ArticleLiterature Review

Chaperone families and interactions in metazoa

Authors:
  • Dead Sea-Arava Science Center (DSASC) Central Arava
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Quality control is an essential aspect of cellular function, with protein folding quality control being carried out by molecular chaperones, a diverse group of highly conserved proteins that specifically identify misfolded conformations. Molecular chaperones are thus required to support proteins affected by expressed polymorphisms, mutations, intrinsic errors in gene expression, chronic insult or the acute effects of the environment, all of which contribute to a flux of metastable proteins. In this article, we review the four main chaperone families in metazoans, namely Hsp60 (where Hsp is heat-shock protein), Hsp70, Hsp90 and sHsps (small heat-shock proteins), as well as their co-chaperones. Specifically, we consider the structural and functional characteristics of each family and discuss current models that attempt to explain how chaperones recognize and act together to protect or recover aberrant proteins.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The ability to maintain a functional proteome throughout life is vital for long-term organismal health (Shai et al., 2014;Sala et al., 2017;Meller and Shalgi, 2021). Cells cope with protein damage by employing highly conserved quality control systems that repair or remove the damaged proteins to maintain proteostasis (Bar-Lavan et al., 2016a;Bett, 2016;Jackson and Hewitt, 2016). The cellular chaperone machinery is involved in many cellular processes, including de novo folding, assembly and disassembly of protein complexes, protein translocation across membranes, proteolytic degradation, and unfolding and reactivation of stress-denatured proteins (Makhnevych and Houry, 2012;Bar-Lavan et al., 2016a;Bett, 2016;Jackson and Hewitt, 2016;Craig, 2018;Nillegoda et al., 2018). ...
... Cells cope with protein damage by employing highly conserved quality control systems that repair or remove the damaged proteins to maintain proteostasis (Bar-Lavan et al., 2016a;Bett, 2016;Jackson and Hewitt, 2016). The cellular chaperone machinery is involved in many cellular processes, including de novo folding, assembly and disassembly of protein complexes, protein translocation across membranes, proteolytic degradation, and unfolding and reactivation of stress-denatured proteins (Makhnevych and Houry, 2012;Bar-Lavan et al., 2016a;Bett, 2016;Jackson and Hewitt, 2016;Craig, 2018;Nillegoda et al., 2018). Chaperones unfold, refold and reactivate proteins to gain or recover their function (Rosenzweig et al., 2019). ...
... Chaperones unfold, refold and reactivate proteins to gain or recover their function (Rosenzweig et al., 2019). The regulation and specificity of chaperone-based reactions can be mediated by cochaperones choosing the substrate, presenting it to the chaperone, and coordinating chaperonesubstrate binding and release cycles (Kampinga and Craig, 2010;Bar-Lavan et al., 2016a;Rosenzweig et al., 2019). As its folding advances, a substrate can be identified by different chaperones or cochaperones, resulting in substrate overlap, shuffling, and collaboration between various chaperone machinery (Bar-Lavan et al., 2016a;Rosenzweig et al., 2019). ...
Article
Full-text available
Muscle proteostasis is shaped by the myogenic transcription factor MyoD which regulates the expression of chaperones during muscle differentiation. Whether MyoD can also modulate chaperone expression in terminally differentiated muscle cells remains open. Here we utilized a temperature-sensitive (ts) conditional knockdown nonsense mutation in MyoD ortholog in C. elegans, HLH-1, to ask whether MyoD plays a role in maintaining muscle proteostasis post myogenesis. We showed that hlh-1 is expressed during larval development and that hlh-1 knockdown at the first, second, or third larval stages resulted in severe defects in motility and muscle organization. Motility defects and myofilament organization were rescued when the clearance of hlh-1(ts) mRNA was inhibited, and hlh-1 mRNA levels were restored. Moreover, hlh-1 knockdown modulated the expression of chaperones with putative HLH-1 binding sites in their promoters, supporting HLH-1 role in muscle maintenance during larval development. Finally, mild disruption of hlh-1 expression during development resulted in earlier dysregulation of muscle maintenance and function during adulthood. We propose that the differentiation transcription factor, HLH-1, contributes to muscle maintenance and regulates cell-specific chaperone expression post differentiation. HLH-1 may thus impact muscle proteostasis and potentially the onset and manifestation of sarcopenia.
