Content uploaded by Cássio Vittorazzi
Author content
All content in this area was uploaded by Cássio Vittorazzi on Nov 29, 2016
Content may be subject to copyright.
ActaHortic.1146.ISHS2016.DOI10.17660/ActaHortic.2016.1146.8
Proc.IIIInt.Sym.onOrganicMatterMgt.andCompostUseinHort.
Eds.:M.Cayuelaetal.
63
Rock phosphate combined with phosphate-
solubilizing microorganisms and humic substance for
reduction of plant phosphorus demands from single
superphosphate
V.B.Giro,K.Jindo,C.Vittorazzi,R.S.SdeOliveira,G.P.Conceição,L.P.CanellasandF.L.Olivares
NúcleodeDesenvolvimentodeInsumosBiológicosparaAgricultura,UniversidadeEstadualdoNorteFluminense
DarcyRibeiro,CamposdosGoytacazes,RiodeJaneiro,Brazil.
Abstract
Phosphorus(P)playsanimportantroleinagroecosystemsasalimitingnutrient
forcropproductionbecauseofitslowsoilavailabilityandhighrequirementsby
plantsatanearlystage.SolubleP‐fertilizeramendmentscontrastwithlowPuse
efficiencyinweatheringtropicalsoils.TheaimofthisworkwastouseP‐solubilizing
microorganisms(PSMs)andhumicsubstance(HS)toenhancePsolubilityofnatural
rockphosphate(RP)ofAraxáforpartialreplacementofsinglesuperphosphate(SSP).
Twopotexperimentsweredesignedundergreenhouseconditions.First,defined
proportionsofSSPandRPwerecombinedinthefollowingsixtreatments(T1,
0/100%;T2,20/80%;T3,40/60%;T4,60/40%;T5,80/20%andT6,100/0%
SSP/RP),usingtwodifferentP‐placementmethods(broadcastanddeepplacement).
Thesub‐optimalPfertilizercombinationof40%SSP+60%RPwasselected.In
addition,deepplacementoftheP‐fertilizercombinationofSSP+RPproduceda
betterplantresponseforallPrates.BasedontheselectedproportionofSSP/RP,a
secondassaywasperformedusingmixedstrainsofbacteriaandfungi(PSM,
previouslyselectedforRPsolubilization)combinedwithhumicacid(HA).Weshowed
thatPSM+HAtreatmentpositivelystimulatedrootandshootweightcomparedwith
non‐inoculatedplantsby17and22%,respectively.Despitethisbiomassincrease,no
differencewasobservedinPconcentration,indicatinganincreasedPuseefficiency.
Overall,ourfindingssuggestthattheapplicationofbothPSMandHSwithRPmaybea
suitablemethodforreductionofsolublePfertilizerdemandswithoutcompromising
plantyields.
Keywords:humicacid,biofertilizer,organicfarming,Pdeficiency,Acrisol
INTRODUCTION
Phosphorusplaysanimportantroleinagroecosystemsasalimitingnutrientforcrop
productionbecauseofitslowsoilavailabilityandhighearlyPrequirementsbyplants(Chien
et al., 2011). However, demands for soluble P‐fertilizer sources contrast with low P use,
beingmorecriticalinsesquioxide‐richsoilswithhighlevelsofactiveAlandFe.Inthiscase,
largeamountsofsolublesourcesofphosphatefertilizersareneededtoovercometheirhigh
P‐fixationcapacity,wherePisconvertedintoaformunavailableforplantuptake(Zhang et
al.,2003).
OnepossibleapproachforPsupplytocropsistoincludeintegrative management
practices that would increase soil organic matter and combine organic and inorganic P
sourceswithdifferentsolubilitytraitsinordertoobtainoptimalcropyield.IglesiasJimenez
etal.(1993)evaluatedtheeffectivenessofcompostasaPsource compared with soluble
inorganicPformsandobservedanincreaseinplanttissuePconcentrationwhentheorganic
Psourcewasused.Inthiscase,organicmatterapplicationcombinedcompetitiveadsorption
effects with net mineralization of organic P that resulted in a greater residual effect on P
supply.However,theuseoforganicsourcesisassociatedwitha relatively slow
mineralization process, non‐synchronized P availability and physiological requirement at
64
theearlyphaseofplantgrowth.
