Conference PaperPDF Available

Effect of Sowing Time on Peanut (Arachis Hypogaea L.) Cultivars: II. Fatty Acid Composition

Authors:

Abstract

The aim of this study was to determine the effects of sowing time on fatty acid composition of three Virginia-type peanut cultivars developed at Cukurova University.
Agriculture and Agricultural Science Procedia 10 ( 2016 ) 76 – 82
2210-7843 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the University of Agronomic Sciences and Veterinary Medicine Bucharest
doi: 10.1016/j.aaspro.2016.09.018
Available online at www.sciencedirect.com
ScienceDirect
WK,QWHUQDWLRQDO&RQIHUHQFH$JULFXOWXUHIRU/LIH/LIHIRU$JULFXOWXUH
(IIHFWRIVRZLQJWLPHRQSHDQXWArachis hypogaea /FXOWLYDUV
,,)DWW\DFLGFRPSRVLWLRQ
7DKVLQ62*87)HUKDW2=785.6XOH\PDQ.,=,/
'LFOH8QLYHUVLW\)DFXOW\RI$JULFXOWXUH)LHOG&URSV'HSDUWPHQW'L\DUEDNLU7XUNH\
$EVWUDFW
7KH DLP RI WKLV VWXG\ ZDV WR GHWHUPLQH WKH HIIHFWV RI VRZLQJ WLPH RQ IDWW\ DFLG FRPSRVLWLRQ RI WKUHH 9LUJLQLDW\SH SHDQXW
FXOWLYDUVGHYHORSHGDW&XNXURYD8QLYHUVLW\
7KHH[SHULPHQWZDVFRQGXFWHGDW WKHH[SHULPHQWDO DUHD RI $JULFXOWXUDO )DFXOW\'LFOH 8QLYHUVLW\ 'L\DUEDNLU 7XUNH\ LQ 
JURZLQJVHDVRQ
7KHWUHDWPHQWZDVUHSOLFDWHGWKUHH WLPHV LQ VSOLWSORW EDVHG RQ UDQGRPL]HG FRPSOHWH EORFN GHVLJQ ZLWK WZR VRZLQJ WLPHV 
$SULODVHDUO\VRZLQJDQG-XQHDVODWHVRZLQJLQWKHPDLQSORWVDQGWKUHHFXOWLYDUV+DOLV%H\2VPDQL\HDQG6XOWDQLQ
WKHVXESORWV
7KH UHVXOWV VKRZHG WKDW SDOPLWLF  VWHDULF ROHLF  DQG JDPPDOLQROHQLF DFLG &Q FRQWHQWV GHFUHDVHG
ZKHUHDVOLQROHLFDUDFKLGLFDQGHLFRVDGLHQRLFDFLGLQFUHDVHGZLWKGHOD\LQVRZLQJWLPH
:LWKUHJDUGWRFXOWLYDUV2VPDQL\HZDVKLJKLQWRWDOXQVDWXUDWHGIDWW\DFLGVDWXUDWHGIDWW\DFLGUDWLRIRUERWKVRZLQJWLPHV
7KHUHVXOWVVKRZWKDWVRZLQJWLPHKDVDPDUNHGHIIHFWRQWKHIDWW\DFLGFRPSRVLWLRQRIWKHVHSHDQXWFXOWLYDUV
7KH$XWKRUV3XEOLVKHGE\(OVHYLHU%9
3HHUUHYLHZXQGHUUHVSRQVLELOLW\RIWKH8QLYHUVLW\RI$JURQRPLF6FLHQFHVDQG9HWHULQDU\0HGLFLQH%XFKDUHVW
Keywords:Arachis hypogaeaSHDQXWVRZLQJWLPHFXOWLYDUIDWW\DFLGFRPSRVLWLRQ
&RUUHVSRQGLQJDXWKRU7HO
E-mail address:WVRJXW#GLFOHHGXWU
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the University of Agronomic Sciences and Veterinary Medicine Bucharest
77
Tahsin Sogut et al. / Agriculture and Agricultural Science Procedia 10 ( 2016 ) 76 – 82
,QWURGXFWLRQ
3HDQXW Arachis hypogaea/ VHHGV FRQWDLQ  RLO DQG  SURWHLQ RQ D GU\ VHHG EDVLV ,Q DGGLWLRQ
WKH\ DUH D JRRG VRXUFH RI PLQHUDOV SKRVSKRUXV FDOFLXPPDJQHVLXP DQG SRWDVVLXP DQG YLWDPLQV ( . DQG %
6DYDJHDQG.HHQDQ
,Q7XUNH\SHDQXWLVPDLQO\XVHGLQYDULRXVIRUPVLQIRRGSUHSDUDWLRQDQGIRUWKH PDQXIDFWXUHRISHDQXWEXWWHU
FRQIHFWLRQHU\DQGFKRFRODWHEDVHGSURGXFWV7KHTXDOLW\UHTXLUHPHQWRI FRQIHFWLRQHU\SHDQXWLVPRUHVWULQJHQWDQG
GLVWLQFWO\GLIIHUHQWIURPSHDQXW DV DQRLOVHHG FURS 7KLV UHTXLUHV DGGLWLRQDO HIIRUWV WR GHYHORS FRQIHFWLRQHU\ JUDGH
YDULHWLHVZLWK KLJK2/UDWLR LV SUHIHUUHG3HDQXWLV PDLQO\VRZQLQ VSULQJVHDVRQ$SULO0D\ DVPDLQFURS LQWKH
UHJLRQ )XUWKHUPRUH LQ WKH VRXWKHUQDQG VRXWKHDVWHUQ UHJLRQV SHDQXW FDQ EH JURZQ LQ WKH ZKHDW IDOORZV GXULQJ
SRVWUDLQ\ VHDVRQ LI LUULJDWLRQ IDFLOLWLHV DUH DYDLODEOH 7KXV GLIIHUHQW VRZLQJ WLPHV PLJKW UHVXOW LQ GLIIHUHQW
HQYLURQPHQWDOFRQGLWLRQVGXULQJJUDLQILOOLQJDQGRLOV\QWKHVLV,QSDUWLFXODUWKHIDWW\DFLGFRPSRVLWLRQLVNQRZQWR
GLIIHU ZLWK FXOWLYDUV DQG HQYLURQPHQWDO FRQGLWLRQV &RQQRU DQG 6DGUDV  )DWW\ DFLG FRPSRVLWLRQLV D PDMRU
GHWHUPLQDQWRI RLO TXDOLW\ 2LOV KLJKLQXQVDWXUDWHV DUH GHVLUDEOH IRU ERWK LPSURYHG VKHOI OLIH DQGSRWHQWLDO KHDOWK
EHQHILWV:HLVV7KHVWDELOLW\RUVKHOIOLIHRISHDQXWRLOLVUHODWHGWRWKHIDWW\DFLGFRQWHQWRI WKHRLOZLWKWKH
PDMRU IDFWRU EHLQJ WKH UDWLR RI ROHLF &WR OLQROHLF & DFLG 0HUFHU HW DO  'LHWV WKDW DUH KLJK LQ
PRQRXQVDWXUDWHGIDWW\ DFLGVDQGORZ LQVDWXUDWHGIDWW\ DFLGVKDYHUHGXFHGFKROHVWHURODQGORZGHQVLW\OLSRSURWHLQV
LQKXPDQV*UXQG\2¶%\UQHHWDO
,Q VRXWKHUQ RI 7XUNH\ SHDQXW FURS GXUDWLRQ LV VKRUWHU LQ VHFRQG FURSSLQJ FRQGLWLRQV ODWH -XQH ZLWK ORZHU
