ThesisPDF Available

An Evaluation of Pittsburgh's Dynamically‐Priced Curb Parking Pilot

Authors:

Abstract and Figures

This paper analyzes a small, dynamically‐priced curb parking pilot that took place in Pittsburgh, PA from 2013 to 2015. Dynamic pricing of curb parking is a recent innovation – one which is designed to manage parking congestion through price manipulation in order to optimize occupancy and reduce traffic congestion. I find that prices declined during the pilot, revenues rose and occupancies moved towards target ranges set by program administrators. In the scant few studies of such pricing schemes, disagreement has arisen amongst scholars as to whether elasticities are appropriate to measure the effect of price changes on driver behavior. This paper demonstrates the use of the regression discontinuity statistical model in estimating the effects of price change effects on driver behavior. Regression discontinuity models suggest that prices had the intended effect on driver behavior during the Pittsburgh pilot, but such effects took a couple weeks to develop.
Content may be subject to copyright.
AnEvaluationofPittsburgh’sDynamicallyPriced
CurbParkingPilot
PresentedtotheFacultyoftheSchoolofDesign
ofthe
UniversityofPennsylvania
Inpartialfulfillmentoftherequirementforthe
degreeofMasterofCityandRegionalPlanning
By
MichaelA.Fichman
Philadelphia,Pennsylvania
May6th,2016
Fichman,2
Abstract
Thispaperanalyzesasmall,dynamicallypricedcurbparkingpilot
thattookplaceinPittsburgh,PAfrom2013to2015.Dynamic
pricingofcurbparkingisarecentinnovationonewhichis
designedtomanageparkingcongestionthroughprice
manipulationinordertooptimizeoccupancyandreducetraffic
congestion.Ifindthatpricesdeclinedduringthepilot,revenues
roseandoccupanciesmovedtowardstargetrangessetbyprogram
administrators.Inthescantfewstudiesofsuchpricingschemes,
disagreementhasarisenamongstscholarsastowhether
elasticitiesareappropriatetomeasuretheeffectofpricechanges
ondriverbehavior.Thispaperdemonstratestheuseofthe
regressiondiscontinuitystatisticalmodelinestimatingtheeffects
ofpricechangeeffectsondriverbehavior.Regression
discontinuitymodelssuggestthatpriceshadtheintendedeffecton
driverbehaviorduringthePittsburghpilot,butsucheffectstooka
coupleweekstodevelop.
Introduction
InOctoberof2014,Pittsburgh’sCityCouncilauthorizedthePittsburghParkingAuthority
tousea“dynamicpricingmodel”tosetparkingpricescitywide.Theperceivedsuccessofa
smallpilotundertakenstartinginJanuary,2013wasthebasisforPittsburgh’scitywide
legislation(Zullo2014).Intheory,thedynamicpricingmodelworksasfollows:parkingdemand
andsupplywillequilibratesothattherearealwaysatleastafewspacesavailableoneach
block,minimizingthetimeittakestofindparkingandminimizingcongestionandpollution
(Shoup2004).PittsburghjoinsSanFrancisco,LosAngelesandafewothersinusingthisnew
wayofpricingstreetparking.Withfewpilotscompleted,andfewerstudiedintensely,more
informationisneededtoallowimplementationofdynamic,demandbasedparkingwitha
thoroughunderstandingofprobableeffects.Dotheprogramsworkasintended?Dotheyvary
Fichman,3
fromplacetoplace?Howisdemandaffectedbypricechanges?Howfrequentlyshouldprices
change?Byhowmuch?
Thisstudyuncoversmoreevidenceoftheeffectsofmarketbasedcurbparkingschemes
byexaminingPittsburgh’spilotprogram.Iconcludethatthepilotworkedasintended‐overall
revenuesrose,occupancymovedtowardstargetrangesonmoststreetsandpricechangeshad
theintendedimpactondriverbehavior.Drivers’generalpricesensitivitywassimilartothat
measuredinotherstudies.Furthermore,thisanalysisdemonstratestheutilityofthe
regressiondiscontinuity(RD)statisticalmodelinanalyzingthecausaleffectsofpricechangesin
theabsenceofrobustcontrols.Furthermore,IusetheRDmodeltoshowthattheeffectof
pricechangesondriverbehaviorwerelargerseveralweeksafterthechangestookplace
suggestingalaginconsumerresponsetopricechanges.However,therobustnessofthese
findingsisdiminishedbythefactthatapplicationofpricechangesbyadministratorswas
haphazardandresultedindecreasedsamplessizesinRDmodels.
Bycomparingandcontrastingthedynamicsofthispilotprogramtothoseofother
pilots,specificallySanFrancisco’sSFPark,amorenuancedpictureofdynamic,demandbased
parkingpricingbeginstoemerge.Thisinformationisthenusedtoformthebasisforsome
observationsaboutgeneralizabilityandprogramdesignandadministration.Iconcludeby
offeringrecommendationstothoseplannersinterestedincreatingandoperatingdemand
basedpricedparkingprograms.
Cruising‐theimpetusfordemandbasedpricingofonstreetparking
Fordecades,planningscholarshavearguedthatcurbparkingtendstobeunderpriced
andthereforeovercrowded.DonaldShoupsummarizedthehistoryofliteratureonthetopicin
Fichman,4
histomeTheHighCostofFreeParking(2004):Whencurbsideparkingspacesareovercrowded,
andvacantspacesareunavailable,drivers“cruise”insearchofparking.Cruisingcreates
negativeexternalitiesincludingcongestion,airpollutionandunnecessaryfuelconsumption.
Furthermore,congestionpromptedthecreationofminimumparkingrequirementsformost
typesofzoningdistricts.Shouparguespersuasively(inHighCostandelsewhere)thatthese
minimumsareinefficient(Shoup1999)(PierceandShoup2013).
Invariousstudiesundertakenduringthepast90years,cruisinghasbeenobservedto
comprisealargeproportionofoverallcitytraffic.Theaveragepercentageofcruisingasa
proportionofoveralltrafficobservedin10studiesfrom19272011was34%(Shoup2004).As
longagoas1954,NobelwinnerWilliamVickreysuggestedthatcurbpricescouldbe
manipulatedinordertosuppressorstimulatedemandwiththegoalofensuringenough
parkingavailabilitytoeliminateordecreasecruising(Vickrey1954).Trafficengineershave
determinedthatapproximately8085%averageoccupancyrepresentsanoptimalpointat
whichonespaceperblockshouldbeavailable(Shoup2004)(MillardBall,Weinbergerand
Hampshire2014).ArnottandIncicreatedseveraltheoreticalmodelsofparkingandcongestion
(2006).Theirmost“robust”modelsuggestedthat“itisefficienttoraisetheonstreetparking
feetothepointwherecruisingforparkingiseliminated.”Thealternativewouldbetoincrease
theamountofparkingtoachievethesameeffectaninefficientsolutionforreasonsexplained
byShoup(2004).Parkingminimumscreateseriouslandmarketdistortionsandpromotesprawl
andautomobilecentricdevelopment.Brooke,IsonandQuddus(2014)surveyedstreet
parkingrelatedliterature.Theysuggestthatthereisagreementthatsettingadjacenton‐and
offstreetparkingtodemandbasedpricesinconcertcouldeliminatecruising.
Fichman,5
Surveyofexistingpilotprogramsandrelatedresearch
Theemergenceofdigitalparkingmetersnowallowsfordemandbasedprice
manipulationtoachievedesiredoccupancyorvacancylevels.Furthermore,sincemodern
kiosksacceptcreditcards,pricescanberaisedtolevelswhichwouldhavepreviouslyrequired
driverstocarryonerousamountsofcoinage.Recently,therehavebeenseveralfederally
fundedpilotprogramsdemonstratingthedynamicpricingconcept(USDepartmentof
Transportation2015).Duetothenoveltyofsuchprograms,researchregardingtheeffectsof
demandbasedpriceregimesisscant.
Atpresent,academicliteratureappearstobelimitedtothecasesofSanFrancisco,
SeattleandLosAngeles.Pittsburgh’spilotprogramwasconductedbytwoCarnegieMellon
professorsasademonstration,andasofthiswriting,hasnotbeenanalyzedinapeerreviewed
study.
Thefourpilotsdifferedinsmallways.Theyeachuseddifferentheuristicoccupancy
targets,pricechangeintervalsandpriceincrements.Somecitiesusedtechtoolsto
communicateratestodrivers.Somevariedpricebytimeofday.Somecitieshadsensorsto
measureoccupancy,someusedestimatesbasedontransactiondata.Theparametersand
characteristicsofthesefourpilotprogramscanbecomparedinFigure1.

Fichman,6
CityTarget
Occupancy
Price
Change
Time
Interval
Price
Increment
($/hr)
Timeo
f
Day
Pricing?
Consumer
Price
Information
App?