Bycontrast,fullyacidulatedinorganicPfertilizers(i.e.,superphosphates)thatremain
themajorsourceofPapplicationusedbyfarmersaroundtheworld have exhibited a
negativeeconomicandecologicalimpactindifferentagricultureecosystems(Renner,2008).
Inaddition,inmostdevelopingcountries,superphosphatesarenotproducedlocally,andthe
supplytopoorfarmersisratherlimited.Thesecountriespossessdepositsofrockphosphate
(RP)thatcanbeusedfordirectapplicationinagriculture,beingconsideredasanagronomic
andeconomicallyattractivealternative(Zhangetal.,2003).
Selected P‐solubilizing microorganisms (PSM), technologically developed as
bioinoculants (Duarah et al., 2011; Nahas, 1996; Stamford et al., 2008), can be useful to
improve PR solubility. PSMs are ubiquitous inhabitants of soil,mainlyrepresentedby
bacteria and fungi groups. The biomineralization activity on RPismainlyattributedto
production of organic acid and subsequent lowering of pH, although other mechanisms
could operate, such as exopolysaccharide production (Nahas, 1996; Oliveira et al., 2009).
PSMconsortiumsofferthe advantageofmoreefficientP‐solubilizationcapacitythansingle
species,evencomparabletosolublePsources(BrazandNahas,2012).Othertechnological
approaches to increase RP solubilization involve bioreactors for confined reactions, using
differentcarbonand/ornitrogensourcestosupportmicrobialpopulationsandactivitysuch
as biochar (Mendes et al., 2014), agro‐industrial waste (VassilevandVassileva,2003)and
immobilizedcelltechnology(Vassilevetal.,2001).
TheaimofpresentworkwastoassesstheeffectofutilizationofRPasasubstitutefor
singlesuperphosphate(SSP)andthepotentialofmicroorganismsin thepresenceofhumic
acid(HA)onPsolubilizationandplantgrowth.CombinedapplicationofHAandPSMshave
been successfully used as a new biofertilizer for different crops (Canellas et al., 2013;
Canellasand Olivares,2014;Olivaresetal.,2015). It hasbeendemonstratedthatHAhasa
protectiveeffectonmicroorganisms(Martinez‐Balmorietal.,2013),andtherootexudation
profileofplantstreatedwithHAdisplayschangesintheeffluxof organicacids(Canellaset
al.,2008).
WeinitiallydefinedtheproperPratioinacombinationofSSPandRPthatcan
potentially achieve the maximum SSP dose, evaluating as well the effect of two different
typesofPlocalizationonplantgrowth.Subsequently,weevaluatedbioinoculant,formulated
with PSMs in combination with HA, as a new biological input for reduction of plant P
demandsintheformofSSP.
MATERIALSANDMETHODS
Experimentdesign1
Hybridmaizeseeds‘DKB789’wereplantedinplasticpotsfilledwith yellow Acrisol,
whichis one of the typicaltropical weathering acid soils in Brazil with low availableP, low
soilorganicmatter(SOM)content,loweffectivecation‐exchangecapacityandhighP‐fixation
capacity. The chemical characteristicsofthe Acrisol before and after 30 daysof incubation
withdolomitelimestonecanbenotedin(Table1).TheRPofAraxá (33% P2O5; particles
smallerthan0.044mmorsieveof325mesh)wasmixedhomogeneously with SSP. The
mixtureofSSP/RPwasappliedaccordingtotherecommendeddose of 0.14 g of P2O5kg‐1
Acrisol.Sixtreatmentsofthedifferentproportionrates(SSPandRP)weresetup:1)0%SSP
+100%RP;2)20%SSP+80%RP;3)40%SSP+60%RP;4)60%SSP+40%RP;5)80%SSP
+20%RP;6)100%SSP+0%RP.Inaddition,othermacronutrients(NandK)wereapplied
equally to the soil. Each different treatment was performed in four replicates with
randomized statistical design. TheeffectofthePlocationwasalsoevaluatedwith
broadcastingapplicationanddeepplacementbeyondtheseedsowing.After30daysunder
greenhouseconditions,dryweight(shootandroot),rootvolume(RV)androot:shootratio
weremeasured.Equationsofthepolynomialregressionmodeland the correlation
coefficientanalysis(R2)weremeasuredwiththeplottingprogramSIGMAPLOT,basedonthe
FtestattheP<0.05probabilitylevel.
