Teaching Computer has led to the design of an educational model that is increasingly making use of market practices linked to business corporations. Within this scenario, a practical and dynamic learning system is being fostered that allows simulations to be carried out in real contexts through problem resolution. Based on constructivist theories, PBL (Problem-Based Learning) is a teaching method that is focused on the students and its main characteristic is that it uses real-world problems to create the learning content and teach the skills required for their solution. However, the adoption of this approach is not an easy task, since it is accompanied by abrupt changes in the traditional paradigm of education, which require changes in the attitudes of the actors involved. In addition, the planning and monitoring of the PBL, involve complex activities that are difficult to manage, especially with regard to determining the quality and compliance of the processes used for problem resolution. Additionally, the Computer Science courses require working on projects provided by real clients, within a dynamic and iterative development process. This strengthens the need to introduce strategies and technologies to support the implementation and management of the method and, enable its effectiveness to be monitored In addition, it provides continuous feedback, and assesses the results generated from the evaluation of the solutions produced during the teaching-learning process. Thus, it is essential to adopt strategies that allow a better management of teaching practice, improved learning by the students and a means of validating the clients involved. From this perspective, this paper presents a virtual teaching and learning environment, called PBLMaestro, which has been designed to support the workflow of a methodology for the implementation of PBL in teaching Computer Science, called xPBL. With the aid of xPBL, it is possible to perform the management of courses using the dynamics of a cycle and series of stages to allow a better control of management processes, by linking real problems to well-defined educational goals. In the case of teacher planning, we were used elements described in xPBL methodology, aligned with educational goals defined from the Bloom Revised Taxonomy. With regard to student tracking, we used the authentic assessment model and mechanisms of Learning Analytics. Gamification strategies were included to increase engagement, retention and motivation, and push notification messages were displayed in a mobile application the PBLMaestro was validated by means of application the environment in the context of the discipline “Network Design” of Computer Science Course, and the results are analyzed in this study. In addition, semi-structured interviews were conducted with the teachers and there was a high degree of satisfaction among the tutors, students and customers who used the service, with regard to the usability and consistency of the proposed environment as well as with its improvements and changes. Although the environment was improved in the area of computer science, it is possible that it can provide support to the STEM context with some customizations.