... In cells, this process is facilitated by a large number of dedicated protein-folding factors, termed chaperones, that help maintain cellular homeostasis (proteostasis) together with the protein degradation machinery (Kim et al., 2013;Balchin et al., 2016). To perform their functions, chaperones are organized into networks that cooperate to support folding from the time the polypeptide emerges from the ribosome, through maturation and assembly into larger protein complexes, as well as at later points, when proteins become misfolded or aggregated (Kim et al., 2013;Balchin et al., 2016;Bar-Lavan et al., 2016). The major chaperone systems in human cells are comprised of numerous isoforms of Hsp70/HSPA, a constitutive and a stress-inducible isoform of Hsp90/HSPC, and the oligomeric chaperone complex TRiC/CCT (Kim et al., 2013;Balchin et al., 2016;Bar-Lavan et al., 2016;Radons, 2016a,b). ...
... To perform their functions, chaperones are organized into networks that cooperate to support folding from the time the polypeptide emerges from the ribosome, through maturation and assembly into larger protein complexes, as well as at later points, when proteins become misfolded or aggregated (Kim et al., 2013;Balchin et al., 2016;Bar-Lavan et al., 2016). The major chaperone systems in human cells are comprised of numerous isoforms of Hsp70/HSPA, a constitutive and a stress-inducible isoform of Hsp90/HSPC, and the oligomeric chaperone complex TRiC/CCT (Kim et al., 2013;Balchin et al., 2016;Bar-Lavan et al., 2016;Radons, 2016a,b). To facilitate client protein folding and maturation, these chaperones employ ATP-hydrolysis to drive conformational changes in their client proteins. ...
... Cellular proteostasis is maintained through highly interconnected networks of chaperones, co-chaperones, and components of the degradation machinery (Kim et al., 2013;Balchin et al., 2016;Bar-Lavan et al., 2016). The complexity of these interactions makes it challenging to define cellular proteostasis networks for particular proteins and/or cellular functions. ...
Article
Full-text available
RNA viruses have limited coding capacity and must therefore successfully subvert cellular processes to facilitate their replication. A fundamental challenge faced by both viruses and their hosts is the ability to achieve the correct folding and assembly of their proteome while avoiding misfolding and aggregation. In cells, this process is facilitated by numerous chaperone systems together with a large number of co-chaperones. In this work, we set out to define the chaperones and co-chaperones involved in the replication of respiratory syncytial virus (RSV). Using an RNAi screen, we identify multiple members of cellular protein folding networks whose knockdown alters RSV replication. The reduced number of chaperones and co-chaperones identified in this work can facilitate the unmasking of specific chaperone subnetworks required for distinct steps of the RSV life cycle and identifies new potential targets for antiviral therapy. Indeed, we show that the pharmacological inhibition of one of the genes identified in the RNAi screen, valosin-containing protein (VCP/p97), can impede the replication of RSV by interfering with the infection cycle at multiple steps.
... For instance, the expression levels of HSP105 in the intertidal copepod Tigriopus japonicus is upregulation at different temperature ranges (Rhee et al. 2009), which indicating that this gene participate in stress response of thermotolerance. Another member of the HSP100 family, HSP110, possesses HSP70indepensent functions and preventing protein aggregation (Bar-Lavan et al. 2016). HSP110 can also form heterodimers with HSP70 and is suggested to function as its co-chaperone in protein disaggregation (Bracher and Verghese 2015;Nillegoda and Bukau 2015). ...