WHPSHUDWXUHDSSDUHQWO\DIIHFWLQJFURSPDWXULW\7KXVSHDQXWFURSZLOOQRWUHDFKRSWLPXPPDWXULW\IRUDPDUNHWDEOH
\LHOGWRMXVWLI\FRPPHUFLDOSURGXFWLRQLQDUHDVZLWKIHZHUKHDWXQLWVGXULQJWKHJURZLQJVHDVRQHVSHFLDOO\ZKHQLW
LVJURZQLQGRXEOHFURSSLQJV\VWHP7KXVVHHGPDWXULW\FDQDOVRLQIOXHQFHWKHIDWW\DFLGFRPSRVLWLRQRISHDQXW
7KHDFWXDOLPSDFWRIVHHGPDWXULW\LVGHSHQGHQWRQJHQRW\SHFOLPDWLFFRQGLWLRQVDQGJHQRW\SHFOLPDWHLQWHUDFWLRQV
/RZHUWHPSHUDWXUHVGXULQJVHHGGHYHORSPHQWQRUPDOO\DUHDVVRFLDWHGZLWKPRUHXQVDWXUDWHGRLOGXHWRWKHLQFUHDVHG
DFWLYLW\ RI ROHDWH GHVDWXUDVH ZKLFK SURPRWHV WKH V\QWKHVLV RI OLQROHLF DFLG ,QJHQHUDO ROHLF DFLG LQFUHDVHV DQG
OLQROHLFDFLGGHFUHDVHVZLWK VHHGPDWXULW\ *URVVRHWDO2WKHU VWXGLHVKDYH VKRZQDUHGXFWLRQLQROHLFDFLG
DQGDQ LQFUHDVHLQ OLQROHLFDFLGZLWK PDWXULW\+RODGD\ DQG3HDUVRQZKHUHDV.QDXIWHWDO REVHUYHG
QRLQIOXHQFHRIPDWXULW\RQRLOFKHPLVWU\
7KH LQFUHDVH LQ ROHLF DFLG ZLWK VHHG PDWXULW\ LV QRUPDOO\ DFFRPSDQLHG E\ D GHFUHDVH LQ SDOPLWLF OLQROHLF
DUDFKLGLFHLFRVHQRLFEHKHQLFDQGOLJQRFHULFDFLG*URVVRHWDO
%DVHG RQ WKH DERYH OLWHUDWXUH WKH IDWW\ DFLG FRPSRVLWLRQ LQ RLOVHHGV GHSHQGV RQ FX OWLYDU GHJUHH RI ULSHQLQJ
VHHGVDQGWKHFOLPDWLFFRQGLWLRQV:LWKLQFUHDVLQJFRQVXPHUSUHIHUHQFHIRUKLJKTXDOLW\HGLEOHRLOVWKHUHLVWKHQHHG
WRLQYHVWLJDWH WKHTXDOLW\RI SHDQXWFXOWLYDUVJURZQLQGLIIHUHQWFRQGLWLRQVDQGWR LPSURYHWKHFXOWLYDUV WRPHHWWKH
PDUNHW GHPDQG 7KHUHIRUH WKH REMHFWLYH RI WKLV UHVHDUFK ZDV WR GHWHUPLQH IDWW\ DFLG FRPSRVLWLRQ LQ WKH SHDQXW
FXOWLYDUVPD\YDU\ZLWKVRZLQJWLPH
0DWHULDOVDQG0HWKRGV
7KHVWXG\ ZDV FDUULHG RXW DW 8QLYHUVLW\ RI'LFOH )DFXOW\ RI $JULFXOWXUH )LHOG &URSV 'HSDUWPHQW'L\DUEDNLU
ORFDWHG LQ 6RXWK (DVW $QDWROLDQ 5HJLRQ RI 7XUNH\ LQ  JURZLQJ VHDVRQ 7KH UHJLRQ KDV D ZDUP FOLPDWH LQ
VXPPHU DQG WKH PHDQ DQQXDO UDLQIDOO LV DURXQG  PPPRVW RI ZKLFK IDOO LQ D PDMRU FURSSLQJ VHDVRQ ZKLFK
H[WHQGVIURP1RYHPEHUWR-XQH7KXVSHDQXWFDQEHJURZQGXULQJGRXEOHFURSSLQJVHDVRQZLWKLUULJDWLRQLQFHUHDO
RUIRRGOHJXPHEDVHGFURSSLQJV\VWHPVLQWKHUHJLRQ0RQWKO\UDLQIDOOPHDQDLUWHPSHUDWXUHDQGKXPLGLW\IRU
DUH SUHVHQWHG LQ 7DEOH 7KH WUHDWPHQWV ZHUH UHSOLFDWHG WKUHH WLPHV LQ VSOLW SORW EDVHG RQ UDQGRPL]HG FRPSOHWH
EORFNGHVLJQ ZLWKWZRVRZLQJ WLPHVPLG$SULODV PDLQFURSDQGODWH -XQHDVVHFRQGFURS DIWHUZKHDWKDUYHVW LQ
WKHPDLQSORWVDQGWKUHHFXOWLYDUV+DOLV%H\ 2VPDQL\H DQG6XOWDQGHYHORSHGDW&XNXURYD8QLYHUVLW\LQWKH
VXESORWV 7KH VL]H RI HDFK SORW ZDV  [  P5RZ VSDFLQJ IRXU URZV ZDV  P DQG WKH GLVWDQFH EHWZHHQ
SODQWVLQWKHURZZDVPSURYLGLQJDVRZLQJGHQVLW\RISODQWVP2QWKHEDVLVRIVRLODQDO\VLVWKHFURSZDV
IHUWLOL]HGZLWKNJ1DQGNJ32KDDSSOLHGDVEDVDOGRVHLQWKHIRUPRIIHUWLOL]HUSULRUWRVRZLQJ
,Q DGGLWLRQ WRS GUHVVLQJ QLWURJHQ ZDV SURYLGHG DW WKH WLPH RI IXOO IORZHULQJ VWDJH DW WKH UDWH RI  NJ KD DV
DPPRQLXPQLWUDWH1IRUDOOSORWV:HHGVZHUHFRQWUROOHGE\ERWK7ULIOXUDOLQ/KDDVSUHSODQWDQGE\
KDQGDVQHHGHG7KHILHOGZDVXQLIRUPO\LUULJDWHGDWGD\LQWHUYDOVXQWLOKDUYHVWSHULRGXVLQJRYHUKHDGVSULQNOHUV
$OOSORWVZHUHKDUYHVWHGIURPWZRFHQWUDOURZVDWPLG1RYHPEHULQ8QVKHOOHGVDPSOHVZHUHVXQGULHGIRURQH
78 Tahsin Sogut et al. / Agriculture and Agricultural Science Procedia 10 ( 2016 ) 76 – 82
ZHHN7KHVKHOOHGSRGVE\KDQGZHUHDJDLQVXQGULHGIRUWZRGD\V WKHUHDIWHU DQDO\]HGIRUIDWW\DFLG FRPSRVLWLRQ
7KHVHHGVDPSOHVZHUHJURXQG WKHRLO ZDVH[WUDFWHG ZLWKGLHWK\O HWKHUXVLQJVR[KOHWDSSDUDWXV)DWW\DFLGDQDO\VLV
RI WKH VHHG RLOV ZHUH FDUULHG RXW LQ 78%,7$.0$0 7KH6FLHQWLILFDQG7HFKQRORJLFDO 5HVHDUFK&RXQFLO RI
7XUNH\0DUPDUD5HVHDUFK&HQWHU
7KHUHVXOWVZHUHH[SUHVVHGDVWKHSHUFHQWDJHRIHDFKIDWW\DFLGZLWKUHVSHFWWRWKHWRWDOIDWW\DFLGV$OO WKHGDWD
DUH SUHVHQWHG DV PHDQV  VWDQGDUG HUURU 7KH VWDWLVWLFDO VLJQLILFDQFHRI GLIIHUHQFHV LQ WKH IDWW\ DFLG FRPSRVLWLRQ
EHWZHHQJURXSVZDVDQDO\]HGZLWKDQDO\VLVRIYDULDQFH$129$DQG7XNH\¶V+6'WHVWXVLQJDVWDWLVWLFDOVRIWZDUH
SDFNDJH-03YHUVLRQD3ZDVWDNHQWRLQGLFDWHDVWDWLVWLFDOO\VLJQLILFDQWGLIIHUHQFH
7DEOH0RQWKO\WHPSHUDWXUHR&UDLQIDOOPPDQGKXPLGLW\LQJURZLQJVHDVRQ
'L\DUEDNLU7XUNLVK6WDWH0HWHRURORJLFDO6HUYLFH
0RQWKV
$LU7HPSHUDWXUH
&
6RLO7HPS
& 5DLQIDOO
PP
+XPLG

