Conference PaperPDF Available

OREKIT: AN OPEN SOURCE LIBRARY FOR OPERATIONAL FLIGHT DYNAMICS APPLICATIONS

Authors:
  • CS GROUP, Toulouse France

Abstract

The Orekit library is a space flight dynamics library developed since 2002 by CS. It was operationally used during the Jules Verne ATV mission. Since 2008, the library is freely available as an open-source product under the terms of the business-friendly Apache V2.0 license. Given the small size of the market and the still high need for advanced tailored solutions for space systems, the service based business model for added value is much more suited than the license based business model or its new version, the Software As a Service. There are several business models that can be used for economically sound open-source systems. Some are well suited for the space field and will be explained. Some are not adapted and the reasons for this will also been explained. Open-source is an approach that proved efficient in mainstream software industry. It does not always need a very large community as was once thought, but still needs some involvement. The return on investment increases for all contributors as the project expands and the risks decrease at the same time as more and more people use it. The model is attractive for both public entities, academics, industry and SMEs, bringing something to each one of them. It also increases the yield of public funding. OREKIT is an example of a successful open-source project initiated by private industry and operationally during ATV rendezvous. Since its inception, the OREKIT library was aimed both towards quick development for simple use cases and towards fine tuning for expert users. In order to fulfill the first goal, the programming interface provides high level features like attitude modes, automatic discrete events handling within propagation (ground station visibilities, eclipses, maneuver start/stop, altitude crossing, user defined event …), transparent handling of leap seconds, automatic transforms between all frames, transparent use of Earth Orientation Parameters and much more. In order to fulfill the second goal, several physical models are provided for many concepts (orbits, propagators, frames, events, attitudes, time scales, ephemerides …) and all of them can be extended naturally to add user specific models or change the behavior of the provided ones. Since many models offer similar user interfaces, it is possible to build applications that can be used both in a mission analysis configuration with fast models and in an operational configuration with accurate models with a single switch. The presentation will provide both a business view and a technical view of OREKIT. It will explain the benefits of open-source and business models. It will present an overview of the library features and available physical models. A focus on a few innovative concepts will be made, like for example discrete events, time scale handling, slave and master propagation modes, management of time-dependent frames, models switching or transparent handling of complex models that need lots of configuration data. Some examples of how the tool can be used in different operational contexts will be given. The roadmap for the future of the tool will be presented.
Orekit : an Open-source Library for Operational Flight Dynamics Applications



 !
"##$%&"'"#&$()
*$+,-#".$
/
1 OPEN-SOURCE FOR SPACE FLIGHT
DYNAMICS LIBRARY
1.1 Historical context
0++1##23 4 2 " 5
4#  66# %/1"  1
" 6##31 "    1
#21   3  73 1
21##6"4##6#31" 
84##"6"1 21
###3 # 6  1   1 2
#11 " 1 6#
1 464 2#"
9"#.61""#3
1  " 1   ### 6"1
6 ""  2 1 6"3 ###
66 7##1 28 "2  
"0 2#"#3 21 16" -1 #
64".64"6 

/1#.1""4#6
2"6#31 "  # 21 #
"1#""  #"3#8#31
"    " 2#" ##2   2
7:-9;99:<  %/ 18 1 2

718"43166
11#3 6"61 #
"#16'
7## 1288 6#2 ++ "++(21
6 ""2 63  #
6 2#2  "#"
1 -13 6" 6 ++, 21 #3
16-1#36"2#2#4##
211 43"   "4#6#3
6  " 61 # "# " 131# #"
#31$1 6" 2"7-=0
">43
01" 98?  ##2"  66
"#6"
1.2 Strategic choices and business model
0++)  1" 3" "8  985 
21# 1#"
23"1""""6# 
"#31646## 7-3&
 2 ## 83 #  66 "#
"  "4 63 #"
#23"2"4#6
/  1      """    ++(    13
#3 "" 98  6
6"
-1 "2 66" 861 6"#4
18   #3 @ A " ##2"  
66    44  #4      6
66 6"
1.2.1 License choice
#13  6 #  6 #31
"  6#  6 1  8
3#
4# " 6 #  6 .
211 14" 21 6
"
"3#66"7211
"4#61"""7?".#"
&"#46#66#5
7
7?