... The Hsp60 family, also known as the chaperonins with distinct ring-shaped, or toroid (double doughnut) quaternary structures (Quintana and Cohen 2005), comprises two distinct classes that can be differentiated on the basis of sequence alignment and the need for a lid-like co-chaperone (Bar-Lavan et al. 2016). HSP60 protein is present in nearly all prokaryotes and in organelles of eukaryotic cells. ...
... A more recent work (Bar-Lavan et al. 2016) have indicated that sHSP appears to provide a large surface area that can bind and sequester aggregation-sensitive folding intermediates and prevent their aggregation during stress conditions. sHSP are composed of a non-conserved N-terminal domain (NTD) of variable length, a highly conserved α-crystallin domain (ACD) and a non-conserved short C-terminal domain (CTD) (Kriehuber et al. 2010;Bar-Lavan et al. 2016). Studies on structure and function of sHSP have shown that all three domains play an important role in sHSP oligomerization and function (McDonald et al. 2012;Mainz et al. 2015). ...
Chapter
Full-text available
Heat shock proteins (HSP) are ubiquitously expressed proteins for cell growth and viability in all living organisms. The expression and regulation system of HSP is the basis of self-defense and stress response for organisms to response to various internal and external environmental stresses. In this review, recent investigations in HSP of crustaceans are described, which examine roles of HSP in protection of crustaceans from various stress influences. The review also summarizes current understanding of HSP functions in crustaceans’ defense response to pathogens infections and other environmental and physiologic stresses. HSP have wilder roles in health of crustaceans, in relation to the immune response to various stressors.
... Introduction Molecular chaperones are a diverse group of highly conserved proteins that evolved to cope with protein quality control challenges [1][2][3]. The cellular chaperone machinery is involved in a multitude of cellular functions, including de novo folding, assembly and disassembly of protein complexes, protein translocation across membranes, assisting proteolytic degradation and unfolding and reactivation of stress-denatured proteins [1,3,4]. ...
... Introduction Molecular chaperones are a diverse group of highly conserved proteins that evolved to cope with protein quality control challenges [1][2][3]. The cellular chaperone machinery is involved in a multitude of cellular functions, including de novo folding, assembly and disassembly of protein complexes, protein translocation across membranes, assisting proteolytic degradation and unfolding and reactivation of stress-denatured proteins [1,3,4]. The function and specificity of a chaperone-based reaction can be mediated by co-chaperones that choose the substrate, present it to the chaperone, and then coordinate cycles of binding and release by the chaperone in a manner that facilitates polypeptide unfolding [5][6][7]. ...
... Three curated lists of genes enriched in muscle were used: (1) Myogenic-converted embryos [30], kindly provided by Dr. Steven Kuntz and Dr. Paul Sternberg; (2) Muscle cells from dissociated embryos and (3) L1 body-wall muscles [31,40]. These later curated lists (2)(3) were provided in the manuscripts as supporting information. Chaperone genes occupancy sites and muscle enrichment were ranked according to the number of independent experiments in which they were identified, giving equal weight to each experiment. ...