Measured
or
Estimated
Occupancy
SanFrancisco*6080%10
changes
(201113)
$0.25 Yes YesMeasured
LosAngeles**7090%Nomore
thanonce
permonth
$1(or
150%
baserate)
Yes YesMeasured
Seattle+7186%Nottruly
“dynamic”
‐onlyone
change
Variable
bydistrict
No No Estimated
Pittsburgh++6080%Nomore
thanonce
permonth
$0.25 No No Estimated
Figure1.CharacteristicsofselecteddemandbasedpricingpilotprogramsintheUS.Alloftheseprogramsexcept
Pittsburgh’shavebeenanalyzedinpeerreviewedliterature.Characteristicsofparticularprogramsreflectonlythe
periodsunderstudy.
Informationisdrawnfromthefollowingsources:
*(MillardBall,WeinbergerandHampshire2014),(PierceandShoup2013);**(Ghent2015);
+(Ottosson,etal.2013);++(Fichman2015)
Thesepilotshavebeenstudiedwithvaryingdegreesofrigor.Seattle’spilothasbeen
econometricallyanalyzedinthepeerreviewedliterature(Ottosson,etal.2013),butwasnot
truly“dynamic”asithadonlyonepricechange.TheOttosson,etal,studyofSeattle’s2011
demandbasedpricecorrectionswasdoneinordertoopportunisticallyexploitanatural
experimentbroughtaboutbyapricechangewhichappliedtowholeneighborhoods.Muchof
theheterogeneityamongstthesediverseneighborhoodsdoesnotappeartohavebeen
persuasivelycontrolled.LosAngeles’LAExpressParkpilothasnotyetbeensubjecttoan
econometricanalysis.SanFrancisco’sSFParkprogramisthemostthoroughlystudiedandmost
programmaticallysophisticatedoftheseprogram.ThePittsburghpilotisinmanyways
influencedby,andsimilartotheSFParkdesign.ThisanalysiswillthereforediscussonlySFPark
andthePittsburghpilotindetail.
Fichman,7
SFParkdesign,studyandcriticism
In2011,theSanFranciscoMunicipalTransportationAuthority(SFMTA)adopteda
pricingprogramknownasSFPark.Thisprogramincorporatedthedynamicpricingstrategies
advocatedbyShoupandVickrey.SFParkwasfundedinpartbytheUSDepartmentof
Transportation(USDepartmentofTransportation2015).Thegeneralsetupoftheprogramwas
asfollows:
256onstreetpilotblockswereestablishedincommercialcorridors,some
blocksweresetupascontrols
Onpilotblocks,pricesweresetforthreedifferent“timebands”andpriced
differentlyforweekendsandweekdays
‐Whenaverageoccupancyratesonagivenblockfellbelow60%,priceswere
lowered$0.25,whenratesroseabove80%,rateswereraised$0.25.Rateswere
changed10timesduringa20112013study(MillardBall,Weinbergerand
Hampshire2014).
ThereisdisagreementamongstscholarsabouthowSFPark’spricesaffecteddriver
behaviorandwhethertheprogrambroughtaboutoptimaloutcomes.A2013paperbyPierce
andShoupreportedthatparkingdemandinSFPark’sfirstyeartendedtoberelativelyinelastic
butvariedbylocation,time,day,initialpriceandsizeofpricechange.Occupancyonover
2/3rdsofblocksoverorunder6080%occupancymovedintothetargetrangeinYear1(Pierce
andShoup2013).SuchananalysisshowsSFPark’spricingregimequicklybringingparking
occupancyintosociallyoptimalequilibrium.Subsequently,severalpapersemergedthat
paintedalessrosypicture.
ChatmanandManvilleconductedastudywhichloggedrepeatedobservationsofSFPark
blocksandfoundthatalthoughoccupancyfellaspricesrose,overalllevelsofavailability(the
timeduringwhichaspaceisavailableonagivenblock),didnotincrease(Chatmanand
Fichman,8
Manville2014).Thisperhapspointstoaweaknessintheoccupancydrivenheuristicbasisof
demandbasedpricingmodels.
MillardBall,WeinbergerandHampshirepublishedtwopapersaboutSFParkbothof
whichwerecriticalofPierceandShoup’sresearch.Thefirst,publishedin2014in
TransportationResearchPartA,concludedthatratechangesachievedtheSFMTA’soccupancy
goaloverthecourseoftwoyears.However,theyalsoassertedthatPierceandShoup’s(2013)
oneyearelasticitieswereoverstatedbecauseofafailuretoaddressendogeneityrelatedto
pricechanges.Essentially,theysuggestthatthecircularrelationshipbetweenprice
manipulationanddemandbiasesanymodelusedtoderiveelasticities.Subsequently,Millard
Ball,WeinbergerandHampshire(2014)submittedapublishedcommentinresponsetothe
PierceandShoup,publishedintheJournaloftheAmericanPlanningAssociation(JAPA).They
expandedontheirpreviousassertionthatendogeneityispresentdynamicpricingelasticity
estimations,addinganassertionthatthechangingconditionswhichdrivetraffictooneplaceor
anotherintroducemorebiasintothesemodels.Subsequently,theycomparedtheoneyear
elasticitiescalculatedbyPierceandShoup(2013)usingtheSFParkdatatoarandomsimulation
wherepricewasdesignedtohavenoimpactondemandandobservedthatPierceandShoup’s
findingswere“largelyspurious,causedbythestatisticalphenomenonofreversiontothe
mean.”(MillardBall,WeinbergerandHampshire2014)
OneoftheprimaryweaknessesintheSFParkdesignwasthelocationofthecontrol
blocks.Mostofthe“control”areasareincompletelydifferentpartsofthecityfromthepilot
areas,leadingtothepossibilityofspatialvariationsthatcannotbeeffectivelycontrolled.For
Fichman,9
example,thedowntowncoreandtouristyFisherman’sWharfarehardtocomparetocontrol
areasinlowriseresidentialInnerRichmond.
MillardBall,WeinbergerandHampshire(2014)useda“fuzzy”regressiondiscontinuity
modeltodisaggregatedatabygeographicareaandbyindividualrateadjustment.Theirresults
confirmedtheirskepticismthatindividualpricechangesinSFParkwereinfluencingdemandin
theshortterm.TheRDdesignhaspracticalapplicationforanalysisofratechanges,particularly
inPittsburgh’spilotarea,wheretheprimarypurposewastodemonstrateatooltopolicy
makers,notcreateanironcladexperimentaldesignandapplicationoftreatmenteffectswas
uneven.
AsaresultofMillardBall,WeinbergerandHampshire’sdemonstration,Idecidedtouse
the“sharp”RDmodeltoevaluatetheeffectsoftreatmentinPittsburgh.ThedetailsoftheRD
designarediscussedtowardstheendofthefollowingsection.
PittsburghData,EmpiricalSettingandMethods
DescriptionofPilotProgram
In2012,theCityofPittsburghraisedparkingratesinareasadjacenttoCarnegieMellon
University(CMU)to$2/hour,doublingthepreviouspriceanddrivingparkingoccupancytolow
levelsadjacenttotheuniversity.Thispricechangeprompteddistortedparkingbehavior,as
commutersbeganparkinginfarflungresidentialareasandbeganleavingCMU’scurbsides
underoccupied(Fichman2015).InSeptemberof2012,theCityinstalledelectronickiosks,
meaningthatpricescouldnowbemoreeasilymanipulatedanddriverscouldpayforparking
usingcreditcards,obviatingtheneedtocarrylargequantitiesofcoinage.IntheFallof2012,
StevenSpearandMarkFichman,professorsattheTepperSchoolatCMUpersuadedtheCityof
Fichman,10
Pittsburghtoletthemadministeradynamic,demandbasedpricingpilotonfivestreetsnear
theUniversity.UnlikethelargescaleSFParkandLAExpressParkpilots,thiswasnotaFederally
fundedproject.ThepilotbeganinJanuary,2013andranuntilDecember,2015.Thepurposeof
thepilotwastodemonstratetotheCitythatoccupancydrivenpricingwouldproducebetter
outcomesforbothconsumersandgovernmentthantheCity’ssingleprice,timelimitedregime
(Fichman2015).Inlate2014,PittsburghCityCouncilenableddynamicpricingcitywide
startinginFebruary,2015(Zullo2014)spellingthebeginningoftheendforthe
demonstrationpilot.
Figure2.StudyArea
Fichman,11
Fivestreetswereincludedintheoriginalpilot‐TechStreet,MargaretMorrisonStreet,
SchenleyDriveandtwosectionsofFrewStreet(oneknowninthisstudyas“Frew5001”forits
solemeterID).Becausethepilotwasdesignedfordemonstrationandnotspecificallyfor
empiricalstudy,therewereno“control”metersorstreetsinthepilotarea.However,there
weresomefactorsthatmadetheareaeasytostudy.Mostpilotmeterswerenotadjacentto
anyotheronstreetmeters.Thelandusesurroundingthemeterswasalmostexclusively
institutional,providingareasonableamountofspatialhomogeneitytothestudyarea(Figure
2).Theparkingandtrafficintheareaarealmostentirelyrelatedtotheuniversitynearby
residentialareashaveamplestreetparking.SchenleyDrivepresentstheexceptiontothis
generalhomogeneity.SchenleyDrivebordersa3hourtimelimitedparkingareaaswellas
somefreeparkingareaswhichareusedbytouristvisitorstoPhippsConservatory.Itcanbe
Figure3.Monthlyratesforeachstreetinthepilot.Thedashedlinerepresentsthe$2pricewhichthe
PPAestablishedinJanuary,2012.