&
0 7   6#1"  "  1       BC3
6 #CD #5 7?7;E &  ""
"1#0"4#
6#"
0  7   6#1"  "  1        BCF8
6 #CD#5# 7?"""
1 # 7 &  """
"#
0 7    6#1"  "  1        BC&
"# CD #5 1 7?  & 14  
"""13##7
G.6#  3 6 # #  H "
0.6#286 ##H
G " 0 .6#  "#
#&E0-"761
12"1##23# 5
Bad example of the JAT I4 7" 
-#8 211  6'" ++
"" 2 "4#6" 1# .
#98?-1#12strong
copyleft license2111#"1"
"""4"#"#"113
1  #      ++(    4  1
"28
Orekit context:
  ""    1  8 21  3  "
"#  #  1 143 3
  ### 66
64J
"1#8131#
#"1#"1"J
  "#  1    "    4
"316"
7##    1  #"      1  1  761  +
BC"# CD # 7  1 
64#2"# 82 1## 
1 " 898""211221
.6 31124 1343
16 311"7"66#1
986#1"3 #
-1###2#"#5
;  663    #      1  
"
;
/###12K"5
/"163
/"" 1216328
""6
/""6
/"    64  1  63  "
#164
9811312"5BC
"61CD
/498*2#") 1
I# ++(
1.2.2 Business model
96      661  1  64"    
2" 0"#2 "
4 #3   2  131  ##
"    4#4  -1      4
##16'.6""
1 8" 1    "
66# -1 "#4  1 6#
 " " " G 33
13    1     1  0  #    1
#"6#"3
7  "    1  6    "#  
6# " 4 " 66  
#-1"##"5
3##663
#  9%GL0-   6 #31
" 
36# 21"6
6"4#6
2"#
13
2 FROM BASIC TO EXPERT USE OF OREKIT
F?##2126##"#31" 
66#98
/?66198# 
"#4#0#3."'#
"
0"3"1"8"4#6
6#  "  " 6 "
.6
2.1 High level features for easy, fast
development
9864"#2#4#'"
#310  #### "" 
6 #31 "  #8   #
6663" ##"
"#I 61" /1
.46664""
F?##      1  ##23  131  #4#  
64""613#53 5
""
1"#3
663"
#
G16
Attitude modes
4#  6""  "  "    4##  1
-16#11#5
1BC# CD#2#85
&" =##" 63
-3="=9/63
9/."6#>"
1  BC6#.CD  #2  211    6#>  
# #25 23= 26
3"63
7##1"6## 13# "
111 6#1
 21#21;4
 6# " #  #2"
#6#.21# 131
#2#>"## 131
63"
Frames
/3>"1#16
2#311#8 
17 2    # "3 1
  1  #8        6  J  1
    1      1    "
##23#  1
-1"1."4#
  #      1      
"6"  #2    1    "    
## 6""     
# "6" #2  1   6"" 
14"# #12
"1 7- 3 21   ,+
"
7  #    6""      #  64""  
6###1G1"#
Orbit Propagation
98    "  8"    6""  
663    1      #8  86#
6631#663
96  66"  ## 663
1# 1"#"4"1#
"3  1     1  663  -1  663
   2 " "5 BC#4CD "
BCCD"
0  1     BC#4CD  "  1  1"#3    1
#66 6"6# 10?