Article
Full-text available
Safeguarding the proteome is central to the health of the cell. In multi-cellular organisms, the composition of the proteome, and by extension, protein-folding requirements, varies between cells. In agreement, chaperone network composition differs between tissues. Here, we ask how chaperone expression is regulated in a cell type-specific manner and whether cellular differentiation affects chaperone expression. Our bioinformatics analyses show that the myogenic transcription factor HLH-1 (MyoD) can bind to the promoters of chaperone genes expressed or required for the folding of muscle proteins. To test this experimentally, we employed HLH-1 myogenic potential to genetically modulate cellular differentiation of Caenorhabditis elegans embryonic cells by ectopically expressing HLH-1 in all cells of the embryo and monitoring chaperone expression. We found that HLH-1-dependent myogenic conversion specifically induced the expression of putative HLH-1-regulated chaperones in differentiating muscle cells. Moreover, disrupting the putative HLH-1-binding sites on ubiquitously expressed daf-21(Hsp90) and muscle-enriched hsp-12.2(sHsp) promoters abolished their myogenic-dependent expression. Disrupting HLH-1 function in muscle cells reduced the expression of putative HLH-1-regulated chaperones and compromised muscle proteostasis during and after embryogenesis. In turn, we found that modulating the expression of muscle chaperones disrupted the folding and assembly of muscle proteins and thus, myogenesis. Moreover, muscle-specific over-expression of the DNAJB6 homolog DNJ-24, a limb-girdle muscular dystrophy-associated chaperone, disrupted the muscle chaperone network and exposed synthetic motility defects. We propose that cellular differentiation could establish a proteostasis network dedicated to the folding and maintenance of the muscle proteome. Such cell-specific proteostasis networks can explain the selective vulnerability that many diseases of protein misfolding exhibit even when the misfolded protein is ubiquitously expressed
... Hsp70 (DnaK in E.coli) is the most abundant cellular chaperone and can be found in all domains of life. 7 Hsp70 together with its co-chaperones fulfills several functions in the cell: It can bind misfolded proteins and promote their folding by repeated ATP-driven binding and release cycles, it can bind unfolded proteins and deliver them to different cellular compartments 150 or it can target terminally misfolded or aggregated proteins for degradation, either by keeping the protein in a degradation competent state or by interaction between the chaperone and the degradation network. 3 Hsp70 consists of a nucleotide binding domain (NBD) and a C-terminal substrate binding domain (SBD). ...
... The potential importance of MtbClpC1 as a novel drug target against TB has been emphasized by the recent findings by two independent groups that pyrazinamide (PZA) resistant strains contain mutations (Fig. 1b) in ClpC1 (6,7). PZA is a critical first-line TB drug used with isoniazid, ethambutol and rifampicin for the treatment of TB and is also frequently used to treat MDR-TB (1). ...
Thesis
The diverse group of molecular chaperones is dedicated to accompany, fold and protect other proteins until they reach their final conformation and loca- tion inside the cell. To this end, molecular chaperones need to be specialized in performing specific tasks, like folding, transport or disaggregation, and versatile in their recognition pattern to engage many di erent client pro- teins. Moreover, molecular chaperones need to be able to interact with each other and with other components of the protein quality control system in a complex network. Interactions between the di erent partners in this network and between the substrate and the chaperone are often dynamic processes, which are especially di cult to study using standard structural biology tech- niques. Consequently, structural data on chaperone/substrate complexes are sparse, and the mechanisms of chaperone action are poorly understood. In this thesis I present investigations of the structure, dynamics and substrate- interactions of two molecular chaperones, using various biophysical and in vivo methods.In the first part I show that the mitochondrial membrane protein chap- erone TIM910 binds its substrates in a highly dynamic manner. Not only is the TIM910 complex in constant exchange between monomeric and hex- americ species, but also the bound substrate samples multiple conformations on a millisecond timescale. Based on nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC) and in vivo mutational experiments I propose a structural model of the chap- erone/membrane protein interaction. TIM910 binds its substrates in a hy- drophobic pocket on the exterior of the chaperone in a modular fashion, where the number of TIM910 complexes bound depends on the length of the substrate.In the second part I studied the behavior of the N-terminal receptor do- main of the ClpC1 unfoldase from M.tuberculosis in the presence of di erent antibiotics and ligands. The N-terminal domain of ClpC1 is the binding site for various new antibiotics against M.tuberculosis. The antibiotic cyclomarin completely abolishes dynamics induced by the ligand arginine-phosphate. We propose that this suppression of dynamics is the underlying principle for the mechanism of action of this antibiotic.In both cases X-ray structures of the apo or antibiotic bound form were available, but not su cient to explain the mechanism of action. The X- ray structure of TIM910 provided no evidence on where or how substrates are bound. Likewise, X-ray structures of the apo and cyclomarin-bound N-terminal domain of ClpC1 show only minor di erences in structure.Both examples show that static structural data is often not enough to explain how a molecular system works, and only the combination of di er- ent techniques, including newly developed methods enable the atomic-level understanding of chaperone/substrate complexes.