65
Table1. Chemical analysisofB‐horizon of yellow Acrisol soil beforeandafterlimingwith
dolomitelimestone.SB,Sumofbase;CEC,cation‐exchangecapacity.
C
(g kg-1) pH P
(mg dm-3)
K
(mg dm-3)
Ca2+ Mg2+ Al3+ H+Al SB CEC
(cmolc dm-3)
4.7 5.1 4 74 0.5 0.8 0.2 2.0 1.8 3.8
3.9 6.4 4 220 1.1 0.6 0.0 1.0 2.4 3.4
SB, Sum of base; CEC, cation-exchange capacity.
Experimentdesign2
Basedontheresultsoftheprevioustrial,anewpotexperimentwiththesame
experimental design was set up, emended with the sub‐optimal mixtureofPsourcesof
SSP/RP(40:60)andinoculatedornotwithPSMsincombinationor not with HA, in a
completely randomized designed with three treatments and four replicates. After 30 days
under greenhouse conditions, dry weight (shoot and root) and RV were measured. The
determinationofPconcentrationinplanttissuewasmeasuredby using a
spectrophotometerafterdigestionwithsulfuricacid.ThePSMbioinoculantwasformulated
asamicrobialconsortiumusingtwobacteriaandtwofungipreviouslyselectedforhighRP‐
solubilizationability (Table2)insolidandliquidmedium (Vermaetal.,2001),modifiedby
the introduction of Araxá RP. The bacterial inocula (strains BAC22andBAC14H)were
obtainedfromculturesthathadbeengrowninliquidDygsmediumat30°Cfor2daysat140
rpminarotatoryshaker (Baldani et al., 2014). The bacterial suspensions werecentrifuged
at2,000×g,resuspendedinsterilizedwaterandadjustedtoanopticaldensityof1.0at460
nm, which is equivalent to 108cellsmL
‐1.Thefungalinocula(strainsF5andF309)were
grownonsolidpotatodextroseagar(PDA)medium at 30°C for7days.Afterthat,10mLof
sterile water was added. The suspensions obtained werecounted inaNeubauerchamber
andadjustedto3×105sporesmL‐1.Allthemicroorganismsuspensionsweremixedatequal
volumeandappliedtogetherwiththeHA(20mgL‐1 of C)aroundthe localized Pfertilizer
mixture. The volume of the microbial consortium suspension was such that the final
substratemoisturewas50%.TheHAwasobtainedfromfiltercakesugarcanevermicompost
(Canellasetal.,2002).AllresultsarereportedasmeanswithstatisticalanalysisofFtestfor
varianceandFisher‐LCDtestattheP<0.05probabilitylevel.
Table2. CharacteristicsofthefourPSMsusedasbioinoculantinthepresentstudy.
Microorganism Strain number Taxonomy Origin
Bacterium BAC22 Serratia marcescens Vermicompost
Bacterium BAC14H Burkholderia sp. Soil (20-40 cm)
Fungus F5 Curvularia senegalensis Vermicompost
Fungus F309 Unidentified Vermicompost
RESULTSANDDISCUSSION
Experiment1
Theeffect of the differentproportionsof SSP/RP on plant growthandP locationare
showninFigure1.Asexpectedforsesquioxide‐richsoilswithhighlevelsofactiveAlandFe,
broadcastingPincreasedtheinteractionwiththeadsorptiveclaysurface,probablyreducing
Pavailabilityinthesoilsolution,andconsequentlyreducedthe growth rate response to
increaseddosesofappliedPfertilizer(Wisawapipatetal.,2009).Contrarily,deepplacement
ofthePfertilizerincreasedallbiometricparametersofthe plantresponses,comparedwith
thebroadapplication,resultinginaclearplantresponsetoincreaseddosesofSSP.
66
Figure1. Shootdryweight(g),rootdryweight(g),rootvolume(cm3),androot/shootratio
ofmaizecultivar‘DKB789’grownwithdifferentproportionsof SSP/RP and P
placement.