Fichman,12
arguedthatSchenleydoesnotbelonginthestudy,butitmostcertainlyrepresentsapartofthe
CMUparking“market”anditsidiosyncrasiescanbecontrolledusingfixedeffects.
ThePittsburghpilotwasinspiredbytheparametersofSFPark,butoperatedundera
morefluidsetofconditions.Thecityinitiallylimitedpricechangesto$0.25,withnomorethan
onechangepermonth.Eachstreethadonlyoneprice,allday,eachdayforamonth.Parking
wasmeteredforthehours8AM6PM.Astimewenton,theadministratorsmadelargerprice
changesattheendoftheschoolyear.After$0.25reductionsseemedtooslowtocorrespond
withdrasticallylowersummertimedemand,theadministratorsbeganusinglargerdecreases
attheendoftheschoolyearand$0.50increasesattheendofthesummer.Atimelineofprice
changesforallfivestudystreetscanbefoundinFigure3.Onenotableidiosyncrasyinthe
pricingregimeisthatthe5001sectionofFrewStstartedoffasahigherpriced“Premium”
parkingarea,butunderthatpricingregimeitsawoccupancyinthe1020%range.Thatblockis
extremelysteepandperhapsseenasanundesirableparkinglocation.Administratorsswitched
itovertoan“Economy”pricingregimebylate2013droppingitspricefrom$2to$1.
Theadministratorsperiodicallyestimatedgrossandmeandailyoccupancy,using
samplesofmidweekdata,andchangedpricesbasedinpartonastatedgoaltokeepmid
week,schoolyearoccupanciesbetween6080%.Theyalsochangedpricesinreactionto
repeated“maxingout”atcertainlocations(Fichman2015).
Fichman,13
Signsindicating“Economy”and“Premium”parkingzoneswerepostedtodifferentiate
higherandlowerrateareasandbygraphicdisplaysattheelectronickiosks,howeverdriversdid
notlearntheactualpriceuntilvisitingthecurbsidekiosk(Figure4).Thisisanotabledifference
withtheconsumerexperienceofSFPark,wheredriverswereabletoexaminepricesusingan
internetapplication.AdriverinPittsburghwhodidn’tlikethepricepostedatakioskhadto
decidewhethertopayorreturntothecartofindotherparking.Giventhesecircumstances,it
ispossiblethatsomedriversmadeaquickdecisiontopayanundesirablepriceandusetheir
newfoundinformationaboutpricesontheirnextvisit.Itisalsopossiblethatsomedriversre
enteredtheirvehiclesandcontinuedtocruiseforparking.
Figure4.Signageandconsumerfacinginformationatthestudysite
Fichman,14
Data
TheCityofPittsburghandtheCMUadministratorscollectedadatasetthatconsistedof
pointlevelkiosktransactionsfortheentirecityandconveyedthedatasettomeuponrequest.
Thecitywidedatasetwhichwasusedforthisstudyconsistedof13,348,153pointlevel
observations.Eachdatapointcontainedthefollowinginformation:purchasetimeanddate,
minutespurchased(units),amountpaid,kioskID(indicatingStreetLocationanduniqueID),
paidintervalstartandend,maskedpayerIDandsomeextraneousinformation(Figure5).The
Cityalsoprovidedthelatitudeandlongitudeofallkiosks.
ItemNameExample
PurchaseDateLocal11/21/20144:51
Terminal‐TerminalID410153MARMOR5103
PayUnit
NameCard
TicketNumber12241
Amount8
Units514
MaskedPAN443057*8412
PayIntervalStartLocal11/21/20148:00
PayIntervalEndLocal11/21/201414:24
TariffPackage
NamePgm42
ArticleNameArticle1
NodeOakland
TariffPackage
ID42
OccupancyEstimation
Iestimatedoccupancybykioskinfifteenminuteintervalsthroughouteachdayofthe
studyperiod.Ithencoalescedthesekioskestimationstothestreetlevel.It’snecessarytodeal
withoccupancyatthestreetorblocklevelbecauseA)thatisthelevelatwhichpricesare
determinedandB)becauseadrivercanpayatanykioskonagivenstreet‐eachindividual
kioskmaylogaparkingobservationfromanywhereonthestreet.Mymethodsweredesigned
Figure5.Sampleofrawdata
Fichman,15
toapproximatetheapproachoftheprogramadministrators,soastounderstandprogram
dynamicsfromasimilarstandpoint.
Therewerenumerousconsiderationsandassumptionsnecessarytoundertakethese
estimations.UnlikeSFParkandLAExpressPark,Pittsburghdoesnotusesensorstodetermine
actuallengthofstay.Iassumedthatonaverage,acaroccupiesaspotforaslongastimehas
beenpurchased.Perhapsthisisunreasonable,butforlackofanyotherinformationabout
behaviorrelatedtodepartures,thisisanecessaryassumption.
Itwaschallengingtoestimatemaximainordertoestimatepercentageoccupancies.
WiththeexceptionofstretchesofFrewStreet,eachstreetinthestudyareahasparallel
parking.Parallelparkingareascanaccommodateavaryingnumberofvehiclesdependingon
vehiclesizeandspacingonagivenday.Isurveyedthestudysiteandobservedparallelparking
behavior.Iconsideredthisinformationalongsidestreetlengthmeasurementsdoneusing
GoogleEarthandestimatesofaverageparallelparkingspacelengthdescribedinother
Pennsylvaniadesigncodes(PhiladelphiaMayor'sOfficeofTransportationandUtilities2009).
Pittsburgh’szoningandsubdivisionregulationsdonotspecifythelengthofanonstreetspace
(CityofPittsburgh2015).Iestimatedaparallelparkingspacetobeapproximately18feetin
lengthanddeterminedparkingmaximaalongeachstreetincludedinthestudyarea(Figure6).
Street(PseudonyminDataSet)MaximumOccupancy PriceRegime
FrewSt.(FREWST)170 Premium
FrewStWest(FREW5001) 14 Economy
TechStreet(TECHST)34 Premium
SchenleyDrive(SCHEDRCMU)107 Economy
MargaretMorrisonSt(MARMOR)54 Economy
Myalgorithmicestimationofoccupancy,writtenusingthestatisticalsoftwareR,
functionedroughlyasfollows:
Figure6.Characteristicsofstreetsinstudyarea
Fichman,16
1.Foreachmeter,foreachday,a96itemvectorrepresentsthe96fifteenminuteperiodsof
theday.Considereachiteminthevectorasbeinga“bin.”
2.Eachtimeadriverlogsatransaction,dividethenumberofminutespaidbyfifteen.Consider
eachincrementoffifteenminutestobea“token.”Let’ssayadriverpurchasesonehourof
parking‐thatwouldbefourtokens.
3.Giventhestarttimeofthetransaction,roundedtothenearestfifteenminutesdropthe
firsttokeninthebinthatcorrespondstothattimeandoneineachsuccessivebinuntilthere
arenomoretokens.Soifadriverbuysonehourofparkingat8AM,heisawardedfourtokens‐
hedropsatokenintothe8:008:14bin,oneinthe8:158:29andsoon,untilhe’soutoftokens.
4.Repeatthisprocessforeachtransaction.
5.Sumthelikebinsforallmetersonastreetfortheday.
6.Calculatethepercentageoccupancyineachstreetbinrelativetothemaximumoccupancy,
takethemeanpercentageoccupancyforeachstreetdayforthehours8AM6PM.Ifthisfigure
isabove100%(asitcanbegiventhefactthatmultipledriverscanpayforaspaceshouldone
leavebeforehistimeisup),assigna100%occupiedor“maxedout”valuetothatday.These
estimationsareeasilyinterpretableviaahistogramwhichshowstheoccupancyofparkedcars
onagivendayshowninFigure7.
Fichman,17
AdditionalDataCleaning
Thepilotprogramwasdesignedtousepricingtomanipulateoccupancyduringmid
weekperiodsduringtheschoolyear.Figure8showstheaveragedailyoccupanciesforFrewSt
throughoutthestudyperiod.Itisnoticeablethatduringthesummerandwinterbreakperiods,
occupancyislowerwithmanydayslogginglittletonooccupancy.Similarly,thereweredays
duringtheschoolyearwithalmostnooccupancy.Allstreetssharedtheseseasonal
characteristics.Recallthattheconditionsofthepilotonlyallowedfor$0.25pricechanges,one
pricechangepermonth.Despitethefactthatthepilotimplemented$0.50pricechangesat
thebeginningandendofsummerin2014,Ireasonthatthesemonthsofextremelylow
Figure7.EstimatedoccupancyforFrewStreet,September10th,2014
Fichman,18
demandweresubjecttoconditionsinappropriateforsuchaconstrainedpricingregime.Given
theseconditions,IdecidedtoexcludealldatapointsfromthemonthsJune,JulyandAugust
andallSaturdayandSundayobservationsfromregressionmodelsratherthanjustcontrolling
forthem.Theremainingdatasetcontains3840streetdayobservations.711ofthesefall
withineither30daysbeforeor90daysafteraschoolyearpricechange.