21 2"## "#3 25 #6
42166"#1
6
0BCCD "1 1"#3  1  #6 
"#3"  1 663 # " # 1
63"11#612
  13121  ##"BC61"#CD-1
# 1663##21 1"#3
1# #6 1BC1"# 6CD1" 16
1"#2####"##  1663
16-1"6#""
1  "6#3  2  1  #6#    1"#3
" "1 6#.6 21 
6" 16"163-1
6#  31#6 21" 4
""""13##6.6#"#
-16631"#1."6"6"
6;#>"61"###23"
 ."64  4#63
1
4 4 "   ##
6" 1663 ""321 ##"
BC4  "CD  9  3    #3  6#  
6""  4  "    4##   4
3#  4  4  4  "      "
1 2 494 """"1
6632##18161
  "  4  "  33      1  666
  G4         6""    
"4"  1 # "3 1 663 21
"""
G4"works in both slave and master mode
#4"1"31"
 21 1 433"1# 1 1 #
  1  8"  1"In master mode
intermediary state corresponding to event time is
computed at the exact time event happens, no matter
step size
F1    4    33"        "  
##3 1663 #8 .6#133
1 "#21 4  6 4
  4 6## 663 1 663
21    #"  11#"    "  "3  
 # .6# -1  # "
  6#  6#  4  #333 3 " 
4# #6
Earth orientation parameters
7##  G1    4    66"  
6  "    "#  0G%  ++*  2
4  "  0G%  MM,    4  
4##    1  .3  G1      21  
2112133
9        4    .  21
1      1  4   1  
66#16"3"##
#""2131#431
 1 6#  1"# 1 1# "
4"38
-11"#31136#""
4   3"     "
## 9.6 ##3
18 "#2?-131
6121#31" .6"
" 82 21 6  6#1" 
98?"8161
 2135 1 '68 6G1
"
Time scale
4##66":--70H--
"##""#4# -70#7"
"" 1#4##1"
 1  # -1 4  1"#"
## #8#
-:#6"#1"#"6# J
21"821"?"1
1
2.2 Fine tuning for expert use
& " ## 1 3"  1 # 
# 3 98  3 "   
"3# 66#21.6 3
 6
Force models
1  "#  # 6  6 #31
" #"7#36#1# "
"#  64""  98  1  ## 
""?"6# .""
4 6 "#  " 1
 # >"6# 6#.
7    .6#  "3  "  "  6    
161#16#."" 4#
#6#"# 21#3
416"#
…........
Events
G4"#6>#6
:31""461
66#    2  4  1"#      "
"34"
41 # 4 "#.#
31      1  3  664    
.#   @.A " & " .3
@##A 4 #"3 
98? 4 1"#3 1  " 
      "  6  "3  1
663 1#"  6#6#  "31
6"336
Frames
:   2 "6" 1 "
"311#8 @6A
 1 .3 -1 
 # "6"-1 .# 21 2
"7- 3 21  1 ,+ 
4#4""1# 141#"#

9  3       6"        
"6##    
1-1##2 .6#36#
16134  41#83
    1  6##.    1  ##  
211"" 2#31# 
…........
Time scale
G4   31 "" 98 #"
64"2"#6#2###
 " 6# 216 "01
6# 1"21"-70
Data
0 "  6# 3  98"
66#  #3   " #"3  
>"216#311 
.3#"
3 ACKNOWLEDGEMENTS
F 181 /"> 1
66 1 6' "##239811
6##"
F  18  ##  1      98  "4#6
++,2112"1"4#4
16' F # 18 ## 1 211#6
"3"64316"
4 REFERENCES
 -  "  /  #4    
6E #8*""++
  #4 14 Stratégies et potentiels de l'open
source dans les entreprises et les administrations
françaises  ++M+  9609    96
F#"/++M
* E E  1 " H"  IERS
Conventions (2003)  0#  G1  %
"% 4
K Free Software Foundation, GNU General Public
License
165==22233=#=36#*+
"#1# I++)
$ G7  ;%  0;%07  0 Free Software
License Agreement6++,
165==222##=#=
N0N1#
, The BSD License
165==22263=#="#616
) 761+I ++K
165==222613=#=0G;G+
( E4"7##"# 2" %1"O'8
"-L#73++, Revisiting Spacetrack
Report #3, 2006 AIAA/AAS Astrodynamics Specialist
Conference
M G O  4 # ;P H1"
FSolving Ordinary Differential Equations I.
Nonstiff Problems      6#
1#( 63#3 M()"
4""MM*
+     /">    
Building a community, an approach for
Space Flight Dynamics6++M
... Similar constraints exist beyond LEO and, thus, for robust and realistic scenario planning, it is necessary to properly consider them already both in algorithmic design and the demonstration of space applications. Specialized simulation tools exist for many aspects of onboard operation, such as communications [15], [16] or orbital dynamics [17], but there is a lack of holistic simulation of the environment. ...
... Limited time for activities Other mission constraints FIGURE 1. Overview of the constraints modelled in PASEOS ranging from propagators such as SGP4 [23] to highfidelity modelling through orekit [17]. All positions and velocities in PASEOS are modelled in the inertial frame of the central body. ...
... Similarly, phenomena such as station keeping and occasional losses of tracking cannot be model with them. Natural additions in the future would be a polyhedral gravity model [50] or the wrapping of a software like orekit [17]. ...
