Content uploaded by Michael A. Fichman
Author content
All content in this area was uploaded by Michael A. Fichman on Oct 18, 2016
Content may be subject to copyright.
AnEvaluationofPittsburgh’sDynamically‐Priced
CurbParkingPilot
PresentedtotheFacultyoftheSchoolofDesign
ofthe
UniversityofPennsylvania
Inpartialfulfillmentoftherequirementforthe
degreeofMasterofCityandRegionalPlanning
By
MichaelA.Fichman
Philadelphia,Pennsylvania
May6th,2016
Fichman,2
Abstract
Thispaperanalyzesasmall,dynamically‐pricedcurbparkingpilot
thattookplaceinPittsburgh,PAfrom2013to2015.Dynamic
pricingofcurbparkingisarecentinnovation–onewhichis
designedtomanageparkingcongestionthroughprice
manipulationinordertooptimizeoccupancyandreducetraffic
congestion.Ifindthatpricesdeclinedduringthepilot,revenues
roseandoccupanciesmovedtowardstargetrangessetbyprogram
administrators.Inthescantfewstudiesofsuchpricingschemes,
disagreementhasarisenamongstscholarsastowhether
elasticitiesareappropriatetomeasuretheeffectofpricechanges
ondriverbehavior.Thispaperdemonstratestheuseofthe
regressiondiscontinuitystatisticalmodelinestimatingtheeffects
ofpricechangeeffectsondriverbehavior.Regression
discontinuitymodelssuggestthatpriceshadtheintendedeffecton
driverbehaviorduringthePittsburghpilot,butsucheffectstooka
coupleweekstodevelop.
Introduction
InOctoberof2014,Pittsburgh’sCityCouncilauthorizedthePittsburghParkingAuthority
tousea“dynamicpricingmodel”tosetparkingpricescity‐wide.Theperceivedsuccessofa
smallpilotundertakenstartinginJanuary,2013wasthebasisforPittsburgh’scity‐wide
legislation(Zullo2014).Intheory,thedynamicpricingmodelworksasfollows:parkingdemand
andsupplywillequilibratesothattherearealwaysatleastafewspacesavailableoneach
block,minimizingthetimeittakestofindparkingandminimizingcongestionandpollution
(Shoup2004).PittsburghjoinsSanFrancisco,LosAngelesandafewothersinusingthisnew
wayofpricingstreetparking.Withfewpilotscompleted,andfewerstudiedintensely,more
informationisneededtoallowimplementationofdynamic,demand‐basedparkingwitha
thoroughunderstandingofprobableeffects.Dotheprogramsworkasintended?Dotheyvary
Fichman,3
fromplace‐to‐place?Howisdemandaffectedbypricechanges?Howfrequentlyshouldprices
change?Byhowmuch?
Thisstudyuncoversmoreevidenceoftheeffectsofmarket‐basedcurbparkingschemes
byexaminingPittsburgh’spilotprogram.Iconcludethatthepilotworkedasintended‐overall
revenuesrose,occupancymovedtowardstargetrangesonmoststreetsandpricechangeshad
theintendedimpactondriverbehavior.Drivers’generalpricesensitivitywassimilartothat
measuredinotherstudies.Furthermore,thisanalysisdemonstratestheutilityofthe
regressiondiscontinuity(RD)statisticalmodelinanalyzingthecausaleffectsofpricechangesin
theabsenceofrobustcontrols.Furthermore,IusetheRDmodeltoshowthattheeffectof
pricechangesondriverbehaviorwerelargerseveralweeksafterthechangestookplace–
suggestingalaginconsumerresponsetopricechanges.However,therobustnessofthese
findingsisdiminishedbythefactthatapplicationofpricechangesbyadministratorswas
haphazardandresultedindecreasedsamplessizesinRDmodels.
Bycomparingandcontrastingthedynamicsofthispilotprogramtothoseofother
pilots,specificallySanFrancisco’sSFPark,amorenuancedpictureofdynamic,demand‐based
parkingpricingbeginstoemerge.Thisinformationisthenusedtoformthebasisforsome
observationsaboutgeneralizabilityandprogramdesignandadministration.Iconcludeby
offeringrecommendationstothoseplannersinterestedincreatingandoperatingdemand‐
based‐pricedparkingprograms.
Cruising‐theimpetusfordemand‐basedpricingofon‐streetparking
Fordecades,planningscholarshavearguedthatcurbparkingtendstobeunderpriced
andthereforeovercrowded.DonaldShoupsummarizedthehistoryofliteratureonthetopicin
Fichman,4
histomeTheHighCostofFreeParking(2004):Whencurbsideparkingspacesareovercrowded,
andvacantspacesareunavailable,drivers“cruise”insearchofparking.Cruisingcreates
negativeexternalitiesincludingcongestion,airpollutionandunnecessaryfuelconsumption.
Furthermore,congestionpromptedthecreationofminimumparkingrequirementsformost
typesofzoningdistricts.Shouparguespersuasively(inHighCostandelsewhere)thatthese
minimumsareinefficient(Shoup1999)(PierceandShoup2013).
Invariousstudiesundertakenduringthepast90years,cruisinghasbeenobservedto
comprisealargeproportionofoverallcitytraffic.Theaveragepercentageofcruisingasa
proportionofoveralltrafficobservedin10studiesfrom1927‐2011was34%(Shoup2004).As
longagoas1954,Nobel‐winnerWilliamVickreysuggestedthatcurbpricescouldbe
manipulatedinordertosuppressorstimulatedemandwiththegoalofensuringenough
parkingavailabilitytoeliminateordecreasecruising(Vickrey1954).Trafficengineershave
determinedthatapproximately80‐85%averageoccupancyrepresentsanoptimalpointat
whichonespaceperblockshouldbeavailable(Shoup2004)(Millard‐Ball,Weinbergerand
Hampshire2014).ArnottandIncicreatedseveraltheoreticalmodelsofparkingandcongestion
(2006).Theirmost“robust”modelsuggestedthat“itisefficienttoraisetheon‐streetparking
feetothepointwherecruisingforparkingiseliminated.”Thealternativewouldbetoincrease
theamountofparkingtoachievethesameeffect–aninefficientsolutionforreasonsexplained
byShoup(2004).Parkingminimumscreateseriouslandmarketdistortionsandpromotesprawl
andautomobile‐centricdevelopment.Brooke,IsonandQuddus(2014)surveyedstreet
parking‐relatedliterature.Theysuggestthatthereisagreementthatsettingadjacenton‐and
off‐streetparkingtodemand‐basedpricesinconcertcouldeliminatecruising.
Fichman,5
Surveyofexistingpilotprogramsandrelatedresearch
Theemergenceofdigitalparkingmetersnowallowsfordemand‐basedprice
manipulationtoachievedesiredoccupancyorvacancylevels.Furthermore,sincemodern
kiosksacceptcreditcards,pricescanberaisedtolevelswhichwouldhavepreviouslyrequired
driverstocarryonerousamountsofcoinage.Recently,therehavebeenseveralfederally
fundedpilotprogramsdemonstratingthedynamicpricingconcept(USDepartmentof
Transportation2015).Duetothenoveltyofsuchprograms,researchregardingtheeffectsof
demand‐basedpriceregimesisscant.
Atpresent,academicliteratureappearstobelimitedtothecasesofSanFrancisco,
SeattleandLosAngeles.Pittsburgh’spilotprogramwasconductedbytwoCarnegieMellon
professorsasademonstration,andasofthiswriting,hasnotbeenanalyzedinapeerreviewed
study.
Thefourpilotsdifferedinsmallways.Theyeachuseddifferentheuristicoccupancy
targets,pricechangeintervalsandpriceincrements.Somecitiesusedtechtoolsto
communicateratestodrivers.Somevariedpricebytimeofday.Somecitieshadsensorsto
measureoccupancy,someusedestimatesbasedontransactiondata.Theparametersand
characteristicsofthesefourpilotprogramscanbecomparedinFigure1.
Fichman,6
CityTarget
Occupancy
Price
Change
Time
Interval
Price
Increment
($/hr)
Time‐o
f
‐
Day
Pricing?
Consumer
Price
Information
App?