0LQ 0D[ 0HDQ 0HDQ
$SULO
0D\
-XQH
-XO\
$XJXVW
6HSWHP
2FWREHU











































5HVXOWVDQG'LVFXVVLRQV
'XULQJWKHH[SHULPHQWPD[LPXPWHPSHUDWXUHVUDQJHGIURP&WR&DQGPLQLPXPWHPSHUDWXUHVIURP
&WR&ZLWKDYHUDJHWHPSHUDWXUHVIURP&WR&7DEOH
'DWDVWDWLVWLFDOO\DQDO\]HG DV VSOLWSORWVKRZHGVLJQLILFDQWVRZLQJ WLPH PDLQHIIHFWVIRUSDOPLWLF VWHDULF
ROHLFOLQROHLFJDPPDOLQROHQLFQDUDFKLGLFHLFRVDGLHQRLFWRWDOVDWXUDWHG
IDWW\ DFLG 6 DQG UDWLR RI XQVDWXUDWHG IDWW\ DFLG WR VDWXUDWHG IDWW\ DFLG 86 +RZHYHU DOSKDOLQROHQLF Q
OLJQRFHULF  DQG WRWDO XQVDWXUDWHG IDWW\ DFLGV 8ZHUH QRW VLJQLILFDQWO\ LQIOXHQFHG E\ VRZLQJ WLPH &XOWLYDU
HIIHFWV ZHUH VLJQLILFDQW IRU DOO YDULDEOHV H[FHSW OLQROHLF  DQG XQVDWXUDWHG IDWW\ DFLGV 8 6RZLQJ WLPH [
FXOWLYDULQWHUDFWLYHHIIHFWZDVQRWVLJQLILFDQWIRUDOOYDULDEOHVH[FHSWUDWLRRIROHLFWROLQROHLF2/DFLG7DEOH
$FFRUGLQJWR WKH UHVXOWV VLJQLILFDQW GLIIHUHQFHV ZHUH REVHUYHG EHWZHHQ VRZLQJWLPHVIRUSDOPLWLF VWHDULF DQG
ROHLFDFLG &URSVVRZQHDUO\$SULO DVPDLQFURSJDLQHGKLJKHUSDOPLWLFDFLGVWHDULFDQGROHLF DFLG
DQG   UHVSHFWLYHO\ FRPSDUHG WR ODWH VRZLQJ WLPH -XO\  DV VHFRQG FURS   DQG  
UHVSHFWLYHO\7DEOH7KHSURSRUWLRQRIIDWW\DFLGVLQVHHGRLOLV SUHGRPLQDQWO\LQIOXHQFHGE\HQ]\PHVUHJXODWLQJ
WKHUHODWLRQRISDOPLWLFVWHDULFDQGROHLFH[SRUWHGIURPWKHSODVWLGVDQGE\HQ]\PHVZKLFKVXEVHTXHQWO\PHWDEROL]H
WKHVHIDWW\DFLGVHJROHLFE\GHVDWXUDWLRQWROLQROHLF+LOOVDQG0XUSK\7KHSDOPLWLFDFLGDQGVWHDULFDFLGDUH
WKHPDMRUVDWXUDWHGIDWW\DFLGVZKHUHDV ROHLFDFLG XQVDWXUDWHG7KHTXDOLW\RIHGLEOH RLOLV JHQHUDOO\DVVRFLDWHGZLWK
WKH UHODWLYH FRQFHQWUDWLRQ RI ROHLF DFLG $ SUREDEOH UHDVRQ IRU ORZ DQG KLJK SDOPLWLF VWHDULF DQG ROHLF DFLGV
FRQFHQWUDWLRQ LQ RLO RI VHHG PD\ EH WKH HIIHFW RI WHPSHUDWXUHGXULQJ WKH VHHG ILOOLQJ VWDJH 2OHLF DFLG FRQWHQW LV
HVVHQWLDOO\LQIOXHQFHGE\WHPSHUDWXUHGXULQJVHHGGHYHORSPHQW(DFK&LQFUHDVHLQWHPSHUDWXUHOHDGVWRDERXW
LQFUHDVHLQROHLFDFLG'HPXULQHWDO,QRXUH[SHULPHQWWKHLQFUHDVHRISDOPLWLFVWHDULFDQGROHLFDFLGLQWKH
HDUO\ VRZLQJ PD\ EH GXH WR KLJKHU WHPSHUDWXUH GXULQJ WKH VHHG ILOOLQJ VWDJH HVSHFLDOO\ IURP -XO\ WR $XJXVW
7DEOH 7KLV LV LQ FRQIRUPLW\ ZLWK 6WXPSI  ZKR UHSRUWHG WKDW SDOPLWLF VWHDULF DQG ROHLF DFLGV ZHUH
HQKDQFHGE\KLJKHUWHPSHUDWXUHVGXULQJWKHVHHGILOOLQJSHULRG$VLJQLILFDQWQHJDWLYHHIIHFWRIODWHVRZLQJRQROHLF
DFLGZDVDOVRUHSRUWHGE\$KPDGDQG+DVVDQZKRUHSRUWHGWKDWROHLFDFLGLQFUHDVHGZLWKLQFUHDVLQJPDWXULW\
WHPSHUDWXUH)XUWKHUPRUHWKHODWHVRZQFURSVPDWXUHGGXULQJORZHUWHPSHUDWXUHFRQGLWLRQVWKDQGLGWKHHDUO\VRZQ
FURSV,QDOORIWKHHDUO\VRZQ FURSV WKH GXUDWLRQ RIRLO DFFXPXODWLRQLQWKHVHHGVZDVORQJHUZKHUHLWFRLQFLGHG
ZLWKDSHULRG RI SDUWLFXODUO\KLJKWHPSHUDWXUHV&XOWLYDUV H[KLELWHGVLJQLILFDQWGLIIHUHQFHVIRU SDOPLWLF VWHDULFDQG
ROHLFDFLG7DEOH7KHKLJKHVWSDOPLWLFDFLGDFTXLUHGLQ6XOWDQ ZKLFK ZDV VWDWLVWLFDOO\DW SDU ZLWK WKH
+DOLV %H\  DQG WKH ORZHVW YDOXHV RI WKLV WUDLW UHFRUGHG IURP 2VPDQL\H  &XOWLYDU 6XOWDQ
DFFXPXODWHGVLJQLILFDQWO\KLJKHU VWHDULF DFLG  WKDQWKHRWKHUWZRFXOWLYDUV2OHLFDFLGZDVIRXQGKLJKHULQ
6XOWDQ DQG 2VPDQL\H  DQG  UHVSHFWLYHO\ FRPSDUHG WR +DOLV %H\  7DEOH :LWK
79
Tahsin Sogut et al. / Agriculture and Agricultural Science Procedia 10 ( 2016 ) 76 – 82
UHJDUGWROLQROHLFDFLG7DEOHVLJQLILFDQWGLIIHUHQFHVZHUHHYLGHQWEHWZHHQWKHWZRVRZLQJWLPHVZLWKDVWULNLQJ
LQFUHDVH LQ WKH ODWH VRZLQJ  YV  +RZHYHU HDUO\ VRZLQJ WLPH OHG WR D VOLJKW LQFUHDVH RI DOSKD
OLQROHQLF QRQVLJQLILFDQW DQG JDPPDOLQROHQLF DFLG FRQWHQW LQ WKUHH SHDQXW FXOWLYDUV *DPPDOLQROHQLF DFLG
FRQWHQW ZDV KLJKHU WKDQDOSKDOLQROHQLF,W KDV EHHQ VXJJHVWHG WKDW GXULQJ VHHG PDWXUDWLRQ DOSKDOLQROHQLF DFLG LV
WUDQVIRUPHG LQWR JDPPDOLQROHQLF DFLG &KLVRZVNL HW DO 7KH IDWW\ DFLG FRPSRVLWLRQ RI SHDQXW RLO YDULHV
GHSHQGLQJ RQ WKH JHQRW\SH VHHG PDWXULW\ FOLPDWLF FRQGLWLRQV JURZWK ORFDWLRQ DQG LQWHUDFWLRQVEHWZHHQ WKHVH
IDFWRUV <RXQJ  :DUPHU WHPSHUDWXUHV IDYRU WKH SURGXFWLRQ RI ROHLF DFLG UDWKHU WKDQ OLQROHLF DQG OLQROHQLF
DFLG5D\ HWDO5HQ HWDO %DFKODYDHWDO 7KH KLJKHULQFUHDVHLQ OLQROHLFDFLGDW ODWHVRZLQJ
PD\ EH GXH WR ORZHU WHPSHUDWXUH FRLQFLGLQJ ZLWK WKH VHHG ILOOLQJ VWDJH IURP 6HSWHPEHU WR 2FWREHU 7KLV ZDV LQ
DFFRUGDQFHZLWK D SUHYLRXV VWXG\ZKHUHZLWKLQD VRLO WHPSHUDWXUH UDQJHEHWZHHQDQG  GD\QLJKW WKH
UHDFWLRQRIOLQROHLFDFLGZDVVLPLODULQWKHVDPHSHDQXWJHQRW\SHV*RORPEHNHWDO+LQGVIRXQGWKDW
DVVHHGVSURJUHVVHGIURP LQWHUPHGLDWH WKURXJKQHDUO\PDWXUHWRPDWXUH VWDJHV OLQROHLF DFLG GHFUHDVHG ZKLOH ROHLF
DFLGLQFUHDVHG7KLVW\SHRIWHPSHUDWXUHLQWHUIHUHQFHRQIDWW\DFLGFRQWHQWKDVEHHQIRXQGLQVHYHUDORLOFURSVSHFLHV
DQGLVGXHWRLQFUHDVHGGHVDWXUDVHDFWLYLW\DWORZWHPSHUDWXUHEHFDXVHRIKLJKHUR[\JHQVROXELOLW\6WXPSI,Q
FDVH RI FXOWLYDUV +DOLV %H\ DQG 2VPDQL\H SURGXFHG KLJKHU OLQROHLF DFLG  DQG  UHVSHFWLYHO\
FRPSDUHGWR6XOWDQZKHUHDVPD[LPXPJDPPDOLQROHQLFDFLGFRQWHQWUHFRUGHGLQ6XOWDQ
&KDQJHVLQ IODYRXU TXDOLW\PD\EH FDXVHGE\WKHGHYHORSPHQW RIR[LGDWLYHUDQFLGLW\ ZKLFKKDVEHHQUHODWHGDW
OHDVWLQSDUWWRKLJKOLQROHLFDFLGFRQWHQWRIWKHRLO)RUHHWDO2QWKHRWKHUKDQGDUHDVRQDEOHSURSRUWLRQRI
OLQROHLFDFLGLVHVVHQWLDOLQQXWULWLRQDOWHUPV
7DEOH$QDO\VLVRIYDULDQFHIRUIDWW\DFLGFRPSRVLWLRQRISHDQXWFXOWLYDUVDWWZRVRZLQJWLPHVD
6RZLQJWLPH&XOWLYDU
)DWW\DFLGFRPSRVLWLRQ
')     Q Q    8E 6F 86G 2/H
6RZLQJWLPH7      16    16 16   
&XOWLYDU&           16   
6RZLQJWLPH[&XOWLYDU7[&  16 16 16 16 16 16 16 16 16 16 1616
D$OO YDOXHV DUH PHDQV RI WKUHH UHSOLFDWLRQV UXQ LQ GXEOLFDWH 16   FRUUHVSRQG WR QRQVLJQLILFDQW RU VLJQLILFDQFH DW 3 DQG 
UHVSHFWLYHO\E8XQVDWXUDWHG IDWW\DFLGVF6VDWXUDWHGIDWW\DFLGG86UDWLRRIXQVDWXUDWHGWRVDWXUDWHGIDWW\DFLGVH2/UDWLRRIROHLFWROLQROHLF
DFLGV
7DEOH  )DWW\DFLGFRPSRVLWLRQRISHDQXWFXOWLYDUVDWWZRVRZLQJWLPHVSDOPLWLFVWHDULFDQGROHLFDFLGFRQWHQW
&XOWLYDU
6RZLQJ7LPH
  