VariableNameDescriptionExample
streetStreetNameFixedEffect FREW5001
weekdayDayofWeekFixedEffect Monday
dateDateusingPOSITXtimeconvention 20141020
off_sessionNoClassesFixedEffect(1for“noclass/exams”) 0
monthlyPricePriceChargedinUSD 1.00
monthDumbMonthFixedEffect OC
yearDumbYearFixedEffect YEAR13
avgOccupancyMeanDailyGrossOccupancy 7.6
pctTrueOccupancyMeanPercentageOccupancy 54%
prevOccMeanMidWeekOccupancyinPreviousMonth 86%
trueMaximumMaximumBlockOccupancy 14
tMonthPriorToPriceChangeFixedEffect 0
t_plus_1Month1AfterPriceChangeFixedEffect 0
t_plus_2Month2AfterPriceChangeFixedEffect 0
t_plus_3Month3AfterPriceChangeFixedEffect 0
Figure8.AveragedailyoccupanciesonFrewSt.Dashedlinesrepresent60and80%estimatedmeandaily
occupancylevels.RedobservationsrepresentdayscodedashavingnoclassorexaminationsatCMU.
Figure9.Sampleofrawandtransformeddatausedtoestimateregressionmodels
Fichman,19
IalsoexaminedCarnegieMellon’spubliclyavailableacademiccalendarsfortheyears
includedinthepilotstudyandcodedallstreetdayswithoutclassorexaminationswitha
dummyvariabletocontrolfor“offsession”universitybusinessinregressionmodels.Figure9
showsasampleofcleanedandtransformeddatausedintheregressionmodelsinthisstudy.
EstimationofPriceElasticitiesofDemand
InordertodeterminetheeffectofpricechangesIundertooktwosetsofregression
modelsfirst,anOrdinaryLeastSquares(OLS)regressiontoestimatetherelationshipbetween
priceandoccupancywhilecontrollingforseveraltimeandlocationalvariables.Equation1
describestheOLSmodel.



⋯

Equation1.OLSmultipleregression
ThenullhypothesistestedbyanOLSmodelisthatthecoefficientindicatingthe
relationshipofpricewithdemand(occupancy)isstatisticallyindistinctfromzero.The
alternativehypothesiswouldbethat“allelseequal,”thereisastatisticallysignificantchance
(p<0.05)thatthemagnitudeofthevalueassociatedwiththeindependentvariable“price”is
notzero.ThecoefficientsusedtoestimateregressionsareshowninFigure9.
SeveralassumptionsmustbemetinorderforOLStocorrectlyfitamodeland
determinethesignificanceofthevalueassociatedwithprice.First,theindependent
variablesshouldhavenostrongmulticollinearity.Multicollinearitycanbeassessedby
measuringvarianceinflationfactors(VIF)usingthe“car”packageforthelanguageR.Second,
therelationshipbetweenthedependentandindependentvariablesmustbelinear.Third,the
errortermsinthemodel(thedifferencebetweentheobservedpointsandthemeanfunction)
mustbenormallydistributed.Iassumedmodelerrortermstobeapproximatelynormally
Fichman,20
distributed.Lastly,thevarianceortheseerrortermsshouldbeuncorrelatedwiththeother
variables(homoscedastic).
IestimatedthepriceelasticitiesofdemandDforpricePandquantityQatpointEusing
Equation2,whichincorporatesthecoefficientassociatedwithpricefromEquation1.
ED  ΔQ/ΔP ∗ P/Q   ∗ P/Q
RegressionDiscontinuityModels
MillardBall,WeinbergerandHampshire(2014)arguethatthetwowayrelationship
betweenpricechangesandoccupancy(e.g.highoccupancylevelsinducingpricechangesand
pricechangesinfluencingoccupancy)representsanendogenousforcewithinanOLSmodel
usedtoestimateelasticities.TheRDmodelisa“quasiexperimental”designthatoffersawork
aroundtothisproblem.ARDdesignassignsa“treatment”effectinanonexperimentalsetting
bydisaggregatingdatapointsintothoseaboveandbelowacertainthresholdfortreatment
(ThistlewaiteandCampbell1960),(LeeandLemieux2010).Thisdesignhasrecentlyincreased
inpopularityandhasbecome“ahighlycredibleandtransparentwayofestimatingprogram
effects,”accordingtoLeeandLemieux(2010).
Inthecaseoftheparkingpilot,ideally,whenmeanmonthlyoccupanciesdroppedbelow
60%onagivenblock,theyweretobesubjecttoapricedecreaseinthesubsequentmonth.
Similarly,whenoccupanciesexceeded80%,theyweretobesubjecttoapriceincreaseinthe
subsequentmonth.Hypothetically,thiswouldallowfortheapplicationofRDmodelsto
estimatetheeffectofpricechangesoneithersideofthe60%and80%boundariesduringthe
monthpriortoapricechange.BecausethePittsburghpilothadno“control”blocks,theRD
Equation2.PriceElasticityofDemandforPointE
Fichman,21
designisappealing.Allelseequal,onewouldassumeobservationswith59%and61%
occupanciesinagivenmonthtobeverysimilar,exceptforthefactthatthe59%blockwillhave
itspricemanipulatedthefollowingmonth.Thatallowsonetodetectpossibleeffects.
TheRDdesignwhichestimateseffectsoneithersideofastrictcutoffvalueisknownas
a“sharp”RDmodel.SuchamodelisidealizedinFigure10.Inthisfigure,considerthe
relationshipbetweenmonthtandmontht+1.Ifoccupancyonagivenblockinmonthtis
below60%,bydesign,inmontht+1thepriceonthatblockshouldbelower,presumingastrict
applicationofthepricingregimen.Givenanalternativehypothesisthatthedecreaseinpricein
montht+1wouldbeassociatedwithariseinoccupancyrelativetomontht,onewouldexpect
alinefittedtothediscontinuousfunctioninFigure10,wherethetreatment(priceincreaseor
decrease)isrepresentedbyadummyvariableDwhichaffectstheconditionalexpectation
Figure10.GraphicalrepresentationofhypothesizedRDdesignatthe60%occupancythreshold.Redarrow
representsthehypotheticaloccupancyeffectofa$0.25pricechange.E[Y(0)|X]istheconditionalexpectationofY
givenXintheabsenceofthepricechangetreatmenteffect.E[Y(1)|X]istheconditionalexpectationofYgivenXin
thepresenceof(orinteractedwith)thetreatmenteffect(1).
Fichman,22
E(Y|X)ofoutcomesoneithersideofthecutoffvaluec=60%forauserspecifiedbandwidthb
(Equation3).
D 0  
D 1  
BecausetheassignmentvariableXisindependentofpotentialoutcomesY(0)andY(1),the
causaleffectofthetreatmentisrepresentedbythecoefficientρrepresentingdiscontinuity
betweenestimatedfunctionsoneithersideofthecutoffvalue(Equations46).
EY0|X α 
Y1Y
0ρ
α ρD η
Equations36areadaptedfromImbensandLemieux(2008).Thespecificationofbandwidthis
importanttopreventnonparametricfunctions(whichfunctiononlargerscalesinthedata)
fromdeceptivelyapproximatingjumpsinvalueatthecutoffpoint(AngristandPischke2015).
Inpractice,theRDmodelcanbeusedasatooltoestimateOLSregressionsoneithersideofthe
discontinuityandcomparetheirbehavioratthecutoff.ThisisthemethodIutilize.However,it
isalsocommonpracticetoestimateasinglemodelandassesstheeffectasthecoefficientρ
associatedwiththeinteractionbetweenthetreatmentfixedeffectandeachofthe
independentvariablesinordertoreducethemagnitudeofstandarderrors(Shaman2016).
TheRDdesigncanbeillustrativeinimplementinga“datamining”approach,and
comparingtheeffectoftreatmentononeweek,twoweek,onemonthandtwomonth
Equation3.AssignmentofdummytreatmentvariableD
Equation6.Combinedregressionterms
Equations4&5.Conditionalexpectationgivenlackoftreatmentvariable.
Fichman,23
timescales.Thisapproachallowsonetoperceivethechangeorlagintheeffectofthe
treatmentoneithersideofthethresholdovertime,shouldsuchaneffectexist.RDcanbe
implementedusingthebaseOLSregressionmodelsinRandgraphicallyrepresentedusingthe
“lattice”package.