Measured
or
Estimated
Occupancy
SanFrancisco*60‐80%10
changes
(2011‐13)
$0.25 Yes YesMeasured
LosAngeles**70‐90%Nomore
thanonce
permonth
$1(or
150%
baserate)
Yes YesMeasured
Seattle+71‐86%Nottruly
“dynamic”
‐onlyone
change
Variable
bydistrict
No No Estimated
Pittsburgh++60‐80%Nomore
thanonce
permonth
$0.25 No No Estimated
Figure1.Characteristicsofselecteddemand‐basedpricingpilotprogramsintheUS.Alloftheseprogramsexcept
Pittsburgh’shavebeenanalyzedinpeer‐reviewedliterature.Characteristicsofparticularprogramsreflectonlythe
periodsunderstudy.
Informationisdrawnfromthefollowingsources:
*(Millard‐Ball,WeinbergerandHampshire2014),(PierceandShoup2013);**(Ghent2015);
+(Ottosson,etal.2013);++(Fichman2015)
Thesepilotshavebeenstudiedwithvaryingdegreesofrigor.Seattle’spilothasbeen
econometricallyanalyzedinthepeerreviewedliterature(Ottosson,etal.2013),butwasnot
truly“dynamic”asithadonlyonepricechange.TheOttosson,etal,studyofSeattle’s2011
demand‐basedpricecorrectionswasdoneinordertoopportunisticallyexploitanatural
experimentbroughtaboutbyapricechangewhichappliedtowholeneighborhoods.Muchof
theheterogeneityamongstthesediverseneighborhoodsdoesnotappeartohavebeen
persuasivelycontrolled.LosAngeles’LAExpressParkpilothasnotyetbeensubjecttoan
econometricanalysis.SanFrancisco’sSFParkprogramisthemostthoroughlystudiedandmost
programmaticallysophisticatedoftheseprogram.ThePittsburghpilotisinmanyways
influencedby,andsimilartotheSFParkdesign.ThisanalysiswillthereforediscussonlySFPark
andthePittsburghpilotindetail.
Fichman,7
SFPark–design,studyandcriticism
In2011,theSanFranciscoMunicipalTransportationAuthority(SFMTA)adopteda
pricingprogramknownasSFPark.Thisprogramincorporatedthedynamicpricingstrategies
advocatedbyShoupandVickrey.SFParkwasfundedinpartbytheUSDepartmentof
Transportation(USDepartmentofTransportation2015).Thegeneralsetupoftheprogramwas
asfollows:
‐256on‐streetpilotblockswereestablishedincommercialcorridors,some
blocksweresetupascontrols
‐Onpilotblocks,pricesweresetforthreedifferent“timebands”andpriced
differentlyforweekendsandweekdays
‐Whenaverageoccupancyratesonagivenblockfellbelow60%,priceswere
lowered$0.25,whenratesroseabove80%,rateswereraised$0.25.Rateswere
changed10timesduringa2011‐2013study(Millard‐Ball,Weinbergerand
Hampshire2014).
ThereisdisagreementamongstscholarsabouthowSFPark’spricesaffecteddriver
behaviorandwhethertheprogrambroughtaboutoptimaloutcomes.A2013paperbyPierce
andShoupreportedthatparkingdemandinSFPark’sfirstyeartendedtoberelativelyinelastic
butvariedbylocation,time,day,initialpriceandsizeofpricechange.Occupancyonover
2/3rdsofblocksoverorunder60‐80%occupancymovedintothetargetrangeinYear1(Pierce
andShoup2013).SuchananalysisshowsSFPark’spricingregimequicklybringingparking
occupancyintosociallyoptimalequilibrium.Subsequently,severalpapersemergedthat
paintedalessrosypicture.
ChatmanandManvilleconductedastudywhichloggedrepeatedobservationsofSFPark
blocksandfoundthatalthoughoccupancyfellaspricesrose,overalllevelsofavailability(the
timeduringwhichaspaceisavailableonagivenblock),didnotincrease(Chatmanand
Fichman,8
Manville2014).Thisperhapspointstoaweaknessintheoccupancy‐drivenheuristicbasisof
demand‐basedpricingmodels.
Millard‐Ball,WeinbergerandHampshirepublishedtwopapersaboutSFPark–bothof
whichwerecriticalofPierceandShoup’sresearch.Thefirst,publishedin2014in
TransportationResearchPartA,concludedthatratechangesachievedtheSFMTA’soccupancy
goaloverthecourseoftwoyears.However,theyalsoassertedthatPierceandShoup’s(2013)
one‐yearelasticitieswereoverstatedbecauseofafailuretoaddressendogeneityrelatedto
pricechanges.Essentially,theysuggestthatthecircularrelationshipbetweenprice
manipulationanddemandbiasesanymodelusedtoderiveelasticities.Subsequently,Millard‐
Ball,WeinbergerandHampshire(2014)submittedapublishedcommentinresponsetothe
PierceandShoup,publishedintheJournaloftheAmericanPlanningAssociation(JAPA).They
expandedontheirpreviousassertionthatendogeneityispresentdynamic‐pricingelasticity
estimations,addinganassertionthatthechangingconditionswhichdrivetraffictooneplaceor
anotherintroducemorebiasintothesemodels.Subsequently,theycomparedtheone‐year
elasticitiescalculatedbyPierceandShoup(2013)usingtheSFParkdatatoarandomsimulation
wherepricewasdesignedtohavenoimpactondemandandobservedthatPierceandShoup’s
findingswere“largelyspurious,causedbythestatisticalphenomenonofreversiontothe
mean.”(Millard‐Ball,WeinbergerandHampshire2014)
OneoftheprimaryweaknessesintheSFParkdesignwasthelocationofthecontrol
blocks.Mostofthe“control”areasareincompletelydifferentpartsofthecityfromthepilot
areas,leadingtothepossibilityofspatialvariationsthatcannotbeeffectivelycontrolled.For
Fichman,9
example,thedowntowncoreandtouristyFisherman’sWharfarehardtocomparetocontrol
areasinlow‐riseresidentialInnerRichmond.
Millard‐Ball,WeinbergerandHampshire(2014)useda“fuzzy”regressiondiscontinuity
modeltodisaggregatedatabygeographicareaandbyindividualrateadjustment.Theirresults
confirmedtheirskepticismthatindividualpricechangesinSFParkwereinfluencingdemandin
theshortterm.TheRDdesignhaspracticalapplicationforanalysisofratechanges,particularly
inPittsburgh’spilotarea,wheretheprimarypurposewastodemonstrateatooltopolicy
makers,notcreateaniron‐cladexperimentaldesignandapplicationoftreatmenteffectswas
uneven.
AsaresultofMillard‐Ball,WeinbergerandHampshire’sdemonstration,Idecidedtouse
the“sharp”RDmodeltoevaluatetheeffectsoftreatmentinPittsburgh.ThedetailsoftheRD
designarediscussedtowardstheendofthefollowingsection.
PittsburghData,EmpiricalSettingandMethods
DescriptionofPilotProgram
In2012,theCityofPittsburghraisedparkingratesinareasadjacenttoCarnegieMellon
University(CMU)to$2/hour,doublingthepreviouspriceanddrivingparkingoccupancytolow
levelsadjacenttotheuniversity.Thispricechangeprompteddistortedparkingbehavior,as
commutersbeganparkinginfar‐flungresidentialareasandbeganleavingCMU’scurbsides
under‐occupied(Fichman2015).InSeptemberof2012,theCityinstalledelectronickiosks,
meaningthatpricescouldnowbemoreeasilymanipulatedanddriverscouldpayforparking
usingcreditcards,obviatingtheneedtocarrylargequantitiesofcoinage.IntheFallof2012,
StevenSpearandMarkFichman,professorsattheTepperSchoolatCMUpersuadedtheCityof
Fichman,10
Pittsburghtoletthemadministeradynamic,demand‐basedpricingpilotonfivestreetsnear
theUniversity.Unlikethelarge‐scaleSFParkandLAExpressParkpilots,thiswasnotaFederally
fundedproject.ThepilotbeganinJanuary,2013andranuntilDecember,2015.Thepurposeof
thepilotwastodemonstratetotheCitythatoccupancy‐drivenpricingwouldproducebetter
outcomesforbothconsumersandgovernmentthantheCity’ssingle‐price,time‐limitedregime
(Fichman2015).Inlate2014,PittsburghCityCouncilenableddynamicpricingcity‐wide
startinginFebruary,2015(Zullo2014)–spellingthebeginningoftheendforthe
demonstrationpilot.
