... When high-density lidar data are analyzed in a single-tree, object-oriented approach (Reitberger et al., 2009;Li et al., 2012;Dalponte and Coomes, 2016;Lindberg and Holmgren, 2017;Campbell et al., 2020), individual tree attributes such as tree volume (Maltamo et al., 2004), basal area (Silva et al., 2016), canopy fuel characteristics (Popescu and Zhao, 2008;Klauberg et al., 2019), species (Ørka et al., 2009;Kim et al., 2009b;Zhao et al., 2020), and condition (Wing et al., 2015;Shendryk et al., 2016;Klauberg et al., 2019;Karna et al., 2019) can be estimated. The amount of energy reflected to the lidar sensor, often referred to as lidar intensity, has proven to be especially useful for distinguishing live and dead vegetation components (Kim et al., 2009a;Morsdorf et al., 2010;Bright et al., 2013;Wing et al., 2015), as has combining optical imagery and lidar data (Polewski et al., 2015;Shendryk et al., 2016;Kamińska et al., 2018;Campbell et al., 2020). Studies using lidar have successfully classified individual trees as dead or alive (Yao et al., 2012;Wing et al., 2015;Polewski et al., 2015;Casas et al., 2016;Kamińska et al., 2018;Miltiadou et al., 2020;Briechle et al., 2020); fewer have demonstrated the use of lidar for distinguishing between multiple tree condition or "health" classes (Shendryk et al., 2016;Barnes et al., 2017;Meng et al., 2018a;Lin et al., 2019;Varo-Martínez and Navarro-Cerrillo, 2021). ...