Preprint
Full-text available
The next generation of spacecraft is anticipated to enable various new applications involving onboard processing, machine learning and decentralised operational scenarios. Even though many of these have been previously proposed and evaluated, the operational constraints of real mission scenarios are often either not considered or only rudimentary. Here, we present an open-source Python module called PASEOS that is capable of modelling operational scenarios involving one or multiple spacecraft. It considers several physical phenomena including thermal, power, bandwidth and communications constraints as well as the impact of radiation on spacecraft. PASEOS can be run both as a high-performance-oriented numerical simulation and/or in a real-time mode directly on edge hardware. We demonstrate these capabilities in three scenarios, one in real-time simulation on a Unibap iX-10 100 satellite processor, another in a simulation modelling an entire constellation performing tasks over several hours and one training a machine learning model in a decentralised setting. While we demonstrate tasks in Earth orbit, PASEOS is conceptually designed to allow deep space scenarios too. Our results show that PASEOS can model the described scenarios efficiently and thus provide insight into operational considerations. We show this in terms of runtime and overhead as well as by investigating the modelled temperature, battery status and communication windows of a constellation. By running PASEOS on an actual satellite processor, we showcase how PASEOS can be directly included in hardware demonstrators for future missions. Overall, we provide the first solution to holistically model the physical constraints spacecraft encounter in Earth orbit and beyond. The PASEOS module is available open-source online together with an extensive documentation to enable researchers to quickly incorporate it in their studies.
... Orekit (Maisonobe et al., 2010) is used to model the underlying orbital dynamics, including 140 degree/order Earth gravity, Sun and Moon third body perturbations, cannonball Solar Radiation Pressure (SRP), solid Earth and ocean tides, relativity, and atmospheric drag. As part of this work, the standard Orekit atmospheric drag model was augmented to utilize TIE-GCM density rather than one of the conventional density models included with Orekit, such as Harris Priester. ...
... Cannonball drag and SRP coefficients are estimated within each arc, and therefore, the POD solutions do not have a strong dependance on the drag model applied in RTOrb. The ECEF POD is transformed to Earth Centered Inertial (ECI) using a standard, high-precision transformation in Orekit (Maisonobe et al., 2010). Spacecraft attitude information is used to compute the CubeSat projected area facing into the velocity vector ("A" in Equation 2). ...
Article
Full-text available
In Low Earth Orbit (LEO), atmospheric drag is the largest contributor to trajectory prediction error. The current thermospheric density model used in operations, the High Accuracy Satellite Drag Model (HASDM), applies corrections to an empirical density model every 3 hr using observations of 75+ calibration satellites. This work aims to improve global thermospheric density estimation by utilizing a physics‐based space environment model and precise GPS‐based orbit estimates of LEO CubeSats. The data assimilation approach presented here estimates drivers of the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIE‐GCM) every 1.5 hr using CubeSat GPS information. In this work, Spire Global CubeSat data are used to demonstrate the method using only 10 satellites; the true strength of the method is its potential to exploit data already collected on large LEO constellations (hundreds of CubeSats). Precise Orbit Determination (POD) information from 10 CubeSats over 12 days is used to sense a global density field when Kp historical data show a minor and moderate geomagnetic storm in succession. This paper provides a direct comparison of estimated density, derived by our new method, to HASDM and Swarm mission derived density. A propagation analysis is also executed by comparing the CubeSat POD data to orbits propagated using our estimated density versus HASDM density. The analyses show that the estimated density is within 35% of HASDM during storm‐time conditions, and that the propagation using the estimated density yields an improvement of 26% over NRLMSISE‐00 compared to HASDM, while outperforming HASDM during the second storm peak.
... In this work, the Orekit space dynamics library [8] is used in a Python environment [9] for the orbit propagation. Following the Orekit convention, the Gauss' equations of motion, in terms of osculating equinoctial elements, are used to express the 3D translational dynamics, to avoid singularities for zero eccentricity and inclination angles [10]. ...
Conference Paper
Full-text available
Large constellations are typically designed using sets of periodic orbits and satellite control boxes sized to ensure compatible phasing between co-orbital constellation planes to prevent conjunction events. This work investigates how control action for orbit maintenance influences the size of orbital control boxes. Simulation results are used to improve the fidelity of intrinsic (geometric) orbital capacity estimates and to understand factors that influence the number of admissible satellite locations in Low Earth Orbit. An analysis of orbital separation distances is performed as a function of control, propulsion, orbit, environmental, and S/C characteristics to define estimates for minimum orbital separation distances.