Figure2.StudyArea
Fichman,11
Fivestreetswereincludedintheoriginalpilot‐TechStreet,MargaretMorrisonStreet,
SchenleyDriveandtwosectionsofFrewStreet(oneknowninthisstudyas“Frew5001”forits
solemeterID).Becausethepilotwasdesignedfordemonstrationandnotspecificallyfor
empiricalstudy,therewereno“control”metersorstreetsinthepilotarea.However,there
weresomefactorsthatmadetheareaeasytostudy.Mostpilotmeterswerenotadjacentto
anyotheron‐streetmeters.Thelandusesurroundingthemeterswasalmostexclusively
institutional,providingareasonableamountofspatialhomogeneitytothestudyarea(Figure
2).Theparkingandtrafficintheareaarealmostentirelyrelatedtotheuniversity–nearby
residentialareashaveamplestreetparking.SchenleyDrivepresentstheexceptiontothis
generalhomogeneity.SchenleyDrivebordersa3‐hourtime‐limitedparkingareaaswellas
somefreeparkingareaswhichareusedbytouristvisitorstoPhippsConservatory.Itcanbe
Figure3.Monthlyratesforeachstreetinthepilot.Thedashedlinerepresentsthe$2pricewhichthe
PPAestablishedinJanuary,2012.
Fichman,12
arguedthatSchenleydoesnotbelonginthestudy,butitmostcertainlyrepresentsapartofthe
CMUparking“market”anditsidiosyncrasiescanbecontrolledusingfixedeffects.
ThePittsburghpilotwasinspiredbytheparametersofSFPark,butoperatedundera
morefluidsetofconditions.Thecityinitiallylimitedpricechangesto$0.25,withnomorethan
onechangepermonth.Eachstreethadonlyoneprice,allday,eachdayforamonth.Parking
wasmeteredforthehours8AM‐6PM.Astimewenton,theadministratorsmadelargerprice
changesattheendoftheschoolyear.After$0.25reductionsseemedtooslowtocorrespond
withdrasticallylowersummer‐timedemand,theadministratorsbeganusinglargerdecreases
attheendoftheschoolyearand$0.50increasesattheendofthesummer.Atimelineofprice
changesforallfivestudystreetscanbefoundinFigure3.Onenotableidiosyncrasyinthe
pricingregimeisthatthe5001sectionofFrewStstartedoffasahigher‐priced“Premium”
parkingarea,butunderthatpricingregimeitsawoccupancyinthe10‐20%range.Thatblockis
extremelysteepandperhapsseenasanundesirableparkinglocation.Administratorsswitched
itovertoan“Economy”pricingregimebylate2013–droppingitspricefrom$2to$1.
Theadministratorsperiodicallyestimatedgrossandmeandailyoccupancy,using
samplesofmid‐weekdata,andchangedpricesbasedinpartonastatedgoaltokeepmid‐
week,school‐yearoccupanciesbetween60‐80%.Theyalsochangedpricesinreactionto
repeated“maxingout”atcertainlocations(Fichman2015).
Fichman,13
Signsindicating“Economy”and“Premium”parkingzoneswerepostedtodifferentiate
higherandlowerrateareasandbygraphicdisplaysattheelectronickiosks,howeverdriversdid
notlearntheactualpriceuntilvisitingthecurb‐sidekiosk(Figure4).Thisisanotabledifference
withtheconsumerexperienceofSFPark,wheredriverswereabletoexaminepricesusingan
internetapplication.AdriverinPittsburghwhodidn’tlikethepricepostedatakioskhadto
decidewhethertopayorreturntothecartofindotherparking.Giventhesecircumstances,it
ispossiblethatsomedriversmadeaquickdecisiontopayanundesirablepriceandusetheir
newfoundinformationaboutpricesontheirnextvisit.Itisalsopossiblethatsomedriversre‐
enteredtheirvehiclesandcontinuedtocruiseforparking.
Figure4.Signageandconsumer‐facinginformationatthestudysite
Fichman,14
Data
TheCityofPittsburghandtheCMUadministratorscollectedadatasetthatconsistedof
point‐levelkiosktransactionsfortheentirecityandconveyedthedatasettomeuponrequest.
Thecity‐widedatasetwhichwasusedforthisstudyconsistedof13,348,153pointlevel
observations.Eachdatapointcontainedthefollowinginformation:purchasetimeanddate,
minutespurchased(units),amountpaid,kioskID(indicatingStreetLocationanduniqueID),
paidintervalstartandend,maskedpayerIDandsomeextraneousinformation(Figure5).The
Cityalsoprovidedthelatitudeandlongitudeofallkiosks.
ItemNameExample
PurchaseDateLocal11/21/20144:51
Terminal‐TerminalID410153‐MARMOR5103
PayUnit
–
NameCard
TicketNumber12241
Amount8
Units514
MaskedPAN443057*8412
PayIntervalStartLocal11/21/20148:00
PayIntervalEndLocal11/21/201414:24
TariffPackage
–
NamePgm42
ArticleNameArticle1
NodeOakland
TariffPackage
–
ID42
OccupancyEstimation
Iestimatedoccupancybykioskinfifteenminuteintervalsthroughouteachdayofthe
studyperiod.Ithencoalescedthesekioskestimationstothestreet‐level.It’snecessarytodeal
withoccupancyatthestreetorblocklevelbecauseA)thatisthelevelatwhichpricesare
determinedandB)becauseadrivercanpayatanykioskonagivenstreet‐eachindividual
kioskmaylogaparkingobservationfromanywhereonthestreet.Mymethodsweredesigned
Figure5.Sampleofrawdata
Fichman,15
toapproximatetheapproachoftheprogramadministrators,soastounderstandprogram
dynamicsfromasimilarstandpoint.
Therewerenumerousconsiderationsandassumptionsnecessarytoundertakethese
estimations.UnlikeSFParkandLAExpressPark,Pittsburghdoesnotusesensorstodetermine
actuallengthofstay.Iassumedthatonaverage,acaroccupiesaspotforaslongastimehas
beenpurchased.Perhapsthisisunreasonable,butforlackofanyotherinformationabout
behaviorrelatedtodepartures,thisisanecessaryassumption.
Itwaschallengingtoestimatemaximainordertoestimatepercentageoccupancies.
WiththeexceptionofstretchesofFrewStreet,eachstreetinthestudyareahasparallel
parking.Parallelparkingareascanaccommodateavaryingnumberofvehiclesdependingon
vehiclesizeandspacingonagivenday.Isurveyedthestudysiteandobservedparallelparking
behavior.Iconsideredthisinformationalongsidestreetlengthmeasurementsdoneusing
GoogleEarthandestimatesofaverageparallelparkingspacelengthdescribedinother
Pennsylvaniadesigncodes(PhiladelphiaMayor'sOfficeofTransportationandUtilities2009).
Pittsburgh’szoningandsubdivisionregulationsdonotspecifythelengthofanon‐streetspace
(CityofPittsburgh2015).Iestimatedaparallelparkingspacetobeapproximately18feetin
lengthanddeterminedparkingmaximaalongeachstreetincludedinthestudyarea(Figure6).
Street(PseudonyminDataSet)MaximumOccupancy PriceRegime
FrewSt.(FREWST)170 Premium
FrewStWest(FREW5001) 14 Economy
TechStreet(TECHST)34 Premium
SchenleyDrive(SCHEDRCMU)107 Economy
MargaretMorrisonSt(MARMOR)54 Economy
Myalgorithmicestimationofoccupancy,writtenusingthestatisticalsoftwareR,
functionedroughlyasfollows:
Figure6.Characteristicsofstreetsinstudyarea
Fichman,16
1.Foreachmeter,foreachday,a96‐itemvectorrepresentsthe96fifteen‐minuteperiodsof
theday.Considereachiteminthevectorasbeinga“bin.”
2.Eachtimeadriverlogsatransaction,dividethenumberofminutespaidbyfifteen.Consider
eachincrementoffifteenminutestobea“token.”Let’ssayadriverpurchasesonehourof
parking‐thatwouldbefourtokens.
3.Giventhestarttimeofthetransaction,roundedtothenearestfifteenminutes–dropthe
firsttokeninthebinthatcorrespondstothattimeandoneineachsuccessivebinuntilthere
arenomoretokens.Soifadriverbuysonehourofparkingat8AM,heisawardedfourtokens‐
hedropsatokenintothe8:00‐8:14bin,oneinthe8:15‐8:29andsoon,untilhe’soutoftokens.
4.Repeatthisprocessforeachtransaction.
5.Sumthelikebinsforallmetersonastreetfortheday.