... Cells cope with protein damage by employing quality control machineries that repair, sequester or remove any damaged proteins 1,2 . Folding and assembly of protein complexes are supported by molecular chaperones, a diverse group of highly conserved proteins that can repair or sequester damaged proteins 3,4,5,6,7 . The removal of damaged proteins is mediated by the ubiquitin-proteasome system (UPS) 8 or by the autophagy machinery 9 in collaboration with chaperones 10,11,12 . ...
... The removal of damaged proteins is mediated by the ubiquitin-proteasome system (UPS) 8 or by the autophagy machinery 9 in collaboration with chaperones 10,11,12 . Protein homeostasis (proteostasis) is, therefore, maintained by quality control networks composed of folding and degradation machineries 3,13 . However, understanding the interactions between the various components of the proteostasis network in vivo is a major challenge. ...
Article
Correct folding and assembly of proteins and protein complexes are essential for cellular function. Cells employ quality control pathways that correct, sequester or eliminate damaged proteins to maintain a healthy proteome, thus ensuring cellular proteostasis and preventing further protein damage. Because of redundant functions within the proteostasis network, screening for detectable phenotypes using knockdown or mutations in chaperone-encoding genes in the multicellular organism Caenorhabditis elegans results in the detection of minor or no phenotypes in most cases. We have developed a targeted screening strategy to identify chaperones required for a specific function and thus bridge the gap between phenotype and function. Specifically, we monitor novel chaperone interactions using RNAi synthetic interaction screens, knocking-down chaperone expression, one chaperone at a time, in animals carrying a mutation in a chaperone-encoding gene or over-expressing a chaperone of interest. By disrupting two chaperones that individually present no gross phenotype, we can identify chaperones that aggravate or expose a specific phenotype when both perturbed. We demonstrate that this approach can identify specific sets of chaperones that function together to modulate the folding of a protein or protein complexes associated with a given phenotype.
... and AglaHsp82.09, which mediates interactions with TPR domains of the HOP, thereby facilitating substrates handover from Hsp70 to Hsp90 [44][45][46]. The Hsp70 linker is a central component of the mechanism that couples ATP binding and hydrolysis to conformational changes in the substrate-binding domain. ...
Article
Full-text available
Anoplophora glabripennis (Agla) is an important global quarantine pest due to its highly destructive impacts on forests. It is widely distributed in many countries in Asia, Europe, and North America. The survival of A. glabripennis larvae has been facilitated by its high adaptability to low temperature. When insects are subjected to temperature stress, heat shock proteins (Hsps) limit cell damage and improve cell tolerance via their protein folding, localization, and degradation activities. However, the temperature adaptation mechanisms of A. glabripennis Hsps remain unclear. In this study, four A. glabripennis Hsp genes, AglaHsp20.43, AglaHsp71.18, AglaHsp82.09, and AglaHsp89.76, were cloned. Sequence analysis showed that all four Hsps had specific conserved domains. Phylogenetic analysis revealed that Hsps from different subfamilies were evolutionarily conserved, and that AglaHsps were highly similar to those of Coleoptera species. Protein expression vectors (pET30a-AglaHsps) were constructed and used to express AglaHsps in E. coli, where all four proteins were expressed in inclusion bodies. Western blot analysis showed that AglaHsps were expressed at a range of temperatures, from −10 °C to 25 °C. AglaHsp82.09 and AglaHsp89.76 showed high expressions with treatment at 0 °C. Our results will facilitate clarification of the molecular mechanisms underlying A. glabripennis responses to environmental stress.