Concerning different proportions of SSP:RP, plant growth was increased in those
treatmentswithahighSSPproportion(100:00,80:20,60:40). On the contrary,alowplant
growth response was shown with a high RP proportion (0:100, 20:80), probably due to a
consequenceofinsufficientacidityinthesoilforsolubilizationandlimitedPsink,(Chienet
al.,2011).Thetreatmentof40:60(SSP:RP)producedhighrootproliferation(Figure1)with
respecttoothertreatments,eventhoughnosignificantdifferenceinshootproliferationwas
observed. Considering that root development is a key factor forimprovingsoilvolume,a
proportion of 40:60 was chosen for the next experiment aimed at minimizing the SPP
demandofplantsbyexploringthepotentialofPSMandHAcombination.
Experiment2
The impact of the combined application of PSMs and HA on plant growth was
observedinshoot(SDW)androotdryweight(RDW)(Figure2)using the 40:60 SSP/RP
combination of localized P fertilizer selected from Experiment 1. Interestingly, the
inoculationwithPSMswasonlyeffectiveinthepresenceofHA,increasingSDWandRDWby
17 and 22%, respectively, compared with treatment T1 (only P fertilizer). Enhanced
performance of plant‐growth‐promoting microorganisms in the presence of humic
substances has been reported previously, and a generation of new biological inputs for
agricultureproposed(Busatoetal., 2012;Canellasetal.,2013;CanellasandOlivares,2014;
Olivareset al., 2015). Humicsubstance not only enhancestheP availabilitybyrhizosphere
acidification(Canellasetal.,2008),butalsoinhibitsPfixationinsoilparticles,makinglabile
P forms available for more time for plant uptake and metabolic use (Erro et al., 2012).
However,higherPconcentrationwasfoundonlyinthe rootsintreatmentT3(Pfertilizer +
PSMandHA),andnodifferencewas found in shoots (Figure2) related tothe control(T1).
According to a previous report of PSM and HA application (Winarso et al., 2011), a weak
correlationofmacronutrientsinsoybeanshootswasobserved.TheapplicationofPSMalone
67
(T2) produced lower values for all parameters of plant growth measured (Figure 2). A
higherratioofroot/shootintreatmentT2reflectsthegeneral morphological changes
causedbyPdeficiencyduetopreferentialdistributiontotheroots(Wissuwaetal.,2005).In
addition,itisshouldbepointedoutthatavailabilityofothernutrientsinfluencePSMgrowth
andstimulatesPconsumption(Mendesetal.,2014).Hence,thepresenceofHA(T3)
providesfavorableconditionsformicroorganisms(Martinez‐Balmorietal.,2013).
Figure2. Shootdryweight(g),rootdryweight(g),rootvolume (cm3),root/shootratio,
shootphosphoruscontent(mgplant‐1)androotphosphoruscontent(mgplant‐1)
ofmaizecultivar‘DKB789’.Means(±SE)followedbythesameletters do not
differsignificantlyaccordingtomeanseparationbyF‐testatthe P<0.05
probabilitylevel.
CONCLUSIONS
ThereispotentialforthereductionofsolublePfertilizerdemandsbyapplicationofRP
incombinationwithselectedPSMsinthepresenceofHA.Thisinitiative can be improved
especiallybylocalizedPapplication,wherethesolubilizationconditionswouldbeoptimized
forplantgrowthbyamoredefinedenvironment,closetotherhizospherecompartment.
ACKNOWLEDGEMENTS
ThankstoCNPq,CAPES,FAPERJandINCTforBiologicalNitrogenFixation for the
fellowshipsandgrantsthatfundedthisresearch.
Literaturecited
Baldani,J.I.,Reis,V.M.,Videira,S.S., Boddey,L.H., and Baldani, V.L.D.(2014). The art of isolating nitrogen‐fixing
bacteriafrom non‐leguminousplantsusingN‐freesemi‐solid media: a practicalguideformicrobiologists. Plant
Soil384(1‐2),413–431http://dx.doi.org/10.1007/s11104‐014‐2186‐6.