6.Calculatethepercentageoccupancyineachstreetbinrelativetothemaximumoccupancy,
takethemeanpercentageoccupancyforeachstreet‐dayforthehours8AM‐6PM.Ifthisfigure
isabove100%(asitcanbegiventhefactthatmultipledriverscanpayforaspaceshouldone
leavebeforehistimeisup),assigna100%occupiedor“maxedout”valuetothatday.These
estimationsareeasilyinterpretableviaahistogramwhichshowstheoccupancyofparkedcars
onagivendayshowninFigure7.
Fichman,17
AdditionalDataCleaning
Thepilotprogramwasdesignedtousepricingtomanipulateoccupancyduringmid‐
weekperiodsduringtheschoolyear.Figure8showstheaveragedailyoccupanciesforFrewSt
throughoutthestudyperiod.Itisnoticeablethatduringthesummerandwinterbreakperiods,
occupancyislower–withmanydayslogginglittletonooccupancy.Similarly,thereweredays
duringtheschoolyearwithalmostnooccupancy.Allstreetssharedtheseseasonal
characteristics.Recallthattheconditionsofthepilotonlyallowedfor$0.25pricechanges,one
pricechangepermonth.Despitethefactthatthepilotimplemented$0.50pricechangesat
thebeginningandendofsummerin2014,Ireasonthatthesemonthsofextremelylow
Figure7.EstimatedoccupancyforFrewStreet,September10th,2014
Fichman,18
demandweresubjecttoconditionsinappropriateforsuchaconstrainedpricingregime.Given
theseconditions,IdecidedtoexcludealldatapointsfromthemonthsJune,JulyandAugust
andallSaturdayandSundayobservationsfromregressionmodelsratherthanjustcontrolling
forthem.Theremainingdatasetcontains3840street‐dayobservations.711ofthesefall
withineither30daysbeforeor90daysafteraschool‐yearpricechange.
VariableNameDescriptionExample
streetStreetNameFixedEffect FREW5001
weekdayDayofWeekFixedEffect Monday
dateDateusingPOSITXtimeconvention 2014‐10‐20
off_sessionNoClassesFixedEffect(1for“noclass/exams”) 0
monthlyPricePriceChargedinUSD 1.00
monthDumbMonthFixedEffect OC
T
yearDumbYearFixedEffect YEAR13
avgOccupancyMeanDailyGrossOccupancy 7.6
pctTrueOccupancyMeanPercentageOccupancy 54%
prevOccMeanMid‐WeekOccupancyinPreviousMonth 86%
trueMaximumMaximumBlockOccupancy 14
tMonthPriorToPriceChangeFixedEffect 0
t_plus_1Month1AfterPriceChangeFixedEffect 0
t_plus_2Month2AfterPriceChangeFixedEffect 0
t_plus_3Month3AfterPriceChangeFixedEffect 0
Figure8.AveragedailyoccupanciesonFrewSt.Dashedlinesrepresent60and80%estimatedmeandaily
occupancylevels.RedobservationsrepresentdayscodedashavingnoclassorexaminationsatCMU.
Figure9.Sampleofrawandtransformeddatausedtoestimateregressionmodels
Fichman,19
IalsoexaminedCarnegieMellon’spubliclyavailableacademiccalendarsfortheyears
includedinthepilotstudyandcodedallstreet‐dayswithoutclassorexaminationswitha
dummyvariabletocontrolfor“offsession”universitybusinessinregressionmodels.Figure9
showsasampleofcleanedandtransformeddatausedintheregressionmodelsinthisstudy.
EstimationofPriceElasticitiesofDemand
InordertodeterminetheeffectofpricechangesIundertooktwosetsofregression
models–first,anOrdinaryLeastSquares(OLS)regressiontoestimatetherelationshipbetween
priceandoccupancywhilecontrollingforseveraltimeandlocationalvariables.Equation1
describestheOLSmodel.
⋯
Equation1.OLSmultipleregression
ThenullhypothesistestedbyanOLSmodelisthatthecoefficientindicatingthe
relationshipofpricewithdemand(occupancy)isstatisticallyindistinctfromzero.The
alternativehypothesiswouldbethat“allelseequal,”thereisastatisticallysignificantchance
(p<0.05)thatthemagnitudeofthevalueassociatedwiththeindependentvariable“price”is
notzero.ThecoefficientsusedtoestimateregressionsareshowninFigure9.
SeveralassumptionsmustbemetinorderforOLStocorrectlyfitamodeland
determinethesignificanceofthevalueassociatedwithprice.First,theindependent
variablesshouldhavenostrongmulti‐collinearity.Multi‐collinearitycanbeassessedby
measuringvarianceinflationfactors(VIF)usingthe“car”packageforthelanguageR.Second,
therelationshipbetweenthedependentandindependentvariablesmustbelinear.Third,the
errortermsinthemodel(thedifferencebetweentheobservedpointsandthemeanfunction)
mustbenormallydistributed.Iassumedmodelerrortermstobeapproximatelynormally
Fichman,20
distributed.Lastly,thevarianceortheseerrortermsshouldbeuncorrelatedwiththeother
variables(homoscedastic).
IestimatedthepriceelasticitiesofdemandDforpricePandquantityQatpointEusing
Equation2,whichincorporatesthecoefficientassociatedwithpricefromEquation1.
ED ΔQ/ΔP ∗ P/Q ∗ P/Q
RegressionDiscontinuityModels
Millard‐Ball,WeinbergerandHampshire(2014)arguethatthetwo‐wayrelationship
betweenprice‐changesandoccupancy(e.g.highoccupancylevelsinducingpricechangesand
pricechangesinfluencingoccupancy)representsanendogenousforcewithinanOLSmodel
usedtoestimateelasticities.TheRDmodelisa“quasi‐experimental”designthatoffersawork‐
aroundtothisproblem.ARDdesignassignsa“treatment”effectinanon‐experimentalsetting
bydisaggregatingdatapointsintothoseaboveandbelowacertainthresholdfortreatment
(ThistlewaiteandCampbell1960),(LeeandLemieux2010).Thisdesignhasrecentlyincreased
inpopularityandhasbecome“ahighlycredibleandtransparentwayofestimatingprogram
effects,”accordingtoLeeandLemieux(2010).
Inthecaseoftheparkingpilot,ideally,whenmeanmonthlyoccupanciesdroppedbelow
60%onagivenblock,theyweretobesubjecttoapricedecreaseinthesubsequentmonth.
Similarly,whenoccupanciesexceeded80%,theyweretobesubjecttoapriceincreaseinthe
subsequentmonth.Hypothetically,thiswouldallowfortheapplicationofRDmodelsto
estimatetheeffectofpricechangesoneithersideofthe60%and80%boundariesduringthe
monthpriortoapricechange.BecausethePittsburghpilothadno“control”blocks,theRD
Equation2.PriceElasticityofDemandforPointE
Fichman,21
designisappealing.Allelseequal,onewouldassumeobservationswith59%and61%
occupanciesinagivenmonthtobeverysimilar,exceptforthefactthatthe59%blockwillhave
itspricemanipulatedthefollowingmonth.Thatallowsonetodetectpossibleeffects.
TheRDdesignwhichestimateseffectsoneithersideofastrictcutoffvalueisknownas
a“sharp”RDmodel.SuchamodelisidealizedinFigure10.Inthisfigure,considerthe
relationshipbetweenmonthtandmontht+1.Ifoccupancyonagivenblockinmonthtis
below60%,bydesign,inmontht+1thepriceonthatblockshouldbelower,presumingastrict
applicationofthepricingregimen.Givenanalternativehypothesisthatthedecreaseinpricein
montht+1wouldbeassociatedwithariseinoccupancyrelativetomontht,onewouldexpect
alinefittedtothediscontinuousfunctioninFigure10,wherethetreatment(priceincreaseor
decrease)isrepresentedbyadummyvariableDwhichaffectstheconditionalexpectation
Figure10.GraphicalrepresentationofhypothesizedRDdesignatthe60%occupancythreshold.Redarrow
representsthehypotheticaloccupancyeffectofa$0.25pricechange.E[Y(0)|X]istheconditionalexpectationofY
givenXintheabsenceofthepricechangetreatmenteffect.E[Y(1)|X]istheconditionalexpectationofYgivenXin
thepresenceof(orinteractedwith)thetreatmenteffect(1).
Fichman,22
E(Y|X)ofoutcomesoneithersideofthecutoffvaluec=60%forauser‐specifiedbandwidthb
(Equation3).
D 0
D 1
BecausetheassignmentvariableXisindependentofpotentialoutcomesY(0)andY(1),the
causaleffectofthetreatmentisrepresentedbythecoefficientρ–representingdiscontinuity
betweenestimatedfunctionsoneithersideofthecutoffvalue(Equations4‐6).