... 2) Calculate the changes in the satellite system provided, using the orekit space dynamics library [19]. 3) Generating the visibility intervals between each node. ...
Article
Quantum computing will play a crucial part in our security infrastructure for the coming years. Quantum networks can consist of direct optical fiber or free-space links. With the use of satellite channels, we can create a quantum network with higher coverage than using optical fibers where the distances are limited due to the properties of the fiber. One of the highest drivers of cost for satellite networks, apart from the cost of the technology needed for such systems, are the costs of launching and maintaining said satellites. By minimizing the satellites needed for a well-functioning quantum network, we can decrease said network’s cost, thus enabling a cheaper quantum internet. In this paper, we present an optical transmittance-based routing algorithm with which it is possible to conduct successful quantum entanglement transfer between terrestrial nodes.
... In addition, the following functions are incorporated to streamline the calculations for the algorithm to stay within the constraints. Incorporating these functions is crucial to developing viable solutions as these functions, built over the Orekit space flight dynamics library [19], are the key to accurate space mission planning. ...
Article
Full-text available
Earth imaging satellites are a crucial part of our everyday lives that enable global tracking of industrial activities. Use cases span many applications, from weather forecasting to digital maps, carbon footprint tracking, and vegetation monitoring. However, there are limitations; satellites are difficult to manufacture, expensive to maintain, and tricky to launch into orbit. Therefore, satellites must be employed efficiently. This poses a challenge known as the satellite mission planning problem, which could be computationally prohibitive to solve on large scales. However, close-to-optimal algorithms, such as greedy reinforcement learning and optimization algorithms, can often provide satisfactory resolutions. This paper introduces a set of quantum algorithms to solve the mission planning problem and demonstrate an advantage over the classical algorithms implemented thus far. The problem is formulated as maximizing the number of high-priority tasks completed on real datasets containing thousands of tasks and multiple satellites. This work demonstrates that through solution-chaining and clustering, optimization and machine learning algorithms offer the greatest potential for optimal solutions. This paper notably illustrates that a hybridized quantum-enhanced reinforcement learning agent can achieve a completion percentage of 98.5% over high-priority tasks, significantly improving over the baseline greedy methods with a completion rate of 75.8%. The results presented in this work pave the way to quantum-enabled solutions in the space industry and, more generally, future mission planning problems across industries.
... In this work, the local magnetic field is calculated using the 2015−2020 epoch of the World Magnetic Model (WMM) (Chulliat et al., 2015). The Java open-source library Orekit (Maisonobe et al., 2010) is used to read the WMM coefficients and interpolate magnetic field values at each location and time. Since the training data set spans a year and includes a large collection of source-sensor paths, we do not anticipate magnetic field variations from ionospheric and magnetospheric perturbations significantly impacting our results. ...
Article
Full-text available
The Earth‐ionosphere waveguide (EIW) determines the propagation of Very Low Frequency (VLF; ∼3−30 kHz) waves. Characterizing the waveguide is a longstanding challenge due to its large spatial scale and the complex variability of the lower ionosphere. Here we apply a novel linear basis function regression technique to characterize attenuation in the EIW using broadband measurements of lightning‐generated radio waves. The process begins with defining a basis function set, which ideally encompasses a feature set that can predict the variability seen in VLF attenuation properties. With this basis set defined, a system of linear equations is then constructed using sensor pair observations to eliminate the dependency on source amplitude in each observation. Using this formalism, an empirical attenuation model for broadband signals from lightning is constructed and the dependence on attenuation properties with the boundary conditions is explored. The empirically derived results show attenuation rates over ice that are 12 dB/Mm higher compared to paths over saltwater. Well‐known east/west attenuation rate asymmetry stemming from anisotropic reflection coefficients of the ionosphere is also demonstrated and investigated. For example, under a daytime ionosphere, westward‐propagating waves suffer up to 2.8 dB/Mm greater attenuation compared to eastward‐propagating waves. The trained model is used for propagation corrections in a global lightning locating system (LLS), but this technique can be expanded to further study VLF attenuation rates by employing different sets of basis functions.