Braz, R.R., and Nahas, E. (2012). Synergistic action of both AspergillusnigerandBurkholderiacepaceainco‐
culture increases phosphate solubilization in growth medium. FEMS Microbiol. Lett. 332(1), 84–90
http://dx.doi.org/10.1111/j.1574‐6968.2012.02580.x.PubMed
Busato,J.G.,Lima,L.S.,Aguiar, N.O.,Canellas, L.P., and Olivares,F.L. (2012). Changes in labile phosphorusforms
duringmaturationofvermicompostenrichedwithphosphorus‐solubilizinganddiazotrophicbacteria.Bioresour.
Tec h n o l . 110,390–395http://dx.doi.org/10.1016/j.biortech.2012.01.126.PubMed
Canellas,L.P.,Balmori,D.M.,Médici,L.O.,Aguiar,N.O.,Campostrini,E.,Rosa,R.C.C.,Façanha,A.R.,andOlivares,F.L.
(2013).A combination of humic substances and Herbaspirillumseropedicaeinoculation enhances thegrowthof
maize(ZeamaysL.).PlantSoil366(1‐2),119–132http://dx.doi.org/10.1007/s11104‐012‐1382‐5.
Canellas,L.P.,andOlivares,F.L.(2014). Physiological responses to humic substances asplant growth promoter.
Chem.Biol.Technol.Agric.1(1),3http://dx.doi.org/10.1186/2196‐5641‐1‐3.
Canellas, L.P., Olivares, F.L., Okorokova‐Façanha, A.L., and Façanha, A.R. (2002). Humic acids isolated from
68
earthwormcompostenhancerootelongation,lateralrootemergence,andplasmamembraneH+‐ATPaseactivity
inmaizeroots.PlantPhysiol.130(4),1951–1957http://dx.doi.org/10.1104/pp.007088.PubMed
Canellas,L.P.,Teixeira,L.R.L., Jr.,Dobbss,L.B.,Silva,C.A., Medici, L.O.,Zandonadi,D.B.,and Façanha, A.R. (2008).
Humicacidscrossinteractionswithrootandorganicacids.Ann.Appl.Biol.153,157–166.
Chien, S.H., Prochnow, L.I., Tu, S., and Snyder, C.S. (2011). Agronomicandenvironmentalaspectsofphosphate
fertilizers varying in source and solubility: an update review.Nutr.Cycl.Agroecosyst.89(2), 229–255
http://dx.doi.org/10.1007/s10705‐010‐9390‐4.
Duarah,I., Deka, M.,Saikia,N.,and Deka Boruah, H.P. (2011).Phosphatesolubilizersenhance NPK fertilizer use
efficiencyinriceandlegumecultivation.3Biotech1(4),227–238http://dx.doi.org/10.1007/s13205‐011‐0028‐
2.PubMed
Erro,J.,Urrutia,O.,Baigorri,R., Aparicio‐Tejo,P.,Irigoyen,I.,Storino,F.,Mandado,M.,Yvin,J.C.,and Garcia‐Mina,
J.M. (2012). Organic complexed superphosphates (CSP): physicochemical characterization and agronomical
properties.J.Agric.FoodChem.60(8),2008–2017http://dx.doi.org/10.1021/jf204821j.PubMed
Iglesias Jimenez, E., Perez Garcia, V.M.E., and Hernandez Moreno, J.M. (1993). City refuse compost as a
phosphorus source to overcome the P‐fixation capacity of sesquioxide‐rich soils. Plant Soil 148(1), 115–127
http://dx.doi.org/10.1007/BF02185391.
Martinez‐Balmori,D.,Olivares,F.L.,Spaccini,R., Aguiar,K.P., Araújo,M.F.,Aguiar,N.O.,Guridi,F.,andCanellas,L.P.
(2013).Molecularcharacteristicsofvermicompostandtheirrelationshiptopreservationofinoculatednitrogen‐
fixingbacteria.J.Anal.Appl.Pyrolysis104,540–550http://dx.doi.org/10.1016/j.jaap.2013.05.015.