EY0|X α
Y1Y
0ρ
α ρD η
Equations3‐6areadaptedfromImbensandLemieux(2008).Thespecificationofbandwidthis
importanttopreventnon‐parametricfunctions(whichfunctiononlargerscalesinthedata)
fromdeceptivelyapproximatingjumpsinvalueatthecutoffpoint(AngristandPischke2015).
Inpractice,theRDmodelcanbeusedasatooltoestimateOLSregressionsoneithersideofthe
discontinuityandcomparetheirbehavioratthecutoff.ThisisthemethodIutilize.However,it
isalsocommonpracticetoestimateasinglemodelandassesstheeffectasthecoefficientρ
associatedwiththeinteractionbetweenthetreatmentfixedeffectandeachofthe
independentvariablesinordertoreducethemagnitudeofstandarderrors(Shaman2016).
TheRDdesigncanbeillustrativeinimplementinga“data‐mining”approach,and
comparingtheeffectoftreatmentonone‐week,two‐week,one‐monthandtwo‐month
Equation3.AssignmentofdummytreatmentvariableD
Equation6.Combinedregressionterms
Equations4&5.Conditionalexpectationgivenlackoftreatmentvariable.
Fichman,23
timescales.Thisapproachallowsonetoperceivethechangeorlagintheeffectofthe
treatmentoneithersideofthethresholdovertime,shouldsuchaneffectexist.RDcanbe
implementedusingthebaseOLSregressionmodelsinRandgraphicallyrepresentedusingthe
“lattice”package.
SomepracticalproblemswiththedatalimitthepowerofRDmodelsinthisinstance.I
examinedtheoccupancydataandpricechangeregimeanddeterminedthatinpractice,the
administratorsdidnotadheretosuchstrictrulesregardingthe60%and80%thresholds–
insteadworkingtominimizespikesinoccupancyandgenerallymaintainoccupancieswithinthe
60‐80%range.Thismeansthattherewereseveralcircumstancesinwhichstreetsthathadmid‐
weekmeanoccupanciesoflessthan80%hadtheirpricesraised,or,inonecircumstance,for
reasonsIcouldnotdetermine,FrewStreet’s“5001”blockunderwentapricehikedespitemean
Figure11.Observationsofdailymeanoccupancyratesformidweek,schoolyearkiosksasafunctionofprevious
occupancyinmontht.Thisplotshowsonlyobservationswhichhadexperiencedpricechangesthemonthprior.
Fichman,24
occupanciesnear20%‐perhapsaresponsetoseveralmaxedoutperiodsintandemwith
coterminousareasonTechStreetandFrew’smaindrag.Administratorscommunicatedtome
thattheseunevenapplicationsoftreatmentwereinpartafunctionofuncertaintyregarding
theoccupancyestimations.Theywerealsoaproductofadministrativeapplicationof
specializedlocalknowledge–forexample,ifidiosyncraticcampuseventslikegraduationledto
inflatedmeanoccupancies,theseobservationsweredisregarded.Also,theadministrators
weresamplingdayseachmonth,ratherthanlookingatthefulldataset–whichmighthaveled
themtomakedecisionswhilemissinginformationthatisincludedinthisstudy(Fichman2015).
Furthermore,becausethedatahadtobetrimmeddowntoomitsummer‐timeobservations,
thismeansthataftercleaning,littledataremainednearthe80%threshold(Figure11)–
certainlynotenoughtocreateanyreliableestimatesforeffectsnear80%.Mostoftheblocks
whichhadschool‐yearrateincreaseshadexperiencedpreviousaverageoccupanciesof100%.
Figure12.Observationsofdailymeanoccupancyratesformidweek,schoolyearkiosksasafunctionofprevious
occupancyinmontht.Observationswhichfollowedapricechangeareshowninred.
Fichman,25
The60%thresholdhasareasonableamountofdataoneitherside,butforsomemonthswith
lessthan60%occupancythetreatmentwasnotapplied(Figure12).Thismaybeaccountedfor
byusingonlytreatedblocksbelowc=60%totheexclusionofun‐treatedblocksbelow60%.
Inordertodetermineifremovaloftheuntreatedobservationsbelow60%wouldunduly
biasthesample,IperformedaWelch,IndependentTwo‐Samplet‐testtotestthenull
hypothesisthatthemeanmid‐week,school‐yearoccupancyinmonthsoflessthan60%
occupancypriortopricedecreasewasstatisticallynodifferentthanmeanoccupancyinmonths
oflessthan60%occupancywhichdidnothavetheirpricesmanipulated.Shouldthesamples
provestronglydistinct,onemightarguethatremovinguntreatedobservationsinordertorun
anRDmodelwouldresultinseriousbiasunlessuntreatedandtreatedobservationsare
essentiallyindistinctfromoneanother.TheWelchtestismoreappropriatethantheStudent’s
t‐testinthiscircumstancebecausethesampleshaveunequalsizesandvariance,buttheWelch
test(sometimesknownasthe“UnequalVariance”t‐test)performswellundersuchan
assumption(Ruxton2006).Ifailedtorejectthenullhypothesisthatthemeanswerestatistically
indistinct,suggestingnospecificbiasinapplyingthetreatment(Figure13).Ibelievethatthe
non‐applicationoftreatmentwasnotdonewithanyspecificgoalofoccupancymanipulation,
Figure13.F‐TestandWelch’sT‐Testperformedondailymeanweekday,school‐yearoccupancyobservations
below60%occupancyforwhichtherewasandwasnotapricechangeinthesubsequentmonth
F‐Statistic p‐value Lower Upper Denominator Numerator RatioofVariances
0.777 0.128 0.548 1.075 96 236 0.777
t‐statistic df p(twotailed) Lower Upper NoPriceChange PriceChange
0.238 160.16 0.813 ‐0.037 0.047 0.389 0.383
F‐TesttoCompareVariances
95%ConfidenceInterval df
Welch'sT‐TestAssumingUnequalVarianceandSampleSize
95%ConfidenceInterval SampleMeans
Fichman,26
butwasratheraproductofhaphazardinterventionbroughtaboutforreasonsspecifiedearlier.
Theprobabilityofasub60%observationreceivingthetreatmentwas0.27.
Results
DescriptiveAnalyses
Duringthecourseofthepilot,overallrevenuesincreased(Figure15).Totalrevenuesfor
thefivestreetsanalyzedinthispaperwere$2,139,328duringthestudyperiod.Recallthatfor
moststreetsinthepilotprogram,ratesdecreasedduringthestudyperiod(Figure3)andall
streetsendeduphavinglowerpricesthanthe$2City‐imposedpricewhichwastheimpetusfor
thepilot.
Bytheendofthepilot,occupanciesformoststreetsmovedtowardsthetarget60‐80%
rangespecifiedbytheadministrators(Figure16).Thepilotseemedespeciallysuccessfulin
elevatingtheoccupancyofblockswhichhadpreviousoccupanciesbelow60%andseemedto
havelittleeffectonblockswhichhadveryhighoccupancies(Figure17).Theplotbelowshows
Figure15.Grossmonthlyrevenuesandlineartrend.
Fichman,27
asimilargraphictoonepublishedbyMillard‐Ball,WeinbergerandHampshire(2014).Thisplot
isnotablysimilarinthatafittedlinedoesnotshowadistinctdiscontinuitynear60%or80%.In
thecaseofSFPark,thislackofdiscontinuitywastakenbytheauthorstomeanthatprice
changeswerenotworking.However,inthecaseofthePittsburghdata,thehaphazard
applicationofpricechangetreatmentsmeansthatoneshouldexpectnosucheffectatthose
thresholds.