... Small molecular chaperones are somewhat distinct, as they interact reversibly with a broad range of unfolded substrates independent of ATP. sHSPs do not primarily refold proteins, rather they prevent the formation of highly stable, proteotoxic aggregates, acting as a storage depot for unfolded proteins until they can be refolded or degraded [for detailed reviews on the chaperone system see (Bar-Lavan et al., 2016;Biebl and Buchner 2019;Rosenzweig et al., 2019;Jayaraj et al., 2020;Reinle et al., 2022)]. ...
Article
Full-text available
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
... The copyright holder for this preprint this version posted February 24, 2022. ; https://doi.org/10.1101/2022.02.23.481726 doi: bioRxiv preprint DISCUSSION Cellular proteostasis is maintained through highly interconnected networks of chaperones, cochaperones, and components of the degradation machinery (Kim et al., 2013;Balchin, Hayer-Hartl and Hartl, 2016;Bar-Lavan, Shemesh and Ben-Zvi, 2016). The complexity of these interactions makes it challenging to define cellular proteostasis networks for particular proteins and/or cellular functions. ...
Preprint
Full-text available
RNA viruses have limited coding capacity and must therefore successfully subvert cellular processes to facilitate their replication. A fundamental challenge faced by both viruses and their hosts is the ability to achieve the correct folding and assembly of their proteome while avoiding misfolding and aggregation. In cells, this process is facilitated by numerous chaperone systems together with a large number of co-chaperones. In this work, we set out to define the chaperones and co-chaperones involved in the replication of respiratory syncytial virus (RSV). Using an RNAi screen, we identify multiple members of cellular protein folding networks whose knockdown alters RSV replication. The reduced number of chaperones and co-chaperones identified in this work can facilitate the unmasking of specific chaperone subnetworks required for distinct steps of the RSV life cycle and identifies new potential targets for antiviral therapy. Indeed, we show that the pharmacological inhibition of one of the genes identified in the RNAi screen, valosin-containing protein (VCP/p97), can impede the replication of RSV by interfering with the infection cycle at multiple steps.
... Chaperones have been grouped into families based on their molecular mass, common domains, protein structure similarity, and common function 1 . Families composing the main chaperone machinery, which modulate protein structure without participating in the final protein complex, include prefoldin 7 , the small heat shock proteins (sHSP) 8 , and the main ATP-hydrolyzing chaperones, HSP60 9 , HSP70 10 , HSP90 11 , and HSP100 12 . ...
Article
Full-text available
The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements. We demonstrate via a proteomic analysis that the muscle-specific signature is functional and conserved. Core chaperones are significantly more abundant across tissues and more important for cell survival than variable chaperones. Together with variable chaperones, they form tissue-specific functional networks. Analysis of human organ development and aging brain transcriptomes reveals that these functional networks are established in development and decline with age. In this work, we expand the known functional organization of de novo versus stress-inducible eukaryotic chaperones into a layered core-variable architecture in multi-cellular organisms. Tissue-specific differences in protein folding capacities are poorly understood. Here, the authors show that the human chaperone system consists of ubiquitous core chaperones and tissue-specific variable chaperones, perturbation of which leads to tissue-specific phenotypes.
... The Hsp70 core chaperone typically cooperates with a member of the J-domain protein (DNAJ) family and a nucleotide exchange factor (NEF) that regulate the Hsp70 ATPase cycle (Mayer and Bukau, 2005). The DNAJ family expanded from six DNAJs found in E. coli to 49 in Homo sapiens (Finka and Goloubinoff, 2013;Bar-Lavan et al., 2016). This increase in complexity may reflect the evolutionary selection pressure for greater versatility of Hsp70 machines. ...