(DUO\ /DWH
M
ean (DUO\ /DWH
M
ean (DUO\ /DWH
M
ean
+DOLV%H\   8.89±0.15ab   2.50±0.12b   44.17±0.49b
2VPDQL\H   8.60±0.20b   2.56±0.14b   44.73±0.36ab
6XOWDQ   9.06±0.16a   2.85±0.08a   44.75±0.22a
M
ean 9.19±0.06 a 8.51±0.11 b 8.85±0.10 2.87±0.06 a 2.40±0.08 b 2.64±0.07 45.28±0.14a 43.82±0.20b 44.55±0.21
L
SDT 0.30 0.42 0.66
L
SDC 0.39 0.23 0.57
L
SDT X C - - -
6WDQGDUGHUURURIPHDQ
D/HWWHUVWKDWDUHGLIIHUHQWIRUVRZLQJWLPHDQGFXOWLYDUDUHVLJQLILFDQWO\GLIIHUHQWE\7XNH\¶V+6'WHVW3
80 Tahsin Sogut et al. / Agriculture and Agricultural Science Procedia 10 ( 2016 ) 76 – 82
7DEOH  )DWW\DFLGFRPSRVLWLRQRISHDQXWFXOWLYDUVDWWZRVRZLQJWLPHVOLQROHLFDOSKDOLQROHQLFQDQGJDPPDOLQROHQLFQ
DFLGFRQWHQW
&XOWLYDU
6RZLQJ
7LPH
 Q Q
(DUO\ /DWH
M
ean (DUO\ /DWH
M
ean (DUO\ /DWH
M
ean
+DOLV%H\   35.45±0.44a   1.347±0.037a  1.268±0.039b
2VPDQL\H

  35.15±0.23ab  1.097±0.015b  1.298±0.018b
6XOWDQ   34.74±0.31b   1.173±0.012b   1.445±0.038a
M
ean 34.51±0.18b 35.71±0.20a35.11±0.19 1.216±0.044 1.196±0.039 1.206±0.028 1.386±0.036a 1.289±0.030b 1.337±0.026
L
SDT 0.53 - 0.062
L
SD
C
0.61 0.117 0.130
L
SDT X
C
- - -
6WDQGDUGHUURURIPHDQ
D/HWWHUVWKDWDUHGLIIHUHQWIRUVRZLQJWLPHDQGFXOWLYDUDUHVLJQLILFDQWO\GLIIHUHQWE\7XNH\¶V+6'WHVW3!
7DEOH  )DWW\DFLGFRPSRVLWLRQRISHDQXWFXOWLYDUVDWWZRVRZLQJWLPHVDUDFKLGLFHLFRVDGLHQRLFDQGOLJQRFHULFDFLGFRQWHQW

&XOWLYDU
6RZLQJ7LPH
  
(DUO\ /DWH
M
ean (DUO\ /DWH
M
ean (DUO\ /DWH
M
ean
+DOLV%H\   0.123±0.004a   2.935±0.058ab 1.643±0.026a
2VPDQL\H

  0.102±0.007b   2.805±0.093b 1.467±0.012b
6XOWDQ   0.112±0.007ab   3.023±0.029a 1.520±0.007b
M
ean 0.100±0.005 b 0.124±0.003 a 0.112±0.004 2.819±0.065b 3.023±0.022a2.921±0.041 1.547±0.031 1.540±0.02
7
1.543±0.020
L
SDT 0.012 0.055 -
L
SD
C
0.014 0.196 0.077
L
SDT X
C
- - -
6WDQGDUGHUURURIPHDQ
D/HWWHUVWKDWDUHGLIIHUHQWIRUVRZLQJWLPHDQGFXOWLYDUDUHVLJQLILFDQWO\GLIIHUHQWE\7XNH\¶V+6'WHVW3!
$FFRUGLQJ WR 7DEOH  WKH DPRXQW RI DUDFKLGLF DQG HLFRVDGLHQRLF DFLG LQ WKH VHHGV VRZQ LQ ODWH  DQG
 UHVSHFWLYHO\ ZHUH VLJQLILFDQWO\ KLJKHU WKDQ WKDW RI LQ HDUO\ VRZLQJ  DQG  UHVSHFWLYHO\
+RZHYHUVRZLQJWLPHGLGQRWDIIHFWOLJQRFHULFDFLG7KHILQGLQJVRIWKHSUHVHQWVWXG\DUHVLPLODUWRWKHFRQFOXVLRQ
RI6WXPSI ZKRUHSRUWHGWKDWSDOPLWLFVWHDULF DQG ROHLFDFLGVZHUHHQKDQFHG E\KLJKHUWHPSHUDWXUHVGXULQJ
WKH VHHG ILOOLQJ SHULRG ZKHUHDV FRQFHQWUDWLRQV RI OLQROHLF DUDFKLGLF DQG HLFRVDGLHQRLF DFLGV ZHUH LQFUHDVHG E\
ORZHU WHPSHUDWXUHV +RZHYHU *RORPEHN HW DO  UHSRUWHG WKDW SRG RU URRW WHPSHUDWXUH KDG QR HIIHFW RQ
DUDFKLGLFHLFRVHQRLFDFLGFRQFHQWUDWLRQDQGQRPDMRUHIIHFWRQOLJQRVHULFDFLGFRQFHQWUDWLRQLQSHDQXWRLO,QFDVHRI
FXOWLYDUKLJKHVWOHYHORIDUDFKLGLFDQGHLFRVDGLHQRLF DFLGKDVEHHQIRXQGLQ+DOLV%H\ZKLFKZDVDWSDU
ZLWK6XOWDQZKHUHDVWKHLUORZHVW DPRXQWKDYHEHHQGHWHFWHGLQ2VPDQL\HDQG UHVSHFWLYHO\
7KHKLJKHVWFRQWHQWRI OLJQRFHULFDFLGZDVREVHUYHGLQ+DOLV%H\ DQGWKHORZHVW OHYHOZDVLQ 2VPDQL\H
DQG 6XOWDQ7KH LQÀXHQFHRIJHQRW\SHRQWKHIDWW\DFLGFRPSRVLWLRQRISHDQXWVKDVEHHQ
ZHOOGHPRQVWUDWHG E\ :RUWKLQJWRQ HW DO  6RZLQJ WLPH GLG QRW DIIHFW WRWDO XQVDWXUDWHGIDWW\ DFLGV 2Q WKH
RWKHUKDQGHDUO\VRZLQJUHVXOWHGLQKLJKHUWRWDOVDWXUDWHGIDWW\DFLGEXWORZHUUDWLRRIXQVDWXUDWHGWRVDWXUDWHGIDWW\
DFLGV 7DEOH  ,Q JHQHUDOO\ ORZHU WHPSHUDWXUHV GXULQJ VHHG GHYHORSPHQW QRUPDOO\ DUH DVVRFLDWHG ZLWK PRUH
XQVDWXUDWHG RLO %URZQ HW DO  &DVLQL HW DO  *RORPEHN HW DO  LQGLFDWHG WKDW LQFUHDVLQJ
WHPSHUDWXUHGXULQJ VHHG PDWXUDWLRQRIWHQUHVXOWV LQ DOHVVXQVDWXUDWHGRLO RZLQJWRDQLQFUHDVH LQ ROHDWHFRPELQHG
ZLWKDGHFUHDVHLQSRO\XQVDWXUDWHGIDWW\DFLGVDQGDVOLJKWLQFUHDVH RUQRDOWHUDWLRQLQWKH VDWXUDWHGIDWW\DFLGV
DQG  DW LQFUHDVLQJ WHPSHUDWXUH ,Q SHDQXW D VRLO WHPSHUDWXUH UHGXFWLRQ IURP  WR & GD\QLJKW
LQFUHDVHG WKH H[WHQW RI XQVDWXUDWLRQ RI WKH RLO PDLQO\ EHFDXVHRI D VKLIW IURP ROHLF WR OLQROHLF *RORPEHN HW DO

