynamic added mass, damping, and wave-exciting force of the heaving fioater are obtained from Chau and Yeung (2012, OMAE2012-# 83987). Experimentally determined hydrodynamic coefficients from free-decay tests at the resonance frequency are obtained to account for the effects of viscosity. Experimental results first reported include the wave-exciting force on the outer cylinder and its free response induced by the incident waves. The permanent magnet linear generator (PMLG) developed in Tom and Yeung (2012, OMAE2012-# 83736) is next installed as a passive power take-off (PTO) system. The electrical power output from the linear generator is measured with the resistance load as a parameter. The measured performances.
Conference Paper
The ability of a Cycloidal Wave Energy Converter (CycWEC) to cancel irregular deep ocean waves is investigated in a time integrated, inviscid potential flow simulation. A CycWEC consists of one or more hydrofoils attached eccentrically to a shaft that is aligned parallel to the incoming waves. The entire device is fully submerged in operation. A Bretschneider spectrum with 40 discrete components is used to model an irregular wave environment in the simulations. A sensor placed up-wave of the CycWEC measures the incoming wave height and provides a signal for the wave state estimator, a non-causal Hilbert transformation, to estimate the instantaneous frequency, phase and amplitude of the irregular wave pattern. A linear control scheme which proportionally controls hydrofoil pitch and compensates for phase delays is adopted. Efficiency for the design Bretschneider spectrum shows more than 99% efficiency, while non-optimum, off design operating conditions still maintain more than 85% efficiency. These results are in agreement with concurrent experimental results obtained at a 1:300 scale.
Conference Paper
The possibility of incorporating a wave-energy extractor into a current design of the WindFloat platform is examined. First, to absorb wave energy, a rolling cam shape, with rotary power take-off, is attached to a tubular truss member of the WindFloat located above the calm-waterline. Based on the assumption that the extractor is operating in beam seas, numerical predictions for the coupled 3-DOF system (surge, heave and pitch motions) were completed for an ideal-fluid situation. The degradation of the performance of the wave energy extractor because of viscous effects was discussed in [1]. Second, a design of a versatile bi-directional rotary system, named the UC Berkeley Double-Ratchet Mechanism (UCB-DRM) was made. This mechanism can produce a unidirectional rotational motion, thus facilitating the power take off by a generator. A physical unit was constructed. The efficiency and performance of this mechanical system is assessed by introducing a known, bi-directional torque input and measuring the torque output.
Conference Paper
This paper will discuss the very serious topic of the design of the WindFloat, a full-scale floating wind turbine. The importance of the fundamentals of hydrodynamics in achieving the desired performance cannot be overstressed. These will be discussed in this paper, together with some of the key considerations that entered into the design process. At the time of writing of this manuscript, a full-scale WindFloat prototype has been spinning for a few months, and the electricity it generated powered all the Christmas lights of Pòvoa de Varzim, a small town in the north of Portugal — whose inhabitants are not seeing a reduction in their electricity bill. The authors have chosen to disassociate the presentation — a progress report — from this manuscript, which should discuss a topic more appropriate to the permanent literature.
Conference Paper
The performance of an unsymmetrical rolling cam as an ocean-wave energy extractor was studied experimentally by Salter (1974) and then analyzed from the hydrodynamics standpoint by a number of workers in the 70’s (e.g. Evans, 1976). The analysis was carried out on the basis of inviscid-fluid theory and the energy-absorbing efficiency was found to approach 100%. This well-known result did not account for the presence of viscosity, which alters not only fluid damping but also, to some extent, the added-inertia characteristics. How fluid viscosity may alter these conclusions and reduce the energy-extraction effectiveness is examined in this paper, for two rolling-cam shapes: a smooth “Eyeball Cam” with a simple mathematical form and a “Keeled Cam” with a single sharp-edged bilge keel. The solution methodology involved the Free-Surface Random-Vortex Method (FSRVM), reviewed by Yeung (2002). Frequency-domain solutions in inviscid fluid were first sought for these two shapes as baseline performance metrics. As expected, without viscosity, both shapes perform exceedingly well in terms of extraction efficiency. The hydrodynamic properties of these two shapes were then examined in a real, viscous fluid, under a high Reynolds-number assumption. The added moment of inertia and damping are noted to be changed, especially for the Keeled Cam. With the power-take-off (PTO) damping chosen based on the viscous-fluid results, time-domain solutions are developed to understand the behavior of the rolling motion, the effects of PTO damping, and the effects of the cam shapes. These assessments can be effectively made with FSRVM as the computational engine, even at motion of fairly large amplitude, for which an actual system may need to be designed.
Conference Paper
This paper evaluates two aspects of enhancements made to the UC-Berkeley ocean-wave energy extraction device first presented in [1]. First, the differences in hydrodynamic performance between flat- and hemispherical bottom floaters were investigated theoretically using UC Berkeley 2-D viscous-flow solver: FSRVM [2]. The predicted enhancement was compared with experimental results, demonstrating that an increase in motion of over 50% was realizable. Second, important modifications to the design, fabrication, and material of the rotor and stator of the permanent magnet linear generator (PMLG) were made with the aim of increasing both power output and mechanical-to-electrical conversion efficiency, ηel. Increased power extraction and efficiency were achieved, doubling what had been previously reported. The non-linear relationship between the generator damping and the magnet-coil gap width was also investigated to verify that the conditions for optimum power extraction presented in [1] were achievable with the PMLG. Experimental results, obtained from testing the coupled floater and PMLG system in the UC-Berkeley wave tank, revealed that measured capture widths were more than double those from the previous design. These results further confirmed that matching of the generator and floater damping significantly increased the global efficiency of the extraction process.