Mendes, G.O., Zafra, D.L., Vassilev, N.B., Silva, I.R., Ribeiro, J.I., Jr., and Costa, M.D. (2014). Biochar enhances
Aspergillusnigerrockphosphatesolubilizationbyincreasingorganicacidproduction and alleviating fluoride
toxicity.Appl.Environ.Microbiol.80(10),3081–3085http://dx.doi.org/10.1128/AEM.00241‐14.PubMed
Nahas,E.(1996).Factorsdeterminingrockphosphatesolubilizationbymicroorganismsisolatedfromsoil.World
J.Microbiol.Biotechnol.12(6),567–572http://dx.doi.org/10.1007/BF00327716.PubMed
Olivares,F.L.,Aguiar,N.O., Rosa, R.C.C., and Canellas, L.P.(2015). Substrate biofortificationin combination with
foliarspraysofplantgrowthpromotingbacteriaandhumicsubstancesboostsproduction of organic tomatoes.
Sci.Hortic.(Amsterdam)183,100–108http://dx.doi.org/10.1016/j.scienta.2014.11.012.
Oliveira,C.A.,Alves,V.M.C.,Marriel,I.E.,Gomes,E.A.,Scotti,M.R.,Carneiro,N.P.,Guimarães,C.T.,Schaffert,R.E.,and
Sá, N.M.H. (2009). Phosphate solubilizing microorganisms isolatedfromrhizosphereofmaizecultivatedinan
oxisoloftheBrazilianCerradoBiome.SoilBiol.Biochem.41(9), 1782–1787
http://dx.doi.org/10.1016/j.soilbio.2008.01.012.
Renner,R.(2008).Fertilizerphosphatedemandscouldcorrodewatersafety.Environ.Sci.Technol.42(19),7030
http://dx.doi.org/10.1021/es802143w.PubMed
Stamford,N.P.,Lima, R.A., Lira,M.A.,Jr.,and Santos, C.R.S. (2008). Effectivenessof phosphate and potash rocks
with Acidithiobacillus on sugarcane yield and their effects on soil chemical attributes. World J. Microbiol.
Biotechnol.24(10),2061–2066http://dx.doi.org/10.1007/s11274‐008‐9710‐x.
Vassilev, N., and Vassileva, M. (2003). Biotechnological solubilization of rock phosphate on media containing
agro‐industrial wastes. Appl. Microbiol.Biotechnol. 61(5‐6),435–440 http://dx.doi.org/10.1007/s00253‐003‐
1318‐3.PubMed
Vassilev,N.,Vassileva,M.,Fenice,M.,andFederici,F.(2001).Immobilizedcelltechnologyappliedinsolubilization
ofinsolubleinorganic(rock)phosphatesandPplantacquisition. Bioresour. Technol. 79(3), 263–271
http://dx.doi.org/10.1016/S0960‐8524(01)00017‐7.PubMed
Verma,S.C.,Ladha, J.K.,andTripathi,A.K.(2001). Evaluationof plantgrowthpromotingandcolonizationability
ofendophyticdiazotrophsfromdeepwaterrice.J.Biotechnol.91(2‐3), 127–141
http://dx.doi.org/10.1016/S0168‐1656(01)00333‐9.PubMed
Winarso,S.,Sulistyanto,D.,andHandayanto,E.(2011). Effectsofhumiccompoundsandphosphate‐solubilizing
bacteriaonphosphorusavailabilityinanacidsoil.J.Ecol.Nat.Environ.3,232–240.
Wisawapipat, W., Kheoruenromne, I., Suddhiprakarn, A., and Gilkes, R.J. (2009). Phosphate sorption and
desorption by Thai upland soils. Geoderma 153(3‐4), 408–415
http://dx.doi.org/10.1016/j.geoderma.2009.09.005.
Wissuwa,M.,Gamat,G.,and Ismail,A.M.(2005). Isrootgrowthunderphosphorus deficiency affectedbysource
orsinklimitations?J.Exp.Bot.56(417),1943–1950http://dx.doi.org/10.1093/jxb/eri189.PubMed
Zhang,H.C.,Cao,Z.H.,Shen,Q.R.,andWong,M.H.(2003).Effectofphosphatefertilizerapplicationonphosphorus
(P)lossesfrompaddysoilsinTaihuLakeRegion.I.EffectofphosphatefertilizerrateonPlossesfrompaddysoil.
Chemosphere50(6),695–701http://dx.doi.org/10.1016/S0045‐6535(02)00207‐2.PubMed