7KH PD[LPXP VDWXUDWHG IDWW\ DFLGV REVHUYHG LQ 6XOWDQ  DQG +DOLV %H\  ZKLFK UHPDLQHG
VLJQLILFDQWO\ KLJKHU DQG GLIIHUHQWIURP 2VPDQL\H  7KH FXOWLYDU 2VPDQL\HK DG WKH PLQLPXP
81
Tahsin Sogut et al. / Agriculture and Agricultural Science Procedia 10 ( 2016 ) 76 – 82
VDWXUDWHGIDWW\DFLGVZKLOHKDGPD[LPXPUDWLRRIXQVDWXUDWHGWRVDWXUDWHGIDWW\DFLGV6XOWDQKDGWKHORZHVW
RI86UDWLR7KHVLJQLILFDQWGLIIHUHQFHVDPRQJFXOWLYDUVZHUHDWWULEXWHGWRWKHJHQHWLFPDNHXS
5DWLRRI ROHLF WR OLQROHLF 2/ DFLG ZDVVLJQLILFDQWO\DIIHFWHGE\ VRZLQJ WLPH FXOWLYDU DQG FXOWLYDU [ VRZLQJ
WLPHLQWHUDFWLRQDVLQGLFDWHG LQ 7DEOH  5DWLR RI 2/ DFLG ZDV KLJKHU LQ HDUO\ VRZLQJ FRPSDUHGWRODWH
VRZLQJ  LQ DOO FXOWLYDUV 7KH ROHLF DFLG WR OLQROHLF DFLG UDWLR 2/ KDV EHHQ FRQVLGHUHGDQ LQGH[ RI RLO
VWDELOLW\%URZQHWDO )RUHHWDO 2¶.HHIHHWDO/LQROHLFDFLGLV DQXQVWDEOHIDWW\DFLGDQG DQ
LQYHUVH UHODWLRQVKLS EHWZHHQ OLQROHLF DFLG DQG RLO VWDELOLW\ KDV EHHQ UHSRUWHG %UDGGRFN HW DO  +ROOH\ DQG
+DPPRQV2¶.HHIHHW DO 7KHHQ]\PH ǻGHVDWXUDVHFDWDO\]HV WKHUHDFWLRQRI ROHLFDFLGWROLQROHLF
DFLGDQG WKH ROHLFWROLQROHLFDFLG UDWLRLVFRQWUROOHGE\ WKHDFWLYLW\RIWKLV HQ]\PH:RUWKLQJWRQHWDO  DQG
%URZQHWDOIRXQGWKDWZLWKLQFUHDVLQJO\PRUHQRUWKHUQJURZLQJORFDWLRQVWKHROHDWHDQGSDOPLWDWHFRQWHQWV
WHQGHG WR GHFUHDVH ZKLOH WKH SRO\XQVDWXUDWHG FRQWHQW WHQGHGWR LQFUHDVH LQ 86$ 6LPLODU UHVXOWV ZHUH IRXQG E\
*URVVRHWDO VWXG\LQJWKHSHDQXWRLOJURZQLQ$UJHQWLQD7KH\UHSRUWHGWKDWKLJKHUWHPSHUDWXUHVGXULQJ WKH
ODVW ZHHNV EHIRUH KDUYHVW UHVXOWHG LQ KLJKHU 2/ UDWLR +RODGD\ DQG 3HDUVRQ  &RROHU SURGXFWLRQ FOLPDWHV
ORZHUWKH2/UDWLRUHVXOWLQJLQRLOZLWKDVKRUWHUVKHOIOLIH:LWKPDWXUDWLRQWKHSHUFHQWDJHRIROHLFDFLGLQFUHDVHV
ZKLOH OLQROHLF DFLG SHUFHQWDJH GHFUHDVHV VOLJKWO\ <RXQJ HW DO  $QGHUVHQ DQG *RUEHW  2[LGDWLYH
VWDELOLW\ RI SHDQXW RLO LVKLJKO\ FRUUHODWHG ZLWKWKHUDWLRRIROHLF DFLG WR OLQROHLF DFLG )RUH HW DO  WKXV RLO
VWDELOLW\ LV FRUUHODWHG ZLWK PDWXULW\ 5DWLR RI 2/ DFLGVZDV WKH KLJKHVW LQ 6XOWDQ DQG 2VPDQL\H  DQG
 UHVSHFWLYHO\ GXH WR WKH ORZHU OLQROHLF DFLG LQ WKHLU RLOV ZKHQ FRPSDUHG ZLWK +DOLV 7DEOH  ,Q UHVSHFW RI
VRZLQJWLPH[FXOWLYDULQWHUDFWLRQDOOFXOWLYDUVZHUHIRXQGWREHVXLWDEOHIRU2/DFLGLQHDUO\VRZLQJIRUFXOWLYDWLRQ
RISHDQXWXQGHUFRQGLWLRQVRIVRXWKHDVWUHJLRQRI7XUNH\7DEOH7KHUDWLRRI2/DFLGRI6XOWDQZDVWKHKLJKHVW
LQ HDUO\ VRZLQJ WLPH  $ UHGXFWLRQ RU HOLPLQDWLRQ RI WKHORQJ FKDLQ IDWW\ DFLGV LQ SHDQXW RLOV ZRXOG EH D
ZRUWKZKLOHREMHFWLYHRISHDQXWEUHHGLQJSURJUDPVVLQFHLWZLOODOVRLQFUHDVHSRO\XQVDWXUDWHGWRVDWXUDWHG36UDWLR
7KLVFRXOGLQFUHDVHWKHROHLFDQGOLQROHLFDFLGFRQWHQWDQGJLYHDKHDOWKLHUSHDQXW
7DEOH )DWW\DFLGFRPSRVLWLRQRISHDQXWFXOWLYDUVDWWZRVRZLQJWLPHVXQVDWXUDWHG8VDWXUDWHG6DQGUDWLRRIXQVDWXUDWHGWRVDWXUDWHGDFLG
&XOWLYDU
6RZLQJ7LPH
8 6 86
(DUO\ /DWH
M
ean (DUO\ /DWH
M
ean (DUO\ /DWH
M
ean
+DOLV%H\   85.17±0.08   13.16±0.24ab   6.48±0.11ab
2VPDQL\H

  85.09±0.15   12.73±0.34b   6.71±0.17a
6XOWDQ   85.13±0.25   13.54±0.21a   6.29±0.10b
M
ean 85.22±0.05 85.04±0.19 85.13±0.09 13.71±0.10 a 12.57±0.17 b 13.14±0.16 6.22±0.04b 6.77±0.09a 6.49±0.08
L
SDT - 0.33 0.09
L
SD
C
- 0.44 0.23
L
SDT X
C
- - -
6WDQGDUGHUURURIPHDQ
D/HWWHUVWKDWDUHGLIIHUHQWIRUVRZLQJWLPHDQGFXOWLYDUDUHVLJQLILFDQWO\GLIIHUHQWE\7XNH\¶V+6'WHVW3!
7DEOH5DWLRRIROHLFWROLQROHLF2/DFLGRISHDQXWRLOIURPWKUHHFXOWLYDUVDWWZRVRZLQJWLPHV
&XOWLYDU
6RZLQ
7LPH
2/
(DUO\
/DWH
Mean
+DOLV D F 1.25±0.02b
2VPDQL\H D EF 1.27±0.01ab
6XOWDQ D E 1.29±0.01a
M
ean 1.31±0.01a 1.23±0.01b 1.27±0.01
L
SDT 0.08
L
SD
C
0.03
L
SDT X
C
0.05
6WDQGDUGHUURURIPHDQ
D/HWWHUVWKDWDUHGLIIHUHQWIRUVRZLQJWLPHDQGFXOWLYDUDUHVLJQLILFDQWO\GLIIHUHQWE\7XNH\¶V+6'WHVW3!
82 Tahsin Sogut et al. / Agriculture and Agricultural Science Procedia 10 ( 2016 ) 76 – 82
&RQFOXVLRQ
,Q FRQFOXVLRQ VRZLQJ WLPH DOWHUHG VHHG FRPSRVLWLRQ LQ WKH SHDQXW FXOWLYDUV /DWH VRZLQJ WHQGV WR LQFUHDVH
OLQROHQLF DUDFKLGLF HLFRVDGLHQRLF DQG UDWLR RI XQVDWXUDWHG WR VDWXUDWHG IDWW\ DFLG EXW GHFUHDVH SDOPLWLF VWHDULF
ROHLFJDPPDOLQROHQLFDQG WRWDOVDWXUDWHGIDWW\DFLGFRQWHQW7KHUDWLRRIROHLFWROLQROHLFDFLGIRUDOOFXOWLYDUVZDV
KLJKHUDWHDUO\VRZLQJWKDQODWHVRZLQJEHFDXVHRIWKHKLJKHUROHLFDFLGDWHDUO\VRZLQJ
$FNQRZOHGJHPHQWV
7KLVUHVHDUFKZDVIRXQGHGE\'8%$3'LFOH8QLYHUVLW\6FLHQWLILF5HVHDUFK3URMHFWV8QLW3URMHFW1R=)
5HIHUHQFHV
$KPDG6+DVVDQ)82LO\LHOGDQGIDWW\DFLGFRPSRVLWLRQRIVSULQJVXQIORZHU3DN-%LRO6FL
$QGHUVHQ3&*RUEHW':,QIOXHQFHRI\HDUDQGSODQWLQJGDWHRQIDWW\DFLGFKHPLVWU\RIKLJKROHLF DQGQRUPDOSHDQXWJHQRW\SHV-RI
$JULFDQG)RRG&KHP
%DFKODYD(&DUGLQDO$- &RUUHODWLRQEHWZHHQWHPSHUDWXUHDQG ROHLFDFLG VHHGFRQWHQWLQWKUHH VHJUHJDWLQJVR\EHDQSRSXODWLRQV&URS
6FL
%UDGGRFN-&6LPV&$2¶.HHIH6.)ODYRUDQGR[LGDWLYHVWDELOLW\RIURDVWHGKLJKROHLFDFLGSHDQXWV-)RRG6FL
%URZQ')&DWHU&00DWWLO.)'DUURFK-*(IIHFWRIYDULHW\JURZLQJORFDWLRQDQGWKHLULQWHUDFWLRQRQWKHIDWW\DFLGFRPSRVLWLRQ
RISHDQXWV-)RRG6FL
&KLVRZVNL : =LHOLQVND6WDVLHN 0 /XF]NLHZLF] 0  )DWW\ DFLGV DQG WULDF\OJO\FHUROV RI GHYHORSLQJ HYHQLQJ SULPURVH Oenothera
biennisVHHGV)LWRWHUDSLD/;9,
&RQQRU'-6DGUDV9$3K\VLRORJ\RI\LHOGH[SUHVVLRQLQVXQIORZHU)LHOG&URSV5HVHDUFK
'HPXULQ<D6NRULF'9HUHVEDUDQML,-RFLF6,QKHULWDQFHRILQFUHDVHGROHLFDFLGFRQWHQWLQVXQIORZHUVHHGRLO+HOLD
)RUH 63 0RUULV 1- 0DFN &+ )UHHPDQ $) %LFNIRUG :*  )DFWRUV DIIHFWLQJ WKH VWDELOLW\ RI FUXGH RLOV IURP  YDULHWLHV RI
SHDQXWV-$P2LO&KHP6RF
*RORPEHN6'6ULGKDU56LQJK8(IIHFWRIVRLOWHPSHUDWXUHRQWKHVHHGFRPSRVLWLRQRIWKUHH6SDQLVKFXOWLYDUVRIJURXQGQXWArachis
hypogaea/-$JULF)RRG&KHP
*RORPEHN 6' 6XOWDQD $ -RKDQVHQ &  (IIHFW RI VHSDUDWH SRG DQG URRW ]RQH WHPSHUDWXUHVRQ \LHOG DQG VHHG FRPSRVLWLRQ RI WKUHH
6SDQLVKFXOWLYDUVRIJURXQGQXW-6FL)RRG$JULF
*URVVR15/DPDUTXH$/=\JDGOR-$0DHVWUL'02OHLF/LQROHLFUDWLRLPSURYHPHQWLQSHDQXWRLOIURP&RUGRED$UJHQWLQD,Q
)HQZLFN *5 +HGOH\ & 5LFKDUGV 5/ .KRNKDU 6 (GV $JUL)RRG 4XDOLW\ $Q ,QWHUGLVFLSOLQDU\ $SSURDFK 7KH 5R\DO 6RFLHW\ RI
&KHPLVWU\&DPEULGJH8.3
*UXQG\60 &RPSDULVRQRIPRQRXQVDWXUDWHGIDWW\DFLGVDQGFDUERK\GUDWHVIRUORZHULQJ SODVPDFKROHVWHURO1 (QJO-0HG