SomepracticalproblemswiththedatalimitthepowerofRDmodelsinthisinstance.I
examinedtheoccupancydataandpricechangeregimeanddeterminedthatinpractice,the
administratorsdidnotadheretosuchstrictrulesregardingthe60%and80%thresholds
insteadworkingtominimizespikesinoccupancyandgenerallymaintainoccupancieswithinthe
6080%range.Thismeansthattherewereseveralcircumstancesinwhichstreetsthathadmid
weekmeanoccupanciesoflessthan80%hadtheirpricesraised,or,inonecircumstance,for
reasonsIcouldnotdetermine,FrewStreet’s“5001”blockunderwentapricehikedespitemean
Figure11.Observationsofdailymeanoccupancyratesformidweek,schoolyearkiosksasafunctionofprevious
occupancyinmontht.Thisplotshowsonlyobservationswhichhadexperiencedpricechangesthemonthprior.
Fichman,24
occupanciesnear20%‐perhapsaresponsetoseveralmaxedoutperiodsintandemwith
coterminousareasonTechStreetandFrew’smaindrag.Administratorscommunicatedtome
thattheseunevenapplicationsoftreatmentwereinpartafunctionofuncertaintyregarding
theoccupancyestimations.Theywerealsoaproductofadministrativeapplicationof
specializedlocalknowledgeforexample,ifidiosyncraticcampuseventslikegraduationledto
inflatedmeanoccupancies,theseobservationsweredisregarded.Also,theadministrators
weresamplingdayseachmonth,ratherthanlookingatthefulldatasetwhichmighthaveled
themtomakedecisionswhilemissinginformationthatisincludedinthisstudy(Fichman2015).
Furthermore,becausethedatahadtobetrimmeddowntoomitsummertimeobservations,
thismeansthataftercleaning,littledataremainednearthe80%threshold(Figure11)
certainlynotenoughtocreateanyreliableestimatesforeffectsnear80%.Mostoftheblocks
whichhadschoolyearrateincreaseshadexperiencedpreviousaverageoccupanciesof100%.
Figure12.Observationsofdailymeanoccupancyratesformidweek,schoolyearkiosksasafunctionofprevious
occupancyinmontht.Observationswhichfollowedapricechangeareshowninred.
Fichman,25
The60%thresholdhasareasonableamountofdataoneitherside,butforsomemonthswith
lessthan60%occupancythetreatmentwasnotapplied(Figure12).Thismaybeaccountedfor
byusingonlytreatedblocksbelowc=60%totheexclusionofuntreatedblocksbelow60%.
Inordertodetermineifremovaloftheuntreatedobservationsbelow60%wouldunduly
biasthesample,IperformedaWelch,IndependentTwoSamplettesttotestthenull
hypothesisthatthemeanmidweek,schoolyearoccupancyinmonthsoflessthan60%
occupancypriortopricedecreasewasstatisticallynodifferentthanmeanoccupancyinmonths
oflessthan60%occupancywhichdidnothavetheirpricesmanipulated.Shouldthesamples
provestronglydistinct,onemightarguethatremovinguntreatedobservationsinordertorun
anRDmodelwouldresultinseriousbiasunlessuntreatedandtreatedobservationsare
essentiallyindistinctfromoneanother.TheWelchtestismoreappropriatethantheStudent’s
ttestinthiscircumstancebecausethesampleshaveunequalsizesandvariance,buttheWelch
test(sometimesknownasthe“UnequalVariance”ttest)performswellundersuchan
assumption(Ruxton2006).Ifailedtorejectthenullhypothesisthatthemeanswerestatistically
indistinct,suggestingnospecificbiasinapplyingthetreatment(Figure13).Ibelievethatthe
nonapplicationoftreatmentwasnotdonewithanyspecificgoalofoccupancymanipulation,
Figure13.FTestandWelch’sTTestperformedondailymeanweekday,schoolyearoccupancyobservations
below60%occupancyforwhichtherewasandwasnotapricechangeinthesubsequentmonth
FStatistic pvalue Lower Upper Denominator Numerator RatioofVariances
0.777 0.128 0.548 1.075 96 236 0.777
tstatistic df p(twotailed) Lower Upper NoPriceChange PriceChange
0.238 160.16 0.813 0.037 0.047 0.389 0.383
FTesttoCompareVariances
95%ConfidenceInterval df
Welch'sTTestAssumingUnequalVarianceandSampleSize
95%ConfidenceInterval SampleMeans
Fichman,26
butwasratheraproductofhaphazardinterventionbroughtaboutforreasonsspecifiedearlier.
Theprobabilityofasub60%observationreceivingthetreatmentwas0.27.
Results
DescriptiveAnalyses
Duringthecourseofthepilot,overallrevenuesincreased(Figure15).Totalrevenuesfor
thefivestreetsanalyzedinthispaperwere$2,139,328duringthestudyperiod.Recallthatfor
moststreetsinthepilotprogram,ratesdecreasedduringthestudyperiod(Figure3)andall
streetsendeduphavinglowerpricesthanthe$2Cityimposedpricewhichwastheimpetusfor
thepilot.
Bytheendofthepilot,occupanciesformoststreetsmovedtowardsthetarget6080%
rangespecifiedbytheadministrators(Figure16).Thepilotseemedespeciallysuccessfulin
elevatingtheoccupancyofblockswhichhadpreviousoccupanciesbelow60%andseemedto
havelittleeffectonblockswhichhadveryhighoccupancies(Figure17).Theplotbelowshows
Figure15.Grossmonthlyrevenuesandlineartrend.
Fichman,27
asimilargraphictoonepublishedbyMillardBall,WeinbergerandHampshire(2014).Thisplot
isnotablysimilarinthatafittedlinedoesnotshowadistinctdiscontinuitynear60%or80%.In
thecaseofSFPark,thislackofdiscontinuitywastakenbytheauthorstomeanthatprice
changeswerenotworking.However,inthecaseofthePittsburghdata,thehaphazard
applicationofpricechangetreatmentsmeansthatoneshouldexpectnosucheffectatthose
thresholds.
Figure16.Streetbystreetdaily,onsession,midweekmeanoccupancieswithlineartrend
Fichman,28
PriceElasticityofDemand
Figure18showsthePriceElasticitiesofDemandforallstreetsbasedonweekday
observationsduringtheentirestudyperiod.TheseelasticitieswerecalculatedbasedonOLS
regressioncoefficientsassociatedwithonstreetparkingrateestimatedusingthemodelshown
inAppendixI.Thecoefficientsinthesemodelsrepresenttheestimatedeffectofpriceonmean
dailyoccupancywhencontrollingforstreet(inthecaseofthestudywideregression),dayof
Street(PseudonyminDataSet) WeekdayPriceElasticityofDemand
FrewSt.(FREWST)‐0.728
FrewStWest(FREW5001)‐0.299
TechStreet(TECHST)‐0.730
SchenleyDrive(SCHEDRCMU) 1.211
MargaretMorrisonSt(MARMOR) 0.867
Figure18.Priceelasticitiesofdemandforstreetsinvolvedinthepilot
Figure17.Observationsofdailymeanoccupancyratesformidweek,schoolyearstreetdaysinmontht+1asa
percentageofpreviousoccupancyinmontht.Loessestimatedfit.Dottedlinerepresents100%.Oneoutlierof
1000%changewasremoved
Fichman,29
week,year,andwhetherCMUclasswasinsession.Thesefactorsexplainedalargeproportion
oftheoverallvarianceinoccupancy.Rsquaredvaluesrangedfrom0.435inthecaseof
SchenleyDriveto.699forthe5001blockofFrewStreet.Itshouldbenotedthatwhetheror
notschoolwasinsessionhadaverylargeeffectonoccupancy.Fortheentiredataset,the“Off
Session”fixedeffectwasassociatedwitha29.7%reductioninmeandailyoccupancy.Ididnot
controlfor“month”oftheyearfixedeffectsbecauseofstrongmulticollinearitywiththe“Off
Session”effect.SchenleyDrivewasthemostelastic,whichseemsintuitivegivenitsrelative
distancetomaincampusattractionsanditsrelativeproximitytosomefreeonstreetparking
nearPhippsConservatory.Thetwopremiumareas,FrewSt.andTechSt.hadverysimilar
elasticities,whiletheEconomypricedMargaretMorrisonStreetwasslightlymoreelastic.Frew
St.’s5001blockwastheleastelasticbyfar.Icomparetheseelasticitiestothosemeasuredfor
SanFranciscoandSeattleinthediscussionsectionofthisstudy.
RegressionDiscontinuity
TheRDmodelssuggestedthatpricechangeswereindeedhavinganeffect(Figure19).
However,someproblemswithsamplesizelimittheconclusivenessoftheseanalysesandthe
resultsshouldbetreatedwithsomereserve.Atthe60%threshold,therewasadistinct
discontinuityforobservationsinmontht+1,estimatedasa12.17%changeinoccupancy
associatedwitha$0.25changeinprice(Figure20).Splittingthediscontinuityintoweeks12
andweeks34ofmontht+1providessomeinterestinginsightintothebehaviorofdrivers.In
weeks12,theestimatedeffectofa$0.25changeinpricewas6.19%(Figure21),whereasthe
estimatedeffectinthemonth’slasttwoweekswas18.14%(Figure22),implyingthattherewas
alagindriverresponsivenesstopricechanges.