Figure16.Street‐by‐streetdaily,on‐session,midweekmeanoccupancieswithlineartrend
Fichman,28
PriceElasticityofDemand
Figure18showsthePriceElasticitiesofDemandforallstreetsbasedonweekday
observationsduringtheentirestudyperiod.TheseelasticitieswerecalculatedbasedonOLS
regressioncoefficientsassociatedwithon‐streetparkingrateestimatedusingthemodelshown
inAppendixI.Thecoefficientsinthesemodelsrepresenttheestimatedeffectofpriceonmean
dailyoccupancywhencontrollingforstreet(inthecaseofthestudy‐wideregression),dayof
Street(PseudonyminDataSet) WeekdayPriceElasticityofDemand
FrewSt.(FREWST)‐0.728
FrewStWest(FREW5001)‐0.299
TechStreet(TECHST)‐0.730
SchenleyDrive(SCHEDRCMU) ‐1.211
MargaretMorrisonSt(MARMOR) ‐0.867
Figure18.Priceelasticitiesofdemandforstreetsinvolvedinthepilot
Figure17.Observationsofdailymeanoccupancyratesformidweek,schoolyearstreet‐daysinmontht+1asa
percentageofpreviousoccupancyinmontht.Loessestimatedfit.Dottedlinerepresents100%.Oneoutlierof
1000%changewasremoved
Fichman,29
week,year,andwhetherCMUclasswasinsession.Thesefactorsexplainedalargeproportion
oftheoverallvarianceinoccupancy.R‐squaredvaluesrangedfrom0.435inthecaseof
SchenleyDriveto.699forthe5001blockofFrewStreet.Itshouldbenotedthatwhetheror
notschoolwasinsessionhadaverylargeeffectonoccupancy.Fortheentiredataset,the“Off
Session”fixedeffectwasassociatedwitha29.7%reductioninmeandailyoccupancy.Ididnot
controlfor“month”oftheyearfixedeffectsbecauseofstrongmulti‐collinearitywiththe“Off
Session”effect.SchenleyDrivewasthemostelastic,whichseemsintuitivegivenitsrelative
distancetomaincampusattractionsanditsrelativeproximitytosomefreeon‐streetparking
nearPhippsConservatory.Thetwopremiumareas,FrewSt.andTechSt.hadverysimilar
elasticities,whiletheEconomy‐pricedMargaretMorrisonStreetwasslightlymoreelastic.Frew
St.’s5001blockwastheleastelasticbyfar.Icomparetheseelasticitiestothosemeasuredfor
SanFranciscoandSeattleinthediscussionsectionofthisstudy.
RegressionDiscontinuity
TheRDmodelssuggestedthatpricechangeswereindeedhavinganeffect(Figure19).
However,someproblemswithsamplesizelimittheconclusivenessoftheseanalysesandthe
resultsshouldbetreatedwithsomereserve.Atthe60%threshold,therewasadistinct
discontinuityforobservationsinmontht+1,estimatedasa12.17%changeinoccupancy
associatedwitha$0.25changeinprice(Figure20).Splittingthediscontinuityintoweeks1‐2
andweeks3‐4ofmontht+1providessomeinterestinginsightintothebehaviorofdrivers.In
weeks1‐2,theestimatedeffectofa$0.25changeinpricewas6.19%(Figure21),whereasthe
estimatedeffectinthemonth’slasttwoweekswas18.14%(Figure22),implyingthattherewas
alagindriverresponsivenesstopricechanges.
Fichman,30
TheregressionlinesrepresentthefittedvaluesoftheOLSmodelsshowninAppendixII.
Relativelysmallsamplesizescausedsomeproblemsandshouldgivesomereasonto
taketheSRDresultswithcaution.First,therewastoolittledataonthetreatmentsideofthe
discontinuitytouseabandwidthsmallerthanthatoftheentiredata‐setwithoutseeingan
incrediblylargediscontinuity–over50%.Thereislittletosuggestthatthislineardiscontinuity
isactuallytracinganon‐linearfunction,butthefunctionmaybeover‐fitted.Second,the
estimationsofdiscontinuitiesforweeks1‐2andweeks3‐4ofmontht+1havetoofew
observationstoincludeasmanycontrolsaswereincludedwiththeestimationofthefullmonth
t+1(AppendixII).Eachoftheseestimationswascarriedoutusingareducednumberof
controlstoeliminatethestrongmulti‐collinearitybetweenstreetfixedeffectsandpricein
TimePeriodChangeinOccupancyat60%Threshold
Montht+112.17%
Montht+1,Days1‐146.19%
Montht+1,Days14‐End18.14%
Figure20.SRDplotshowingdiscontinuityinoccupancyinmontht+1.Blockswhichreceivedpricemanipulation
treatmentbelowthe60%discontinuitythresholdareshowninred.
Figure19.Estimateddiscontinuityat60%thresholdforthreeSRDmodels
Fichman,31
montht.Inthissense,thesebi‐weeklyregressionsarenotcompletelycomparabletothatof
thewholemontht+1.
Discussion
Thedynamicpricingregimeusedduringthepilotpushedoccupancytowardstarget
rates,increasedrevenuesandloweredprices.Furthermore,RDmodelssuggestthattheprice
changeshadtheintendedeffectondriverbehavior.ThestaticratestheCityhadbeenusing
priortotheimplementationofthepilotdidnotaccuratelypriceparkingaccordingtodemand.
Consideringhowrelativelyelasticdriverresponsewasduringthestudyperiod,over‐charging
forparkingduring2012mostlikelycreatedincentivefordriverstomodifytheirparking
behaviorinwaysthathadpotentiallynegativeeffects.Thoughitisdifficulttodiscernwhere
driversparkedoutsidethestudyareawhenpricesweretoohigh,it’sclearthatbehaviorwas
Figures21and22.RDplotsshowingdiscontinuityinoccupancyinmontht+1,weeks1‐2(left)and3‐4(right).
Blockswhichreceivedpricemanipulationtreatmentbelowthe60%discontinuitythresholdareshowninred.
Fichman,32
affected.Forexample,the5001blockofFrewStreethadextremelylowoccupancywhen
pricesweresetat“Premium”levelsearlyinthestudyperiod(atasimilarratetothepre‐study
rateof$2/hr),butsawincreasedoccupancywhenpriceswerereduced.
CityEstimatedElasticity
SanFrancisco(PierceandShoup,2013) ‐1.04to‐0.03
Seattle(Ottossonetal.,2013) ‐0.4 (mean)
Pittsburgh‐1.21to‐0.29
Therangeofelasticitiesestimatedforstreetsinthepilotprogramroughlycorresponds
toestimatesinbothSanFranciscoandSeattle,(Figure23).UnlikeSeattleandSanFrancisco,
thispilotdidnotestimateforblockscity‐wide,andtheabsenceofobservationsincentral
businessareasprobablycreatedapictureofamoreelasticparkingmarket.Forreasons
discussedearlier,simplepriceelasticitiesofdemandareprobablynotextremelyusefulin
determiningthespecificeffectofpricemanipulationbecauseofissueswithendogeneity.
Furthermore,positiveelasticitiesmeasuredbyChatmanandManville(2014)associatedwith
ratehikessuggestthatissueswithlatentdemandmayfurtherobscuretheuseofsuchametric
inmeasuringtheeffectivenessofapricingregime.However,elasticitiesareusefulforpurposes
ofcomparisonconsideringhowscantthepublishedliteratureisatthisjuncture.
Withcaveatsaboutsamplesizetakenunderconsideration,RDmodelssuggestthat
pricechangesdoindeedhaveaneffectondriverbehaviorwhichcorrespondstoanegative
elasticity.However,thesemodelsalsosuggestthatdriversdidnotrespondinstantaneouslyto
pricechangesduringthepilot.Theexistenceoftheselagsimpliesthatmoreprecise
communicationofpricemayreducelag‐timeindriverresponsivenessbycommunicating
informationmorequickly.Suchcommunicationcouldcomeintheformofaconsumer‐facing
Figure23.EstimatedelasticitiesforPittsburghincomparisontootherpublishedstudies.
Fichman,33
internetandphoneapplicationshowingpricinginformationandperhapsoccupancy
estimations.Recallthatduringthepilotprogram,specificpriceswerenotcommunicated
directlytodriversexceptatthekiosk.Althoughtherewerestreetsignsindicating“Economy”
and“Premium”parkingzones,adrivercouldnotlearnthespecificpriceuntilheparkedthecar
andapproachedthekiosk.Bythattime,thedrivermaybemuchlesslikelytogetbackinthe
carandchooseanotherlocationandhemayjustpayforthetransactionandapplynewpricing
knowledgeonthenextvisit.Forone‐timevisitors,ratesmayhavelittleeffect.
Dynamically‐pricedparkingprogramsshouldbedesignedtoallowforrobust
measurementofeffects.Thisanalysisdemonstratesthepotentialutilityoftheregression
discontinuitydesigninmeasuringtheeffectofpricechanges.Theregressiondiscontinuity
modelshouldallowplannerstomonitortheeffectofdynamicpricingwithoutworryingabout
thebiascausedbymyriadspatialandtemporalfactors,nottomentiontheendogeneity
inherentinoccupancy‐drivenpricemanipulations.Inordertoeffectivelyusethistool,
programsshouldadheretooneormoreregimesofrule‐baseddecision‐makingthatcanbe
carefullycomparedandmeasured.Furthermore,randomizedcontrolareasshouldbe
implementedinanypilotprogramtoprovidemorebasisforrobustestimationoftreatment
effects.