Article
Full-text available
Aberrant accumulation of misfolded proteins into amyloid deposits is a hallmark in many age-related neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Pathological inclusions and the associated toxicity appear to spread through the nervous system in a characteristic pattern during the disease. This has been attributed to a prion-like behavior of amyloid-type aggregates, which involves self-replication of the pathological conformation, intercellular transfer, and the subsequent seeding of native forms of the same protein in the neighboring cell. Molecular chaperones play a major role in maintaining cellular proteostasis by assisting the (re)-folding of cellular proteins to ensure their function or by promoting the degradation of terminally misfolded proteins to prevent damage. With increasing age, however, the capacity of this proteostasis network tends to decrease, which enables the manifestation of neurodegenerative diseases. Recently, there has been a plethora of studies investigating how and when chaperones interact with disease-related proteins, which have advanced our understanding of the role of chaperones in protein misfolding diseases. This review article focuses on the steps of prion-like propagation from initial misfolding and self-templated replication to intercellular spreading and discusses the influence that chaperones have on these various steps, highlighting both the positive and adverse consequences chaperone action can have. Understanding how chaperones alleviate and aggravate disease progression is vital for the development of therapeutic strategies to combat these debilitating diseases.
... In addition, the ability of BAG proteins to directly interact with substratesby means of additional protein-protein binding motifs or by the BAG domain itselfmight be used to recruit the NEF to HSP70-client complexes, thus accelerating protein release and vice versa (Arndt, Daniel, Nastainczyk, Alberti, & Höhfeld, 2005;Xu et al., 2008). The chaperone machinery, surrounded by co-chaperone partner proteins, maintains a central place in the regulation of protein homeostasis (proteostasis), surveilling the equilibrium among protein synthesis, proper folding, trafficking, and degradation (Bar-Lavan, Shemesh, & Ben-Zvi, 2016;Hartl, Bracher, & Hayer-Hartl, 2011). Under different stress signals, the heat shock protein level increases in the cells, allowing them to maintain a prevalence of native proteins over their unfolded or misfolded counterparts (Finka, Sood, Quadroni, Rios Pde, & Goloubinoff, 2015). ...
Article
The members of the BCL-2 associated athanogene (BAG) family participate in the regulation of a variety of interrelated physiological processes, such as autophagy, apoptosis, and protein homeostasis. Under normal circumstances, the six BAG members described in mammals (BAG1-6) principally assist the 70 kDa heat-shock protein (HSP70) in protein folding; however, their role as oncogenes is becoming increasingly evident. Deregulation of the BAG multigene family has been associated with cell transformation, tumor recurrence, and drug resistance. In addition to BAG overexpression, BAG members are also involved in many oncogenic protein-protein interactions (PPIs). As such, either the inhibition of overloading BAGs or of specific BAG-client protein interactions could have paramount therapeutic value. In this review, we will examine the role of each BAG family member in different malignancies, focusing on their modular structure, which enables interaction with a variety of proteins to exert their pro-tumorigenic role. Lastly, critical remarks on the unmet needs for proposing effective BAG inhibitors will be pointed out.
... These GO terms comprise transcripts encoded by heat shock protein (hsp) genes hsp60, hsp70 and hsp90; dnaJ (hsp40); small heat shock proteins such as hsp20 (Additional file 4); and one polyubiquitin gene. Raised temperature (i.e., heat shock) is known to induce representatives of all heat shock protein gene families [17]. ...
Article
Full-text available
Background: Lake Baikal is one of the oldest freshwater lakes and has constituted a stable environment for millions of years, in stark contrast to small, transient bodies of water in its immediate vicinity. A highly diverse endemic endemic amphipod fauna is found in one, but not the other habitat. We ask here whether differences in stress response can explain the immiscibility barrier between Lake Baikal and non-Baikal faunas. To this end, we conducted exposure experiments to increased temperature and the toxic heavy metal cadmium as stressors. Results: Here we obtained high-quality de novo transcriptome assemblies, covering mutiple conditions, of three amphipod species, and compared their transcriptomic stress responses. Two of these species, Eulimnogammarus verrucosus and E. cyaneus, are endemic to Lake Baikal, while the Holarctic Gammarus lacustris is a potential invader. Conclusions: Both Baikal species possess intact stress response systems and respond to elevated temperature with relatively similar changes in their expression profiles. G. lacustris reacts less strongly to the same stressors, possibly because its transcriptome is already perturbed by acclimation conditions.