+LOOV0-0XUSK\'-%LRWHFKQRORJ\RIRLOVHHGV%LRWHFKQRO*HQHW(QJ5HY
+LQGV0-)DWW\DFLGFRPSRVLWLRQRI&DULEEHDQJURZQSHDQXWVArachis hypogaea/DWWKUHHPDWXULW\VWDJHV)RRG&KHP±
+RODGD\&(3HDUVRQ-/(IIHFWVRIJHQRW\SHDQGSURGXFWLRQDUHDRQWKHIDWW\DFLGFRPSRVLWLRQWRWDORLODQGWRWDOSURWHLQLQSHDQXWV-
)RRG6FL
+ROOH\.7+DPPRQV526WUDLQDQGVHDVRQDOHIIHFWVRQSHDQXWFKDUDFWHULVWLFV8QLY*D&ROO$JULF([S6WD5HV%XOO
.QDXIW'$ 0RRUH.0 *RUEHW':)XUWKHUVWXGLHVRQWKHLQKHULWDQFHRIIDWW\DFLGFRPSRVLWLRQLQSHDQXW3HDQXW 6FL
0HUFHU/&:\QQH-&<RXQJ&7,QKHULWDQFHRI)DWW\$FLG&RQWHQWLQ3HDQXW2LO3HDQXW6FLHQFH
2¶.HHIH6):LOH\9$.QDXIW'$&RPSDULVRQRI R[LGDWLRQVWDELOLW\RIKLJKDQGQRUPDOROHLFSHDQXWRLOV-$P6RF2LO&KHP

5D\&/ 6KLSH (5 %ULGJHV:&  3ODQWLQJGDWHLQIOXHQFH RQ VR\EHDQDJURQRPLF WUDLWV DQGVHHGFRPSRVLWLRQ LQ PRGLILHGIDWW\ DFLG
EUHHGLQJOLQHV&URS6FL
5HQ & %LO\HX .' %HXVHOLQN 35  &RPSRVLWLRQ YLJRU DQG SURWHRPH RI PDWXUH VR\EHDQ VHHGV GHYHORSHG XQGHU KLJK WHPSHUDWXUH
&URS6FL
6DQGHUV7+)DWW\DFLG FRPSRVLWLRQRI OLSLGFODVVHVLQ RLOVIURPSHDQXWVGLIIHULQJLQ YDULHW\DQG PDWXULW\- $PHU2LO&KHP6RF

