For some time, there has been a realisation among Genetic Programming researchers that relying on a single scalar fitness value to drive evolutionary search is no longer a satisfactory approach. Instead, efforts are being made to gain richer insights into the complexity of program behaviour. To this end, particular attention has been focused on the notion of semantic space. In this paper we propose and unified hierarchical approach which decomposes program behaviour into semantic, result and adjudicated spaces, where adjudicated space sits at the top of the behavioural hierarchy and represents an abstraction of program behaviour that focuses on the success or failure of candidate solutions in solving problem sub-components. We show that better, smaller solutions are discovered when crossover is directed in adjudicated space. We investigate the effectiveness of several possible adjudicated strategies on a variety of classification and symbolic regression problems, and show that both of our novel pillage and barter tactics significantly outperform both a standard genetic programming and an enhanced genetic programming configuration on the fourteen problems studied. The proposed method is extremely effective when incorporated into a standard Genetic Programming structure but should also complement several other semantic approaches proposed in the literature.