Fichman,30
TheregressionlinesrepresentthefittedvaluesoftheOLSmodelsshowninAppendixII.
Relativelysmallsamplesizescausedsomeproblemsandshouldgivesomereasonto
taketheSRDresultswithcaution.First,therewastoolittledataonthetreatmentsideofthe
discontinuitytouseabandwidthsmallerthanthatoftheentiredatasetwithoutseeingan
incrediblylargediscontinuityover50%.Thereislittletosuggestthatthislineardiscontinuity
isactuallytracinganonlinearfunction,butthefunctionmaybeoverfitted.Second,the
estimationsofdiscontinuitiesforweeks12andweeks34ofmontht+1havetoofew
observationstoincludeasmanycontrolsaswereincludedwiththeestimationofthefullmonth
t+1(AppendixII).Eachoftheseestimationswascarriedoutusingareducednumberof
controlstoeliminatethestrongmulticollinearitybetweenstreetfixedeffectsandpricein
TimePeriodChangeinOccupancyat60%Threshold
Montht+112.17%
Montht+1,Days1146.19%
Montht+1,Days14End18.14%
Figure20.SRDplotshowingdiscontinuityinoccupancyinmontht+1.Blockswhichreceivedpricemanipulation
treatmentbelowthe60%discontinuitythresholdareshowninred.
Figure19.Estimateddiscontinuityat60%thresholdforthreeSRDmodels
Fichman,31
montht.Inthissense,thesebiweeklyregressionsarenotcompletelycomparabletothatof
thewholemontht+1.
Discussion
Thedynamicpricingregimeusedduringthepilotpushedoccupancytowardstarget
rates,increasedrevenuesandloweredprices.Furthermore,RDmodelssuggestthattheprice
changeshadtheintendedeffectondriverbehavior.ThestaticratestheCityhadbeenusing
priortotheimplementationofthepilotdidnotaccuratelypriceparkingaccordingtodemand.
Consideringhowrelativelyelasticdriverresponsewasduringthestudyperiod,overcharging
forparkingduring2012mostlikelycreatedincentivefordriverstomodifytheirparking
behaviorinwaysthathadpotentiallynegativeeffects.Thoughitisdifficulttodiscernwhere
driversparkedoutsidethestudyareawhenpricesweretoohigh,it’sclearthatbehaviorwas
Figures21and22.RDplotsshowingdiscontinuityinoccupancyinmontht+1,weeks12(left)and34(right).
Blockswhichreceivedpricemanipulationtreatmentbelowthe60%discontinuitythresholdareshowninred.
Fichman,32
affected.Forexample,the5001blockofFrewStreethadextremelylowoccupancywhen
pricesweresetat“Premium”levelsearlyinthestudyperiod(atasimilarratetotheprestudy
rateof$2/hr),butsawincreasedoccupancywhenpriceswerereduced.
CityEstimatedElasticity
SanFrancisco(PierceandShoup,2013) 1.04to‐0.03
Seattle(Ottossonetal.,2013) 0.4 (mean)
Pittsburgh‐1.21to‐0.29
Therangeofelasticitiesestimatedforstreetsinthepilotprogramroughlycorresponds
toestimatesinbothSanFranciscoandSeattle,(Figure23).UnlikeSeattleandSanFrancisco,
thispilotdidnotestimateforblockscitywide,andtheabsenceofobservationsincentral
businessareasprobablycreatedapictureofamoreelasticparkingmarket.Forreasons
discussedearlier,simplepriceelasticitiesofdemandareprobablynotextremelyusefulin
determiningthespecificeffectofpricemanipulationbecauseofissueswithendogeneity.
Furthermore,positiveelasticitiesmeasuredbyChatmanandManville(2014)associatedwith
ratehikessuggestthatissueswithlatentdemandmayfurtherobscuretheuseofsuchametric
inmeasuringtheeffectivenessofapricingregime.However,elasticitiesareusefulforpurposes
ofcomparisonconsideringhowscantthepublishedliteratureisatthisjuncture.
Withcaveatsaboutsamplesizetakenunderconsideration,RDmodelssuggestthat
pricechangesdoindeedhaveaneffectondriverbehaviorwhichcorrespondstoanegative
elasticity.However,thesemodelsalsosuggestthatdriversdidnotrespondinstantaneouslyto
pricechangesduringthepilot.Theexistenceoftheselagsimpliesthatmoreprecise
communicationofpricemayreducelagtimeindriverresponsivenessbycommunicating
informationmorequickly.Suchcommunicationcouldcomeintheformofaconsumerfacing
Figure23.EstimatedelasticitiesforPittsburghincomparisontootherpublishedstudies.
Fichman,33
internetandphoneapplicationshowingpricinginformationandperhapsoccupancy
estimations.Recallthatduringthepilotprogram,specificpriceswerenotcommunicated
directlytodriversexceptatthekiosk.Althoughtherewerestreetsignsindicating“Economy”
and“Premium”parkingzones,adrivercouldnotlearnthespecificpriceuntilheparkedthecar
andapproachedthekiosk.Bythattime,thedrivermaybemuchlesslikelytogetbackinthe
carandchooseanotherlocationandhemayjustpayforthetransactionandapplynewpricing
knowledgeonthenextvisit.Foronetimevisitors,ratesmayhavelittleeffect.
Dynamicallypricedparkingprogramsshouldbedesignedtoallowforrobust
measurementofeffects.Thisanalysisdemonstratesthepotentialutilityoftheregression
discontinuitydesigninmeasuringtheeffectofpricechanges.Theregressiondiscontinuity
modelshouldallowplannerstomonitortheeffectofdynamicpricingwithoutworryingabout
thebiascausedbymyriadspatialandtemporalfactors,nottomentiontheendogeneity
inherentinoccupancydrivenpricemanipulations.Inordertoeffectivelyusethistool,
programsshouldadheretooneormoreregimesofrulebaseddecisionmakingthatcanbe
carefullycomparedandmeasured.Furthermore,randomizedcontrolareasshouldbe
implementedinanypilotprogramtoprovidemorebasisforrobustestimationoftreatment
effects.
Inorderforademandbasedpricingprogramtofunctioneffectively,itisimportantto
accuratelymeasureoccupancy.Duringthepilot,fundamentaluncertaintyabouttheaccuracy
ofoccupancymeasuresseemstohavemadeadministrativedecisionspronetoerror.
Knowledgeofthisuncertaintymayhavepromptedadministratorstoimplementratechanges
conservatively.Itisperhapsforthisreasonthatpositiveratechangescamemostlyasaresult
Fichman,34
ofmaximumoccupancyevents,itwasalsoforthisreasonthatpricereductiontreatmentwas
appliedhaphazardly.
Estimatingoccupancyisadifficultthingtodowellifsensorscannotbeusedto
monitortrueoccupancy,itwouldbenecessarytomodelarrivalanddepartureratesinrelation
tooccupancytoestimatewhenpeoplehavelefttheirspaces.Spatialelementsofparkingmight
alsobedifficulttomodelablockcansupporttencompactcarsorperhapssixpickuptrucks,
withsomemarginforerrorbasedonhowclosedriversdecidetoparktooneanother.Thereis
awaytoreducesomeuncertaintycreatedbythisspatialproblem.WhenadriverinPittsburgh
paysforparkingtheyinputtheirlicenseplatenumber,sothatparkingauthoritiescan
appropriatelyassignticketstoscofflawdrivers.Thispersonalidentifyinginformationismasked
inthedataforprivacypurposes.However,itseemsconceivablethatlicenseplateinformation
couldbejoinedwithinformationaboutthemakeandmodeloftheidentifiedvehicle,which
couldbeassociatedwithadatabaseofknowndimensionsofthesevehicletypes.Thiswould
allowonetoestimatethetotallengthofallthevehiclesparkingatanygiventime.This
naturallyintroducessomeprivacyconcerns,sosubsequenttothisjoinofinformation,perhaps
theID,makeandmodelofthecarcouldbeobscuredbeforeanyadministratorscouldviewit.
Thedifficultypilotadministratorshadininfluencingbehaviorduringsummermonths
pointstotheimportanceofusinglaxconstraintsonpricechanges.Theuseofmultiple“time
bands”wouldallowformoresensitiveandflexibleimplementationofpricesinorderto
accommodatefluctuationsinparkingpatternsduringtheday,weekoryear.Oneofthe
reasonsrobuststatisticalanalysiswasdifficultinthisstudywasthatsummerobservationswere
nexttouselessbecausepricescouldnotbeadjustedquicklyenoughtodealwithchangesin
Fichman,35
demand.Althoughadministratorsbeganusinglargerpricechangesduring2014,itwasstilltoo
experimentalandtooslowtoprovideusefuldatawhereinsupplyanddemandweresubjectto
theequilibratingforcesofpricemanipulation.