6DYDJH*3.HHQDQ-,,Q7KH*URXQGQXW&URS$ 6FLHQWLILF%DVLVIRU,PSURYHPHQW(G-6PDUW&KDSPDQDQG+DOO/RQGRQSS

6WXPSI3.%LRV\QWKHVLVRIIDWW\DFLGVLQKLJKHUSODQWV,Q5|EEHOHQ*'RZQH\5.DQG$VKUL$ HGV2LOFURSVRIWKHZRUOG
0F*UDZ+LOO1HZ<RUN
:HLVV($2LOVHHG&URSVS%ODFNZHOO6FLHQFH/WG3DULV7RN\R%HUOLQ9LFWRULD
:RUWKLQJWRQ5( +DPPRQV52$OOLVRQ -5 9DULHWDO GLIIHUHQFHVDQG VHDVRQDOHIIHFWV RQ IDWW\DFLG FRPSRVLWLRQDQG VWDELOLW\RIRLO
IURPSHDQXWJHQRW\SHV-$JULF)RRG&KHP
<RXQJ&70DVRQ0(0DWORFN56:DOOHU*5(IIHFWRIPDWXULW\RQIDWW\DFLGFRPSRVLWLRQRIHLJKWYDULHWLHVRISHDQXWVJURZQDW
3HUNLQV2.LQ-$PHU2LO&KHP6RF
<RXQJ&73HDQXWRLO,Q%DLOH\¶V,QGXVWULDO2LODQG)DW3URGXFWVSS+XL<+(G-RKQ:LOH\6RQV1HZ<RUN86$
... Наукові дослідження свідчать, що рослини арахісу дуже чутливі до екологічних стресів, що призводить до коливань урожайності в різні роки [6,2]. Слід відмітити, що несприятливі умови, такі як екстремальні температури, дефіцит або надлишок вологи, висока засоленість чи низький рівень рН ґрунту негативно впливають на утворення бульбочок, що знижує рівень біологічної фіксації азоту [14]. ...
Article
Prospects for increasing the area of peanuts sown in Ukraine require improving the elements of cultivation technology. In agricultural practice, the use of methods to stimulate biological nitrogen fixation is of great importance, which ensures an increase in crop yields and a reduction in the negative impact of production on the environment. As a legume, peanuts have the ability to fix atmospheric nitrogen through symbiosis with the bacteria Bradyrhizobium japonicum. Thus, successful peanut cultivation requires careful seed inoculation. The purpose of the research was to establish the patterns of peanut yield formation depending on varietal properties and pre-sowing seed inoculation. Field studies were conducted in the conditions of the Poltava region during 2023–2024. The object of the research was studied according to the scheme of a two-factor experiment: factor A - peanut varieties: Valencia Ukrainian, Stepnyak, Veselka, Vechirnii Rio; factor B - options for seed treatment with the Optimize 400 inoculant (1.8 l/t). The obtained data were subjected to statistical processing using the Statistica 6.0 program. According to the results of the field experiment, a positive effect of pre-sowing treatment of peanut seeds with the inoculant Optimize 400 on plant growth and development was established. In the variants with the use of pre-sowing treatment of seeds with the inoculant, an increase in the indicators of the main structural elements of productivity was observed: plant height - 13.50%; number of beans per plant - by 16.5%, number of seeds per plant - 21.1%; seed mass per plant - 26.4%; mass of 1000 seeds - 4.5%. Peanut yield varied from 0.71 t/ha to 2.64 t/ha depending on the individual properties of the variety, weather conditions of the research year and the variant of using the inoculant for pre-sowing treatment of seeds. According to average data for 2023-2024. The highest yield was observed in the variety Vechirnii Rio - 2.1 t/ha, and the lowest in the variety Stepnyak - 9.4 t/ha. It was found that the effectiveness of pre-sowing seed treatment with inoculant for peanut cultivation depended on the weather conditions of the research year. In general, inoculation of peanut seeds contributed to an increase in yield by 15.5%.
... Insects upon attaining pest status cause crop yield losses and hence assume economic signi cance in terms of increased cost of protection and reduced income to growers. Groundnut (Arachis hypogaea L.), also referred to as peanut, is cultivated throughout tropical, subtropical, and warm-temperature climates worldwide 33 . Groundnut cultivation in India spanned across multiple states, with signi cant variation in area, production, and productivity. ...
Preprint
Full-text available
Population dynamics and damage levels of insects on crop is influenced by changing weather patterns and variability in climate over short and long scales of time. Temporal changes in abundance and infestation of thrips (Thripidae: Thysonoptera) over six seasons at five groundnut growing agro ecologies of India were related to changing weather and climatic variability in addition to deducing future status of thrips. The Onset of thrips abundance (nos/three leaves/plant) and infestation (%) over crop seasons varied spatially. Thrips abundance and infestation compared for crop seasons (2011-20) showed significant inter seasonal differences within locations for seasons. Lower abundance and infestation at Junagadh (Gujarat) and Virudhachalam (Tamil Nadu) over Dharwad (Karnataka), Jalgaon (Maharashtra) and Kadiri (Andhra Pradesh) were noted. Statistical comparisons of seasonal weather, climatic deviations and magnitude of temperature and rainfall indicated within and between seasonal as w ell as spatially differing variability. All significant associations of climatic deviations with thrips dynamics were positive and increased thrips infestation was predicted for 2050 and 2080 at Junagadh. At least one or more changing climatic variables had positive significance with either thrips abundance or infestation at each study location and it is needful to practice relevant thrips management studying at local levels. Projected increased thrips infestation at Junagadh for future periods sets the research agenda for development of resistant cultivars and adjustments in a local cropping system.
... In this regard, lower temperatures (22 • C) have been reported to be associated with more linoleic acid synthesis due to increased oleate desaturase enzyme activity in peanut seed oil [46]. The present study showed that T b had a negative linear correlation with the concentration of linoleic acid and a positive linear correlation with the concentration of oleic acid, which was in line with the results of Belo et al.'s 2014 research [20]. ...
Article
Full-text available
Seed fatty acid composition can influence seed quality, followed by seed germination and optimal seedling establishment. Therefore, to find out the role of seed fatty acids in changing the cardinal temperatures of six sesame cultivars germinated at different temperatures (10, 15, 20, 25, 30, 35, 40, and 45 °C) and water potentials (0, −0.2, −0.4, −0.6, −0.8, −1, and −1.2 MPa), an experiment was conducted. The dent-like, beta, and segmented models were used to analyze the data. The results showed that different cultivars at optimal temperatures show different reactions to environmental conditions; for example, the germination rate in Halil and Dashtestan2 cultivars followed the dent-like model, Darab1, Oltan, and Yellow-White followed the beta model, and Naz followed the segmented model. Based on the results, the average temperature in all water potentials of the base, sub-optimal, supra-optimum, and ceiling was determined as 12.6, 33.3, 38, and 43.9 °C, respectively, once the superior dent-like model was used. Using the superior beta model, the average temperatures in the base, optimum, and ceiling were 8.5, 31.2, and 50.5 °C. In contrast, when the segmented superior model was used, they were determined to be 7.6, 34, and 44.1 °C, respectively. According to the results, it can be stated that the Halil cultivar with more oleic acid and less linoleic acid has a higher base temperature and is more adapted to high temperatures for later cultivations. The Naz cultivar with a long biological clock is suitable for earlier cultivations. The ceiling temperature of these cultivars was also affected by the osmotic potential and decreased significantly with the increase in osmotic levels. Dashtestan2 cultivar with a high germination rate could be chosen for cultivation in water and high-temperature stress areas.
... Якщо в цей період температура нижче 12 °С, то плоди призупиняють свій розвиток. Оптимальна температура на рівні 23-25 °С [7][8][9]. ...
Article
На сьогодні в Україні набирає популярності вирощування малопоширеної культури – арахісу культурного (Arachis hypogaea L.). Розширення зони вирощування арахісу потребує постійного удосконалення сортової агротехніки, що забезпечить отримання високої врожайності, поліпшення якості олії і переробки рослинної сировини, а також безпеку для здоров’я. Строк сівби є одним із агротехнічних прийомів, що мають значний вплив на формування врожайності арахісу. У вітчизняній та зарубіжній літературі немає єдиної думки щодо строків сівби, за яких доцільно починати сіяти. Метою дослідження було розробити та вдосконалити елементи технології вирощування, зокрема строків сівби сортів арахісу, які би забезпечували підвищення врожайності та якості. Польові дослідження проводили упродовж 2020–2021 рр. Об’єкт досліджень вивчали за схемою двофакторного досліду: фактор А – сорти арахісу Валенсія українська, Степняк, Краснодарець 14; фактор В – варіанти строків сівби: 10 травня, 20 травня, 1 червня. Також була проведена оцінка якості за масою 1000 ядер (г), та виходу зрілих, конденційних ядер (%) залежно від строків сівби та сортових властивостей арахісу. На основі встановлених закономірностей формування польової схожості насіння і проходження міжфазного періоду посів-сходи виявлено кращий варіант по строках сівби – 1 червня. Визначено реакцію досліджуваних сортів арахісу на різні строки сівби насіння. Встановлено, що рівень урожайності арахісу на 18,2 % залежав від погодних умов, на 40,7 % від сорту, на 26,6 % від строків сівби, на 2,2 % від інших факторів та 12,3 % склала взаємодія факторів АВ. Для збільшення урожайності арахісу рекомендовано сівбу проводити 20 травня. При більш пізніх строках сівби відмічено зменшення маси 1000 ядер та вихід дозрілих. При ранніх строках – зменшення урожайності внаслідок впливу несприятливих умов розвитку на початкових етапах та зменшення польової схожості. Проте рослини вступили у фазу цвітіння раніше, що дало змогу більшій кількості плодів досягти зрілості до заморозків. Серед досліджених сортів за урожайністю та крупністю ядер виділявся сорт Валенсія українська.
... El cultivo de cacahuate se encuentra en regiones de tipo tropical y semiárido, con temperaturas altas y precipitaciones abundantes (Sogut et al. 2016). Los resultados de nuestro trabajo indican que, a pesar de las modificaciones reflejadas por cambio climático, el cacahuate mantendrá los sitios de distribución actual. ...
Article
Full-text available
Agricultural systems are highly susceptible to climate change; however, little is known about the vulnerability of native or exotic species. In this work, we evaluated the impact of climate change on the potential distribution of three species of agricultural interest native to Mexico (cotton, peanut, and cocoa), through ecological niche models looking at the year 2050. According to the 22 General Circulation Models (GCMs) under two Representative Concentration Pathways (RCP), 4.5 and 8.5, we found increases in the potential distribution of the three species. The species with the greatest increase is cotton, finding conditions in the future in states such as Tabasco or throughout the Yucatan Peninsula.
... Table 1 ranks the peanut varieties by specific acid content from the lowest to the highest values as follows: 8.35 to 9.69% for palmitic acid, 2.64 to 3.36% for stearic acid, 1.43 to 1.62% for arachidic acid, 2.56 to 2.85% for behenic acid, and 1.15 to 1.53% for lignoceric acid. Out of the saturated fatty acids, palmitic acid had the highest percentage for all the peanut varieties (Sogut et al., 2016;Gulluoglu et al., 2016). ...
Article
Full-text available
The aim of the study is to investigate the composition of the oil content and the fatty acids in different varieties (i.e. NC-7, Batem-5025, Osmaniye-2005, Sultan, and Halisbey) of peanut (Arachis hypogaea L.) grown in the province of Osmaniye in Turkey. Batem-5025 provided the greatest percentage of oil with 50.30%. Higher concentrations in oil specimens were found for oleic and linoleic acids. The fatty acids in the all varieties were oleic (51.32-62.43%), linoleic (18.27-27.54%), palmitic (8.35-9.69%), stearic (2.64-3.36%), behenic (2.56-2.85%), arachidic (1.43-1.62%), and lignoceric (1.15-1.53%) acids were listed in order of concentration. The saturated fatty acids were observed to be far less than the unsaturated ones (80.07-81.88%) in any of the varieties. The varieties of NC-7 and Osmaniye-2005 had oleic and linoleic acids at the highest concentrations and stearic and palmitic acids at the lowest, respectively. NC-7 showed the best oleic-to-linoleic (O/L) ratio with 3.41.
... Peanut is adapted to a wide range of soil types and environments; however, yield is highly sensitive to environmental conditions [10,11]. Furthermore planting significantly affects yield and quality attributes of peanut [12,13]. Sunlight and temperature have greater effects on the productivity of peanut as both are directly involved in several phenological phenomenon. ...
Article
Full-text available
Peanut (Arachis hypogea L.) is an important nut crop extensively grown in rainfed regions of Pakistan. The crop requires low inputs; thus, could grow successfully under diverse environmental conditions. Due to pegging ability, peanut grows aggressively in sandy and sandy-loam soils. However, it has not introduced to Thal region of southern Punjab, Pakistan. A two-year field experiment was conducted to optimize sowing dates for two peanut genotypes (‘BARI-2016’ and ‘NO-334’) in Thal region (Layyah). Similarly, a yield trial was conducted at Chakwal where both genotypes are extensively grown. Five sowing dates (10th April, 1st May, 20th May, 10th June and 30th June) were included in the study. The highest seed yield was obtained with early sown crop (10th April) during both years. Pod formation reduced with increasing atmospheric temperature and no pods were formed on the plants sown on 30th June. Decreased pod formation seemed a major reason for low yield in late-sown crop. The highest yield was observed for the crop sown on 10th April, which was decreased by 40% for the crop sown on 1st May. Genotype ‘BARI-2016’ performed better for seed yield at both locations compared with ‘NO-334’. The results suggested that genotype ‘BARI-2016’ is more adaptive to arid and semi-arid condition under rainfed or irrigated conditions. Sowing peanut at optimum time would increase seed yield in arid and semi-arid regions. Nonetheless, ‘BARI-2016’ can be grown under rainfed and irrigated conditions successfully.