Inorderforademand‐based‐pricingprogramtofunctioneffectively,itisimportantto
accuratelymeasureoccupancy.Duringthepilot,fundamentaluncertaintyabouttheaccuracy
ofoccupancymeasuresseemstohavemadeadministrativedecisionspronetoerror.
Knowledgeofthisuncertaintymayhavepromptedadministratorstoimplementratechanges
conservatively.Itisperhapsforthisreasonthatpositiveratechangescamemostlyasaresult
Fichman,34
ofmaximumoccupancyevents,itwasalsoforthisreasonthatpricereductiontreatmentwas
appliedhaphazardly.
Estimatingoccupancyisadifficultthingtodowell–ifsensorscannotbeusedto
monitortrueoccupancy,itwouldbenecessarytomodelarrivalanddepartureratesinrelation
tooccupancytoestimatewhenpeoplehavelefttheirspaces.Spatialelementsofparkingmight
alsobedifficulttomodel–ablockcansupporttencompactcarsorperhapssixpickuptrucks,
withsomemarginforerrorbasedonhowclosedriversdecidetoparktooneanother.Thereis
awaytoreducesomeuncertaintycreatedbythisspatialproblem.WhenadriverinPittsburgh
paysforparkingtheyinputtheirlicenseplatenumber,sothatparkingauthoritiescan
appropriatelyassignticketstoscofflawdrivers.Thispersonalidentifyinginformationismasked
inthedataforprivacypurposes.However,itseemsconceivablethatlicenseplateinformation
couldbejoinedwithinformationaboutthemakeandmodeloftheidentifiedvehicle,which
couldbeassociatedwithadatabaseofknowndimensionsofthesevehicletypes.Thiswould
allowonetoestimatethetotallengthofallthevehiclesparkingatanygiventime.This
naturallyintroducessomeprivacyconcerns,sosubsequenttothisjoinofinformation,perhaps
theID,makeandmodelofthecarcouldbeobscuredbeforeanyadministratorscouldviewit.
Thedifficultypilotadministratorshadininfluencingbehaviorduringsummermonths
pointstotheimportanceofusinglaxconstraintsonpricechanges.Theuseofmultiple“time‐
bands”wouldallowformoresensitiveandflexibleimplementationofpricesinorderto
accommodatefluctuationsinparkingpatternsduringtheday,weekoryear.Oneofthe
reasonsrobuststatisticalanalysiswasdifficultinthisstudywasthatsummerobservationswere
nexttouselessbecausepricescouldnotbeadjustedquicklyenoughtodealwithchangesin
Fichman,35
demand.Althoughadministratorsbeganusinglargerpricechangesduring2014,itwasstilltoo
experimentalandtooslowtoprovideusefuldatawhereinsupplyanddemandweresubjectto
theequilibratingforcesofpricemanipulation.
Ultimately,demand‐basedpricingisdesignedtoreducetrafficcongestionbyeliminating
cruising.Occupancyandvacanciesareonlyproxiesoftherealdependentvariableofinterest.
Totrulyassessanydemand‐basedparkingprogram,trafficcountsshouldbetakenatstrategic
locationsthatallowforcontrolledobservationofeffects.InthecaseofthePittsburghpilot,the
PennsylvaniaDepartmentofTransportation,SouthwesternPennsylvaniaCommissionand
Pittsburgh’scity’splanningdepartmentrespondedtomyinquiriesabouttrafficcount
inventories.Asagroup,theyhadtakenfewerthanahalf‐dozentrafficcountsintheareanear
theuniversity,noneofthemontherelevantstreets.Purposebuiltcountersorvideomonitors
arecheapandeasytooperateandshouldbeintegratedwithanypricemanipulationschemeso
astomeasurethemostimportantofalleffects–roaddecongestion.
Ifdemand‐basedprogramsaremonitoredsuchthatpricescanbemanipulated
effectively,andifrulesareflexibleenoughtoallowforadministratorstoeffectivelyequilibrate
supplyanddemand,thiswillbringparkingalittleclosertobeingagoodwhichisnon‐
excludable.Unlikeatrue“publicgood,”itwillstillberivalinconsumptionwithprivateparking
garages.However,privategarageownersalreadyintuitivelyusethedemand‐basedpricing
strategy–iflotsareempty,theyarechargingtoomuch,andviceversa.Ifpubliclyowned
parkingcanbemoreefficientlypricedsuchthatitcompeteseffectivelywithprivateparking,
privateparkingownersmaycryfoul,buttheirlandwillsoonbepurposedtohigherandbetter
uses–anetsocialbenefit.Aholistictransportationstrategy,completewithdynamicallypriced
Fichman,36
parkingandavailable,reliablepublictransportation,couldcreateanenvironmentinwhichto
makeapoliticallyfeasiblepushtoreduceoreliminateminimumparkingrequirementsina
zoningcodeandmaketheactualpriceofdrivingandparkingtransparenttoconsumers.
I’dliketoacknowledgetheadviceandsupportofFrancescaAmmon,ErickGuerra,Kenneth
Steif,MarkFichman,PaulShaman,IvanTereshenko,CarnegieMellonUniversityandtheCityof
Pittsburghinhelpingmecompletethisproject.
WorksCited
Angrist,JoshuaD,andJorn‐SteffenPischke.2015.Mastering'Metrics.Princton,NJ:PrincetonUniversity
Press.
Arnott,Richard,andErenInci.2006."Anintegratedmodelofdowntownparkingandtrafficcongestion."
JournalofUrbanEconomics60:418‐442.
Brooke,Sarah,StephenIson,andMohammedQuddus.2014."On‐StreetParkingSearch,Reviewand
FutureResearchDirection."TransportationResearchRecord:JournaloftheTransportation
ResearchBoard2469:66‐75.
Chatman,DanielG,andMichaelManville.2014."Theoryversusimplementationincongestion‐priced
parking:AnevaluationofSFPark2011‐2012."ResearchinTransportationEconomics52‐60.
CityofPittsburgh.2015.CodeofOrdinances,CityofPittsburgh,Pennsylvania.Pittsburgh,PA,August15.
AccessedMarch28,2016.
https://www.municode.com/library/pa/pittsburgh/codes/code_of_ordinances.
Colonico,Sebastian,MathiasD.Cattaneo,andRocioTitiunik.2015."rdrobust:AnRPackageforRobust
NonparametricInferenceinRegression‐DiscontinuityDesigns."TheRJournal7(1).
Fichman,Mark,interviewbyMichaelFichman.2015.Personalemailcommunication(October12).
Gelman,Andrew,andJenniferHill.2009.DataAnalysisUsingRegressionandMultilevel/Heirarchical
Models.NewYork:CambridgeUniversityPress.
Ghent,Peer.2015."OptimizingPerformanceObjectivesforProjectsofCongestionPricingforParking."
TransportationResearchRecord:JournaloftheTransportationResearchBoard2530:101‐105.
Imbens,Guido,andThomasLemieux.2008."Regressiondiscontinuitydesigns:Aguidetopractice."
JournalofEconometrics142:615‐635.
Lee,DavidS,andThomasLemieux.2010."RegressionDiscontinuityDesignsInEconomics."Journalof
EconomicLiterature48:281‐355.
Millard‐Ball,Adam,RachelRWeinberger,andRobertCHampshire.2014."EvaluatingtheImpactsof
Performance‐BasedParking,CommentonPierceandShoup."JournaloftheAmericanPlanning
Association79(4):330‐336.
Fichman,37
Millard‐Ball,Adam,RachelRWeinberger,andRobertCHampshire.2014."Isthecurb80%fullor20%
empty?AssessingtheimpactsofSanFrancisco'sparkingpricingexperiment."Transportation
ResearchPart!76‐92.
Ottosson,DadiBaldur,CynthiaChen,TingtingWang,andLinHaiyun.2013."Thesensitivityofon‐street
parkingdemandinresponsetopricechanges:AcasestudyinSeattle,WA."Transportation
Policy25:222‐232.
PhiladelphiaMayor'sOfficeofTransportationandUtilities.2009.PhiladelphiaCompleteStreetsDesign
Handbook.Philadelphia,June4.AccessedMarch28,2016.
http://www.philadelphiastreets.com/images/uploads/resource_library/cs‐handbook.pdf.