Ultimately,demandbasedpricingisdesignedtoreducetrafficcongestionbyeliminating
cruising.Occupancyandvacanciesareonlyproxiesoftherealdependentvariableofinterest.
Totrulyassessanydemandbasedparkingprogram,trafficcountsshouldbetakenatstrategic
locationsthatallowforcontrolledobservationofeffects.InthecaseofthePittsburghpilot,the
PennsylvaniaDepartmentofTransportation,SouthwesternPennsylvaniaCommissionand
Pittsburgh’scity’splanningdepartmentrespondedtomyinquiriesabouttrafficcount
inventories.Asagroup,theyhadtakenfewerthanahalfdozentrafficcountsintheareanear
theuniversity,noneofthemontherelevantstreets.Purposebuiltcountersorvideomonitors
arecheapandeasytooperateandshouldbeintegratedwithanypricemanipulationschemeso
astomeasurethemostimportantofalleffectsroaddecongestion.
Ifdemandbasedprogramsaremonitoredsuchthatpricescanbemanipulated
effectively,andifrulesareflexibleenoughtoallowforadministratorstoeffectivelyequilibrate
supplyanddemand,thiswillbringparkingalittleclosertobeingagoodwhichisnon
excludable.Unlikeatrue“publicgood,”itwillstillberivalinconsumptionwithprivateparking
garages.However,privategarageownersalreadyintuitivelyusethedemandbasedpricing
strategyiflotsareempty,theyarechargingtoomuch,andviceversa.Ifpubliclyowned
parkingcanbemoreefficientlypricedsuchthatitcompeteseffectivelywithprivateparking,
privateparkingownersmaycryfoul,buttheirlandwillsoonbepurposedtohigherandbetter
usesanetsocialbenefit.Aholistictransportationstrategy,completewithdynamicallypriced
Fichman,36
parkingandavailable,reliablepublictransportation,couldcreateanenvironmentinwhichto
makeapoliticallyfeasiblepushtoreduceoreliminateminimumparkingrequirementsina
zoningcodeandmaketheactualpriceofdrivingandparkingtransparenttoconsumers.
I’dliketoacknowledgetheadviceandsupportofFrancescaAmmon,ErickGuerra,Kenneth
Steif,MarkFichman,PaulShaman,IvanTereshenko,CarnegieMellonUniversityandtheCityof
Pittsburghinhelpingmecompletethisproject.
WorksCited
Angrist,JoshuaD,andJornSteffenPischke.2015.Mastering'Metrics.Princton,NJ:PrincetonUniversity
Press.
Arnott,Richard,andErenInci.2006."Anintegratedmodelofdowntownparkingandtrafficcongestion."
JournalofUrbanEconomics60:418442.
Brooke,Sarah,StephenIson,andMohammedQuddus.2014."OnStreetParkingSearch,Reviewand
FutureResearchDirection."TransportationResearchRecord:JournaloftheTransportation
ResearchBoard2469:6675.
Chatman,DanielG,andMichaelManville.2014."Theoryversusimplementationincongestionpriced
parking:AnevaluationofSFPark20112012."ResearchinTransportationEconomics5260.
CityofPittsburgh.2015.CodeofOrdinances,CityofPittsburgh,Pennsylvania.Pittsburgh,PA,August15.
AccessedMarch28,2016.
https://www.municode.com/library/pa/pittsburgh/codes/code_of_ordinances.
Colonico,Sebastian,MathiasD.Cattaneo,andRocioTitiunik.2015."rdrobust:AnRPackageforRobust
NonparametricInferenceinRegressionDiscontinuityDesigns."TheRJournal7(1).
Fichman,Mark,interviewbyMichaelFichman.2015.Personalemailcommunication(October12).
Gelman,Andrew,andJenniferHill.2009.DataAnalysisUsingRegressionandMultilevel/Heirarchical
Models.NewYork:CambridgeUniversityPress.
Ghent,Peer.2015."OptimizingPerformanceObjectivesforProjectsofCongestionPricingforParking."
TransportationResearchRecord:JournaloftheTransportationResearchBoard2530:101105.
Imbens,Guido,andThomasLemieux.2008."Regressiondiscontinuitydesigns:Aguidetopractice."
JournalofEconometrics142:615635.
Lee,DavidS,andThomasLemieux.2010."RegressionDiscontinuityDesignsInEconomics."Journalof
EconomicLiterature48:281355.
MillardBall,Adam,RachelRWeinberger,andRobertCHampshire.2014."EvaluatingtheImpactsof
PerformanceBasedParking,CommentonPierceandShoup."JournaloftheAmericanPlanning
Association79(4):330336.
Fichman,37
MillardBall,Adam,RachelRWeinberger,andRobertCHampshire.2014."Isthecurb80%fullor20%
empty?AssessingtheimpactsofSanFrancisco'sparkingpricingexperiment."Transportation
ResearchPart!7692.
Ottosson,DadiBaldur,CynthiaChen,TingtingWang,andLinHaiyun.2013."Thesensitivityofonstreet
parkingdemandinresponsetopricechanges:AcasestudyinSeattle,WA."Transportation
Policy25:222232.
PhiladelphiaMayor'sOfficeofTransportationandUtilities.2009.PhiladelphiaCompleteStreetsDesign
Handbook.Philadelphia,June4.AccessedMarch28,2016.
http://www.philadelphiastreets.com/images/uploads/resource_library/cshandbook.pdf.
Pierce,Gregory,andDonaldShoup.2013."GettingthePricesRight."JournaloftheAmericanPlanning
Association79(1):6781.
Ruxton,Graeme.2006."TheunequalvariancettestisanunderusedalternativeetoStudent’sttestand
theMann–WhitneyUtest."BehavioralEcology17(4):688690.
Shaman,Paul,interviewbyMichaelFichman.2016.PersonalInterview(April12).
Shoup,Donald.2004.TheHighCostofFreeParking.Chicago,IL:PlannersPress,AmericanPlanning
Association.
Shoup,Donald.1999."Thetroublewithminimumparkingrequirements."TransportationResearchPart
A33:549574.
Thistlewaite,Donald,andDonaldTCampbell.1960."Regressiondiscontinuityanalysis:Analternativeto
theexpostfactoexperiment."JournalofEducationalPsychology51(6):309317.
USDepartmentofTransportation.2015.ValuePricedPilotProgramFunding.August27.Accessed
February3,2016.
http://ops.fhwa.dot.gov/congestionpricing/value_pricing/projects/funding.htm.
Vickrey,William.1954."Theeconomizingofcurbparkingspace."TrafficEngineering6267.
Zullo,Robert.2014."Pittsburghtoraiseparkingmeterrates,chargeatnight."PittsburghPostGazette,
December11.AccessedMarch23,2016.http://www.post
gazette.com/local/city/2014/12/10/Pittsburghtoraiseparkingmeterrateschargeat
night/stories/201412100208.