... The Astropy package [1,2] provides tools to perform astronomical and astrodynamics research, with the main goal of creating a robust and collaborative ecosystem with other packages. The Orekit software [3], developed by CS GROUP, has a good reputation in the European space industry sector, as well as within universities' aerospace departments, given its wide range of functionalities. It is written in Java, but it has a python wrapper that allows its use from a python environment. ...
... To evaluate the coverage of the constellation, the Orekit flight dynamics library [23] was used. A one-day simulation time was used. ...
Article
In early satellite mission design, requirements are not yet fixed, cost is sometimes negotiable, and designs are relatively unconstrained. During this period of design freedom, multi-objective optimization can provide a useful lens into the design space by showing theoretical performance limits and illuminating design tradeoffs. This work optimizes a radar constellation for a potential soil moisture mission. Several different optimization cases with different variables are considered and contrasted. The optimization of the instrument and constellation parameters is considered jointly and separately to better understand the effect of coupling on the optimization performance. A science-driven optimization based on soil moisture retrieval error is compared with a performance-metric-driven optimization. Pareto analysis and association rule mining are performed on the generated designs to provide insight into driving features. Design recommendations are made for several cost caps. Results show that optimization that considers the instrument and constellation design together find superior revisit metrics than treating instrument and constellation separately. The use of the science value metric as an optimization objective shows that while cost may always be increased to improve instrument and constellation performance, the difference in science value may be negligible. These findings can inform tradespace exploration studies for similar problems.
... In addition, the following functions are incorporated to streamline the necessary calculations for the algorithm to stay within the constraints. Incorporation of these functions is crucial to developing viable solutions as these functions, built over the Orekit space flight dynamics library [19], are the key to accurate space mission planning. ...
Preprint
Full-text available
Earth imaging satellites are a crucial part of our everyday lives that enable global tracking of industrial activities. Use cases span many applications, from weather forecasting to digital maps, carbon footprint tracking, and vegetation monitoring. However, there are also limitations; satellites are difficult to manufacture, expensive to maintain, and tricky to launch into orbit. Therefore, it is critical that satellites are employed efficiently. This poses a challenge known as the satellite mission planning problem, which could be computationally prohibitive to solve on large scales. However, close-to-optimal algorithms can often provide satisfactory resolutions, such as greedy reinforcement learning, and optimization algorithms. This paper introduces a set of quantum algorithms to solve the mission planning problem and demonstrate an advantage over the classical algorithms implemented thus far. The problem is formulated as maximizing the number of high-priority tasks completed on real datasets containing thousands of tasks and multiple satellites. This work demonstrates that through solution-chaining and clustering, optimization and machine learning algorithms offer the greatest potential for optimal solutions. Most notably, this paper illustrates that a hybridized quantum-enhanced reinforcement learning agent can achieve a completion percentage of 98.5% over high-priority tasks, which is a significant improvement over the baseline greedy methods with a completion rate of 63.6%. The results presented in this work pave the way to quantum-enabled solutions in the space industry and, more generally, future mission planning problems across industries.
Conference Paper
To detect anomaly for RSOs accurately and timely is critical to protect the long-term sustainability of space activities, including Space Situational Awareness (SSA) and Space Traffic Management (STM). In this paper, we explore a new data-driven framework based on deep autoencoder for RSOs' anomaly detection. A novel two-input autoencoder model is proposed to identify whether the tracks belong to the same orbit or not. An in-house simulation-based space catalog environment is used for experiments and analysis. We compare the proposed model with Principal Component Analysis (PCA) method in classification and the results show that the proposed method achieves higher accuracy in identifying whether two tracks are from the same orbits or not than the classical PCA method. Furthermore, the proposed method is also robust to noise data with high accuracy.
  • D Dennis
  • Gérard Mc Carthy
  • Petit
Dennis D. Mc Carthy and Gérard Petit, IERS Conventions (2003), International Earth Rotation and Reference Systems Service.
Software License Agreement
  • Cnrs Cea
  • Cecill Inria
  • Free
CEA, CNRS, INRIA, CeCILL Free Software License Agreement, September 2006, http://www.cecill.info/licences/ Licence_CeCILL_V2-en.html.
  • David A Vallado
  • Paul Crawford
  • Richard Hujsak
  • T S Kelso
David A. Vallado, Paul Crawford, Richard Hujsak, and T.S. Kelso, August 2006, Revisiting Spacetrack Report #3, 2006 AIAA/AAS Astrodynamics Specialist Conference.