Pierce,Gregory,andDonaldShoup.2013."GettingthePricesRight."JournaloftheAmericanPlanning
Association79(1):67‐81.
Ruxton,Graeme.2006."Theunequalvariancet‐testisanunderusedalternativeetoStudent’st‐testand
theMann–WhitneyUtest."BehavioralEcology17(4):688‐690.
Shaman,Paul,interviewbyMichaelFichman.2016.PersonalInterview(April12).
Shoup,Donald.2004.TheHighCostofFreeParking.Chicago,IL:PlannersPress,AmericanPlanning
Association.
Shoup,Donald.1999."Thetroublewithminimumparkingrequirements."TransportationResearchPart
A33:549‐574.
Thistlewaite,Donald,andDonaldTCampbell.1960."Regression‐discontinuityanalysis:Analternativeto
theexpostfactoexperiment."JournalofEducationalPsychology51(6):309‐317.
USDepartmentofTransportation.2015.ValuePricedPilotProgramFunding.August27.Accessed
February3,2016.
http://ops.fhwa.dot.gov/congestionpricing/value_pricing/projects/funding.htm.
Vickrey,William.1954."Theeconomizingofcurbparkingspace."TrafficEngineering62‐67.
Zullo,Robert.2014."Pittsburghtoraiseparkingmeterrates,chargeatnight."PittsburghPost‐Gazette,
December11.AccessedMarch23,2016.http://www.post‐
gazette.com/local/city/2014/12/10/Pittsburgh‐to‐raise‐parking‐meter‐rates‐charge‐at‐
night/stories/201412100208.
Fichman,38
Appendix–Regressiontables
AllStreets FREWST FREWST
5001
SCHENL EY
DRIVE TECHST
MARGARET
MORRISON
ST
MondayFixedEffect ‐5.551
***
‐3.193
**
‐6.763
***
‐1.248 ‐7.856
***
‐7.836
***
Standa rdError 1.049 1.543 2.494 2.392 1.706 2.551
ThursdayFi xedEffect 0.094 1.581 1.217 0.675 ‐2.15 ‐0.608
Standa rdError 1.027 1.473 2.451 2.348 1.678 2.525
Tues da yFi xedEffect ‐1.29 0.261 ‐2.619 0.522 ‐5.172
***
0.41
Standa rdError 1.019 1.453 2.473 2.323 1.66 2.501
WednesdayFixedEffect ‐1.338 ‐0.535 ‐2.07 0.867 ‐3.869
**
‐1.756
Standa rdError 1.024 1.461 2.475 2.374 1.671 2.474
FrewStFixedEffec t 19.537
***
Standa rdError 1.111
Mar garetMorrisonFix edEffect 10.487
***
Standa rdError 1.117
SchenleyDriveFi xedEffect ‐16.646
***
Standa rdError 1.118
TechStFixedEff ect 26.968
***
Standa rdError 1.232
Price(Doll ars ) ‐30.070
***
‐21.251
***
‐9.870
***
‐49.593
***
‐18.291
***
‐57.791
***
Standa rdError 1.014 2.722 3.527 3.031 2.217 4.088
Year 2014FixedEffect 8.724
***
2.258 38.447
***
18.735
***
‐2.475
*
28.012
***
Standa rdError 0.763 1.675 3.879 1.788 1.262 2.191
Year 2015FixedEffect 12.332
***
4.067
**
41.385
***
22.715
***
0.08 33.491
***
Standa rdError 0.882 1.764 3.616 2.518 1.499 2.544
OffSessionFixedEffec t ‐29.767
***
‐24.823
***
‐35.170
***
‐30.071
***
‐33.048
***
‐34.777
***
Standa rdError 0.688 1.01 1.641 1.692 1.152 1.83
Constant 95.616
***
100.242
***
49.806
***
90.769
***
108.331
***
124.302
***
Standa rdError 1.962 6.013 7.479 3.491 5.103 4.298
Observations 2,942 596 562 590 610 584
R
2
0.548 0.578 0.699 0.435 0.584 0.45
Adj u s tedR
2
0.546 0.572 0.694 0.428 0.578 0.443
Resi dua lStd.Error 17.592(df
=2929)
11.377(df
=587)
18.491(df
=553)
17.939(df
=581)
13.074(df
=601)
19.171(df=
575)
FStatis tic
295.783
***
(df=12;
2929)
100.496
***
(df=8;
587)
160.333
***
(df=8;
553)
55.982
***
(df=8;
581)
105.325
***
(df=8;
601)
58.872
***
(df=8;575)
Note:
*
p
**
p
***
p<0.01
OLSModelstoEstimateElasticities
Dependentvariable:
PercentageMeanDa il yOccupa ncy(%)
AppendixI‐OLSregressionsusedtoestimatepriceelasticityofdemand.Basecasesforfixedeffectsare:Friday
(Weekday),2013(Year)andFrewSt5001(Street)andOn‐Session(Off‐Session)
Fichman,39
AppendixII‐OLSregressionsusedtoestimateregressiondiscontinuities.Basecasesforfixedeffectsare:Friday
(Weekday),FrewSt5001(Street)andOn‐Session(Off‐Session)
WholeMonth
t+1,0‐60%
Previous
Occupancy
WholeMonth
t+1,60‐80%
Previous
Occupancy
Week1‐2,
Montht+1,0‐
60%Previous
Occupancy
Week1‐2,
Montht+1,60‐
80%Previous
Occupancy
Week3‐4,
Montht+1,0‐
60%Previous
Occupancy
Week3‐4,
Montht+1,60‐
80%Previous
Occupancy
PreviousMonthMean DailyOccupancy(%) ‐0.463 0.207 ‐2.049
***
0.075 0.542 0.349
*
Standa rdError 0.38 0.141 0.385 0.198 0.437 0.199
MondayFixedEffect ‐0.469 ‐2.189 ‐2.492 ‐1.703 1.914 ‐2.649
Standa rdError 4.512 1.869 3.858 2.535 5.912 2.729
ThursdayFi xedEffect 0.906 1.81 0.427 ‐0.521 ‐0.125 4.177
Standa rdError 4.253 1.814 3.767 2.508 5.206 2.595
Tuesday FixedEffect 2.227 ‐0.951 5.207 ‐1.934 ‐2.432 0.06
Standa rdError 4.493 1.801 4.229 2.486 5.361 2.576
WednesdayFixedEffect ‐0.923 ‐0.899 0.847 ‐1.47 9.047 ‐0.607
Standa rdError 4.526 1.748 3.775 2.483 6.444 2.439
FrewStFixedEffect 12.742
***
11.292
*
12.667
**
Standa rdError 4.319 6.283 6.016
Mar garetMorrisonFixedEffect 7.349
***
2.437 11.146
***
Standa rdError 1.925 2.773 2.677
SchenleyDriveFixedEffect 22.469 ‐20.329
***
67.647
***
‐23.260
***
‐42.416
**
‐17.990
***
Standa rdError 17.555 2.14 15.03 3.153 17.711 3.05
TechStFixedEffect 70.800
***
25.022
***
131.890
***
26.261
***
‐15.295 22.005
***
Standa rdError 14.614 6.007 14.419 8.628 20.181 8.473
Price(Dollars) ‐22.098 ‐39.465
***
‐17.138 ‐45.367
***
‐32.226
***
Standa rdError 15.163 6.518 10.402 9.397 09.197
OffSessionFixedEffect ‐16.890
***
‐36.341
***
‐8.275
**
‐38.069
***
‐67.738
***
‐36.524
***
Standa rdError 4.022 1.356 3.841 2.129 12.546 1.879
Constant 72.046
**
110.992
***
80.616
***
130.596
***
62.946
***
90.220
***
33.093 15.246 22.348 21.833 15.275 21.407
Observations 79 538 39 259 40 279
R
2
0.798 0.685 0.93 0.664 0.869 0.718
Adj us ted R
2
0.772 0.678 0.909 0.649 0.835 0.706
Residual Std.Err or 0.123(df=
69)
0.132(df=
526)
0.075(df=
29)
0.128(df=
247)
0.109(df=
31)
0.135(df=
267)
FStatis tic 30.373
***
(df
=9;69)
103.832
***
(df
=11;526)
43.006
***
(df
=9;29)
44.461
***
(df=
11;247)
25.659
***
(df
=8;31)
61.754
***
(df=
11;267)
Note:
*
p
**
p
***
p<0.01
OLSModelstoEstimateRegre ssion Discontinuity
Dependentvariable:
MeanPercentageOccupanc yForDays inTimePeriodt+i