Fichman,38
AppendixRegressiontables
AllStreets FREWST FREWST
5001
SCHENL EY
DRIVE TECHST
MARGARET
MORRISON
ST
MondayFixedEffect 5.551
***
3.193
**
6.763
***
1.248 7.856
***
7.836
***
Standa rdError 1.049 1.543 2.494 2.392 1.706 2.551
ThursdayFi xedEffect 0.094 1.581 1.217 0.675 2.15 0.608
Standa rdError 1.027 1.473 2.451 2.348 1.678 2.525
Tues da yFi xedEffect 1.29 0.261 2.619 0.522 5.172
***
0.41
Standa rdError 1.019 1.453 2.473 2.323 1.66 2.501
WednesdayFixedEffect 1.338 0.535 2.07 0.867 3.869
**
1.756
Standa rdError 1.024 1.461 2.475 2.374 1.671 2.474
FrewStFixedEffec t 19.537
***
Standa rdError 1.111
Mar garetMorrisonFix edEffect 10.487
***
Standa rdError 1.117
SchenleyDriveFi xedEffect 16.646
***
Standa rdError 1.118
TechStFixedEff ect 26.968
***
Standa rdError 1.232
Price(Doll ars ) 30.070
***
21.251
***
9.870
***
49.593
***
18.291
***
57.791
***
Standa rdError 1.014 2.722 3.527 3.031 2.217 4.088
Year 2014FixedEffect 8.724
***
2.258 38.447
***
18.735
***
2.475
*
28.012
***
Standa rdError 0.763 1.675 3.879 1.788 1.262 2.191
Year 2015FixedEffect 12.332
***
4.067
**
41.385
***
22.715
***
0.08 33.491
***
Standa rdError 0.882 1.764 3.616 2.518 1.499 2.544
OffSessionFixedEffec t 29.767
***
24.823
***
35.170
***
30.071
***
33.048
***
34.777
***
Standa rdError 0.688 1.01 1.641 1.692 1.152 1.83
Constant 95.616
***
100.242
***
49.806
***
90.769
***
108.331
***
124.302
***
Standa rdError 1.962 6.013 7.479 3.491 5.103 4.298
Observations 2,942 596 562 590 610 584
R
2
0.548 0.578 0.699 0.435 0.584 0.45
Adj u s tedR
2
0.546 0.572 0.694 0.428 0.578 0.443
Resi dua lStd.Error 17.592(df
=2929)
11.377(df
=587)
18.491(df
=553)
17.939(df
=581)
13.074(df
=601)
19.171(df=
575)
FStatis tic
295.783
***
(df=12;
2929)
100.496
***
(df=8;
587)
160.333
***
(df=8;
553)
55.982
***
(df=8;
581)
105.325
***
(df=8;
601)
58.872
***
(df=8;575)
Note:
*
p
**
p
***
p<0.01
OLSModelstoEstimateElasticities
Dependentvariable:
PercentageMeanDa il yOccupa ncy(%)
AppendixI‐OLSregressionsusedtoestimatepriceelasticityofdemand.Basecasesforfixedeffectsare:Friday
(Weekday),2013(Year)andFrewSt5001(Street)andOnSession(OffSession)
Fichman,39
AppendixII‐OLSregressionsusedtoestimateregressiondiscontinuities.Basecasesforfixedeffectsare:Friday
(Weekday),FrewSt5001(Street)andOnSession(OffSession)
WholeMonth
t+1,060%
Previous
Occupancy
WholeMonth
t+1,6080%
Previous
Occupancy
Week12,
Montht+1,0
60%Previous
Occupancy
Week12,
Montht+1,60
80%Previous
Occupancy
Week34,
Montht+1,0
60%Previous
Occupancy
Week34,
Montht+1,60
80%Previous
Occupancy
PreviousMonthMean DailyOccupancy(%) 0.463 0.207 2.049
***
0.075 0.542 0.349
*
Standa rdError 0.38 0.141 0.385 0.198 0.437 0.199
MondayFixedEffect 0.469 2.189 2.492 1.703 1.914 2.649
Standa rdError 4.512 1.869 3.858 2.535 5.912 2.729
ThursdayFi xedEffect 0.906 1.81 0.427 0.521 0.125 4.177
Standa rdError 4.253 1.814 3.767 2.508 5.206 2.595
Tuesday FixedEffect 2.227 0.951 5.207 1.934 2.432 0.06
Standa rdError 4.493 1.801 4.229 2.486 5.361 2.576
WednesdayFixedEffect 0.923 0.899 0.847 1.47 9.047 0.607
Standa rdError 4.526 1.748 3.775 2.483 6.444 2.439
FrewStFixedEffect 12.742
***
11.292
*
12.667
**
Standa rdError 4.319 6.283 6.016
Mar garetMorrisonFixedEffect 7.349
***
2.437 11.146
***
Standa rdError 1.925 2.773 2.677
SchenleyDriveFixedEffect 22.469 20.329
***
67.647
***
23.260
***
42.416
**
17.990
***
Standa rdError 17.555 2.14 15.03 3.153 17.711 3.05
TechStFixedEffect 70.800
***
25.022
***
131.890
***
26.261
***
15.295 22.005
***
Standa rdError 14.614 6.007 14.419 8.628 20.181 8.473
Price(Dollars) 22.098 39.465
***
17.138 45.367
***
32.226
***
Standa rdError 15.163 6.518 10.402 9.397 09.197
OffSessionFixedEffect 16.890
***
36.341
***
8.275
**
38.069
***
67.738
***
36.524
***
Standa rdError 4.022 1.356 3.841 2.129 12.546 1.879
Constant 72.046
**
110.992
***
80.616
***
130.596
***
62.946
***
90.220
***
33.093 15.246 22.348 21.833 15.275 21.407
Observations 79 538 39 259 40 279
R
2
0.798 0.685 0.93 0.664 0.869 0.718
Adj us ted R
2
0.772 0.678 0.909 0.649 0.835 0.706
Residual Std.Err or 0.123(df=
69)
0.132(df=
526)
0.075(df=
29)
0.128(df=
247)
0.109(df=
31)
0.135(df=
267)
FStatis tic 30.373
***
(df
=9;69)
103.832
***
(df
=11;526)
43.006
***
(df
=9;29)
44.461
***
(df=
11;247)
25.659
***
(df
=8;31)
61.754
***
(df=
11;267)
Note:
*
p
**
p
***
p<0.01
OLSModelstoEstimateRegre ssion Discontinuity
Dependentvariable:
MeanPercentageOccupanc yForDays inTimePeriodt+i
... Finally, Fichman [20] performs an analysis of the DP parking system implemented in Pittsburgh (USA), finding evidence for a change in drivers' behavior in response to dynamic fees. The author clearly found a time lag between the change in behavior and the adjusted prices, suggesting the important role of communication to achieve an optimal situation. ...
Article
Full-text available
Both Revenue Management (RM) and Dynamic Pricing (DP) are common practices in many industries—e.g., airlines and hotels—but they are still relatively unknown in the parking sector. In Europe, with the exception of for airport parking and in some pilot tests, DP is rarely used by private parking operators or local authorities. The main objective of this conceptual paper is to set an agenda for introducing DP in the private parking sector at a larger scale. After a short review of the existing academic and gray literature, we describe the requirements and instruments that parking companies need to make use of RM. Next, we shortly report on the major existing and/or planned DP parking schemes in Europe. We continue by providing a comprehensive reality check discussing the major challenges the sector faces to apply DP. We conclude by suggesting a road map for private parking operators to successfully implement RM and DP. Finally, we give some indications for future research.
Article
Full-text available
Adam Millard-Ball, Rachel Weinberger, and Robert Hampshire critically comment on Pierce and Shoup's article 'Evaluating the Impacts of Performance-Based Parking'. In principle, a performance-based parking system such as SFpark, which adjusts prices in a bid to achieve target occupancy for curb parking, is an excellent way to reduce congestion and to improve the driver experience. Pierce and Shoup's findings suggest that the SFpark program has had a remarkable impact in an extremely short time, an impact that is substantially faster and greater than that shown in other analyses. Their empirical analysis ignores the endogeneity of prices specifically the possibility that fluctuations in demand trigger price changes under SFparks rate adjustment rules. The authors feel that it is too soon to draw firm conclusions about the impact of performance-based parking pricing programs such as SFpark.
Article
Full-text available
Problem, research strategy, and findings: Underpriced and overcrowded curb parking creates problems for everyone except a few lucky drivers who find a cheap space; all the other drivers who cruise to find an open space waste time and fuel, congest traffic, and pollute the air. Overpriced and underoccupied parking also creates problems; when curb spaces remain empty, merchants lose potential customers, workers lose jobs, and cities lose tax revenue. To address these problems, San Francisco has established SFpark, a program that adjusts prices to achieve availability of one or two open spaces per block. To measure how prices affected on-street occupancy, we calculated the price elasticity of demand revealed by over 5,000 price and occupancy changes during the program's first year. Price elasticity has an average value of -0.4, but varies greatly by time of day, location, and several other factors. The average meter price fell 1% during the first year, so SFpark adjusted prices without increasing them overall. This study is the first to use measured occupancy to estimate the elasticity of demand for on-street parking. It also offers the first evaluation of pricing that varies by time of day and location to manage curb parking. Takeaway for practice: San Francisco can improve its program by making drivers more aware of the variable prices, reducing the disabled placard abuse, and introducing seasonal price adjustments. Other cities can incorporate performance parking as a form of congestion pricing.
Article
Full-text available
Urban planners typically set minimum parking requirements to meet the peak demand for parking at each land use, without considering either the price motorists pay for parking or the cost of providing the required parking spaces. By reducing the market price of parking, minimum parking requirements provide subsidies that inflate parking demand, and this inflated demand is then used to set minimum parking requirements. When considered as an impact fee, minimum parking requirements can increase development costs by more than 10 times the impact fees for all other public purposes combined. Eliminating minimum parking requirements would reduce the cost of urban development, improve urban design, reduce automobile dependency, and restrain urban sprawl.
Article
This paper draws upon the experience of the City of Los Angeles, California, with a demonstration project, LA Express Park. Since June 2012, the Los Angeles Department of Transportation has been using demand-based pricing to set the hourly parking meter rates in the city's downtown. Drivers were informed of the current parking rates and parking space availability for on-street parking spaces and for city-owned off-street facilities by a robust parking guidance system. For privately owned off-street facilities, the data were limited to location and current parking policies. The objective of the project was to reduce the time spent looking for available parking. Through the project's success, drivers had a better parking experience, and traffic congestion was reduced. For Los Angeles, this intelligent system for parking management was essentially revenue neutral. The paper argues that increasing revenue should not be the primary objective of projects for congestion pricing of parking. New parking meter technologies have shown greater potential for increasing revenue, and public acceptance of pricing projects is greater when revenue growth is not the goal of a project. Cities are more likely to achieve success and acceptance if the goal of these projects is to reduce the number of under- and overoccupied parking spaces and thereby make finding parking easier.