Article
Full-text available
Research in the Eastern Mediterranean Transition Region of Türkiye has demonstrated that plant density (planting pattern) impact yield of peanut (Arachis hypogaea L.) cultivars differentially. It is suspected that interactions of planting pattern and cultivar could also impact oil quality and fatty acid composition when grown in this region. This topic has not been addressed in the country; therefore, the objective of this research was to determine if planting pattern can affect those variables. The study was conducted in 2020 and 2021 in the zone of Osmaniye to determine total oil content of kernels, and contents of oleic acid, palmitic acid, arachidonic acid, linoleic acid, stearic acid, and lignoceric acid, as well as iodine value and oleic/linoleic ratio for the cultivars Halisbey, Rigel, Aysehanım, NC 7, and Masal. The planting pattern consisted in either a single row pattern with rows spaced 70 cm apart (95.000 plants·ha-1), or a twin row pattern with rows spaced 20 cm apart on 90 cm centers with an intra-row distance of 15 cm (148.000 plants·ha-1). Plant response was in most instances different regardless of plant populations. It is concluded that no differences in total oil content were noted when comparing cultivars established at various combinations of planting pattern and plant population, although differences existed for all individual fatty acids. For oil content, there were notable differences among the cultivars.
Article
According to the results of the study, it can be said that the change in the sowing qualities of seeds is associated with a change in the complex physiological and biochemical composition of seeds. These physiological and biochemical bases are formed during the filling and maturation of seeds and can be easily changed with the help of the environment and agrotechnical methods. Planting large seeds has a positive effect on all elements of productivity — the density of plants increases and the signs characterizing the structure of crop yield improve. Sowing material grown under different conditions exhibits different biological properties. If the quality of the seed is determined in the laboratory, you can find out its yield under certain conditions. As a result, we can say that a higher groundnuts yield was observed when groundnuts were sown together with early ripening tomatoes.
Article
Full-text available
In this study; the saturated and unsaturated fatty acid composition of 11 different peanut cultivars, Runner (Georgia Green) Virginia (NC-7, Masal, Halisbey, Wilson, Com, Brantley, Duzici-1) Spanish (Florispan, Nigeria-1), widely grown in the eastern Mediterranean Transition Zone were determined. The research was carried out for two years (2020 to 2021) under second crop season conditions in the trial areas of the Oil Seeds Research Institute. The experiment was set up in a randomized block design with 3 replications. In the research, palmitic acid, stearic acid, arachidonic acid, oleic acid, linoleic acid, oleic/linoleic ratio, iodin value, behenic acid, arachidic acid properties were investigated. The highest oleic acid ratio was obtained from Masal (79.71%), the highest palmitic acid from florispan (11.06%), and the highest linoleic acid (34.08%) from florispan. The behenic acid ratio was found between 2.51% (Wilson) and 3.14% (Georgia Green).
Article
Full-text available
The development of high‐oleate soybean [Glycine max (L.) Merr.] germplasm, currently in demand due to its nutritional value and oxidative stability, may be hampered by the instability of fatty acid composition across environments, which is largely attributed to temperature changes and its effects on fatty acid biosynthesis during the period of oil deposition. In the present study, we evaluated three soybean populations that segregated for oleate content and maturity at multiple environments in North Carolina. Oleate content was positively correlated with daily temperatures, averaged over the seed‐filling stage, for the experimental lines of the late‐maturing population but was negatively correlated for the lines of the early‐maturing populations. Oil content was positively correlated with the average daily temperature during seed filling in all three populations, regardless of their early‐ or late‐maturity profile. Negative correlations between oleate content and temperature during the period of oil deposition have not been previously reported. Moreover, in contrast to previous reports, maximum, minimum, and average daily temperatures were highly correlated during seed filling in all environments of this study. We conclude that cautious interpretation of these findings is necessary due to the correlation between temperature and photoperiod during the period of oil deposition.
Article
Eighty-two peanut genotypes of diverse genetic background were examined over a 3-year period for varietal differences and seasonal effects on fatty acid composition and oil stability (autoxidation induction period). The range in oil stability among genotypes was 11.6 to 18.5 days and the ranges in fatty acid values were: 7.4 to 12.9% palmitic; 1.6 to 5.3% stearic; 35.7 to 68.5% oleic; 14.1 to 40.3% linoleic; 0.9 to2.2%arachidic; 0.6 to 2.0% eicosenoic; 1.3 to 5.1% behenic; and 0.6 to 2.0% lignoceric acid. Yearly mean fatty acid values for all varieties showed relatively small but significant (p <0.01) yearly variations in fatty acid composition. Yearly variations in oil stability values were large and could not be accounted for by yearly variations in fatty acid composition. Simple regression of oil stability on various fatty acids or combinations thereof showed significant correlations within a given year but with wide variations in magnitude of r2 and estimated regression coefficients among years.
Article
Fatty acid contents of peanut seeds (cultivar NC2) at three stages of maturity harvested between 1985 and 1987 from two soil types in St Vincent, Eastern Caribbean, were determined by gas-liquid chromatography. Oil from mature NC2 seeds grown in St Vincent contained more oleic and less linoleic acid than oil from mature NC2 seeds grown in North Carolina and Jamaica. With respect to soil types in St Vincent, seeds grown on volcanic clay loam contained more stearic, long-chain and total saturated fatty acids but less linoleic and total unsaturated acids than samples from volcanic sandy loam. As seeds progressed from intermediate through nearly-mature to mature stages, palmitic and linoleic acids (%) decreased while oleic acid increased. Also, irrespective of soil type and year, oleic acid (%) in the oil of mature seeds was 57.4 ± 0.77, suggesting that this value may be a useful index of seed maturity for the NC2 peanut cultivar grown in St Vincent.
Article
Oleic and linoleic acid together constitute about 80% of the fatty acid composition in peanut oil. Increasing the ratio of oleic to linoleic acid will improve the keeping quality of peanut oil. A University of Florida breeding line, designated F435, averages 80% oleic acid and 2% linoleic acid. Initial genetic studies of this fatty acid composition showed that a single recessive gene controlled the trait in two genetic backgrounds and a second recessive gene was necessary for expression in a third background. Further studies have shown monogenic inheritance in 12 parental backgrounds and digenic inheritance in one background. This suggests that either one of the two recessive genes may be common in peanut germplasm, and that crosses could be expected to segregate in simple monogenic ratios. When the proportion of genes from F435 is reduced through backcrossing to less than 0.8%, fatty acid composition remains similar to the original F435 line. Organoleptic and agronomic characteristics do not appear affected by the fatty acid composition change. Given the simple inheritance, lack of background genetic effects, and lack of apparent undesirable linkages, incorporation of high oleic acid into peanut cultivars should be straightforward.
Article
The stability or shelf-life of peanut (Arachis hypogaea L.) oil is related to the fatty acid content of the oil, with the major factor being the ratio of oleic (C18:1) to linoleic (C18:2) acid (O/L ratio). To obtain information needed for development of cultivars with improved oil quality, eight parents representing a range in oleic and linoleic content were crossed in diallel. Individual F1 seeds (F1 embryos) from the greenhouse and F2 bulk seed from the 56 crosses grown in the field were analyzed to determine levels of the eight major fatty acids. General combining ability (GCA) was consistently more important than specific combining ability (SCA) in both generations, suggesting that additive effects are important in the inheritance of fatty acid composition. Maternal effects were significant in the F1 but dissipated in the F2; thus the differences in the environment provided by the maternal parent was more critical to oil composition than heritable extranuclear factors. Reciprocal effects were significant in both generations suggesting an interaction between nuclear and extranuclear factors. Correlations between GCA effects and self means for O/L ratio were nonsignificant. Since no significant correlations were found between percent oil and any of the fatty acids or related variables, selection for improved fatty acid composition should not affect the oil content of seed. Of the lines studied, NC 7, NC-Fla 14, and 73–30 should be used as parents in a breeding program for oil quality.
Article
A primary focus for soybean (Glycine max (L.) Merr.) breeders recently has been the devel- opment of cultivars with improved oil qualities such as reduced palmitic acid (16:0) and linole- nic acid (18:3). A backcross breeding program was used to develop fi ve low 16:0, two low 16:0 + 18:3, and one low 18:3 modifi ed fatty acid breeding lines (MFALs). Research objectives were (i) to determine planting date effects on fatty acid content in the eight MFALs and (ii) to compare the MFALs to parental cultivars for seed composition and agronomic traits. The eight MFALs and four control cultivars were evaluated at two planting dates at Clemson, SC, in 2001, 2003, and 2004. Planting dates were chosen to simulate full season and double crop planting dates for South Carolina soybean pro- duction. Agronomic traits including seed yield, plant height, lodging, maturity date, seed size, and seed quality were measured, and seeds were analyzed for protein, oil, and fatty acid levels. Planting date had a signifi cant effect on all agronomic variables, as well as on protein, oil, and palmitic and linolenic acid. There was a decrease in palmitic acid at the late planting date, while the early planting date resulted in a decrease in linolenic acid levels. The effect of genotype was signifi cant for all agronomic and seed composition variables measured when averaged across planting dates. It appears that planting date may be manipulated to reduce palmitic or linolenic acid of MFALs, although the extent of the reduction varies with genotype. C.L. Ray and E.R. Shipe, Dep. of Entomology, Soils, and Plant Sciences,
Article
The influence of the soil temperature regimes 20/14 (T1), 26/20 (T2), 32/26 (T3), and 38/32 degrees C (T4) (day/night) on seed composition of three Spanish genotypes of groundnut (Arachis hypogaea L.) was investigated. From T1 to T2 the oil concentration increased and the starch concentration decreased remarkably, but only slightly to T3. The protein concentration was higher in the two warmer soil temperatures than in the colder temperatures. There was no difference between T3 and T4 for oil, starch, and protein concentration. The total soluble sugar concentration was higher in both extreme temperature regimes than in the intermediate treatments. The oleic/linoleic acid ratio increased from T1 to T3. The results show that soil temperature has a marked effect on the proximate composition and fatty acid profile of these groundnut cultivars.
Article
WORTHINGTON and co-workers (1972) reported considerable differences in fatty acids composition of 82 peanut genotyps grown in the same area during three seasons Not only were there marked variations in the genetic differences of the genotypes,but the yearly variations of the fatty acids with in the same genotype were also significant
Article
The effect of separate pod and root temperature regimes (all four combinations of 28/22 and 40/34 °C day/night temperature), imposed from the time of peg penetration until harvest, on yield and seed composition of three Spanish genotypes of groundnut ( Arachis hypogaea L) was investigated. A decrease in pod temperature from 40/34 to 28/22 °C increased yield and oil, starch and protein mass per plant irrespective of root temperature. Additionally, a reduction in pod temperature decreased protein concentration and increased the sum of oil and starch concentration at a root temperature of 28/22 °C, whereas at a root temperature of 40/34 °C a decrease in pod temperature increased protein concentration. Root temperature reduction diminished oil concentration of genotypes AH 6179 and TMV 2 at a pod temperature of 40/34 °C. A decline in pod temperature affected fatty acid composition through a decrease in palmitic acid irrespective of root temperature and an increase in linoleic acid at a root temperature of 28/22 °C. A root temperature effect on fatty acid composition was not detected. It is concluded that field management practices and choice of genotype can influence groundnut yield and seed composition through effects on pod and root temperature. © 2001 Society of Chemical Industry