... Inhibitors that target the heat-shock protein (Hsp) 70 family have increasingly become a focus of antiviral strategies for viruses important to human health (Howe and Haystead, 2015;Mayer, 2005;Santoro, 1994) but relatively less explored for fish viruses, with the one exception being a virus important to Chinese aquaculture (Shan et al., 2018). Hsps or chaperones are a diverse group of highly conserved proteins that regulate the proper folding of proteins and are organized into four main Hsp families (small Hsps, Hsp60, Hsp70 and Hsp90) ( Bar-Lavan et al., 2016). The human Hsp70 family has at least 8 members, with Hsp70-1 (Hsp70, Hsp72, or Hsp1A1) being the most studied stress-inducible member, whereas the heat-shock cognate 70 (Hsc70) (Hsp73 or HspA8) is constitutively expressed and glucose-regulated protein 78 (Grp78, Bip or HspA5) is inducible by endoplasmic reticulum (ER) stress (Murphy, 2013). ...
Article
The heat-shock protein 70 (Hsp70) inhibitor, VER-155008 (VER), was explored as a potential antiviral agent for two RNA viruses important to fish aquaculture, viral hemorrhagic septicemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV). Studies were done at a temperature of 14 °C, and with cell lines commonly used to propagate these viruses. These were respectively EPC from fathead minnow for VHSV and CHSE-214 from Chinook salmon embryo for IPNV. Additionally, both viruses were studied with the Atlantic salmon heart endothelial cell line ASHe. For both VHSV and IPNV, 25 μM VER impeded replication. This was evidenced by delays in the development of cytopathic effect (CPE) and the expression of viral proteins, N for VHSV and VP2 for IPNV, and by less production of viral RNA and of viral titre. As VER inhibits the activity of Hsp70 family members, these results suggest that VHSV and IPNV utilize one or more Hsp70s in their life cycles. Yet neither virus induced Hsp70. Surprisingly VER alone induced Hsp70, but whether this induction modulated VER's antiviral effects is unknown. Exploring this apparent paradox in the future should improve the usefulness of VER as an antiviral agent.
... Heat shock proteins (HSPs) with wide distribution are the highly conserved molecular chaperones, which can keep the proteins from mutation, misfolding, inaccurate modification, and the acute influence of environment or chronic insult etc; HSPs are consecutively expressed during the growth process of cell cycles and play an important regulatory role in the protein folding/refolding, repair, degradation and the intracellular transportation [4][5][6]. In addition to being consecutively induced, HSPs can be also triggered by a series of physiological, pathological or environmental factors and are relevant to various clinical diseases such as stress, infection, autoimmunity and cancer [7][8][9]. ...
Article
Full-text available
Toxoplasma gondii can infect all the vertebrates including human, and leads to serious toxoplasmosis and considerable veterinary problems. T. gondii heat shock protein 60 (HSP60) is associated with the activation of antigen presenting cells by inducing initial immune responses and releasing inflammatory cytokines. It might be a potential DNA vaccine candidate for this parasite. A pVAX-HSP60 DNA vaccine was constructed and immune responses was evaluated in Kunming mice in this study. Our data indicated that the innate and adaptive immune responses was elicited by successive immunizations with pVAX-HSP60 DNA, showing apparent increases of CD3e+CD4+ and CD3e+CD8a+ T cells in spleen tissues of the HSP60 DNA-immunized mice (24.70±1.23% and 10.90±0.89%, P<0.05) and higher levels of specific antibodies in sera. Furthermore, the survival period of the immunized mice (10.53±4.78 day) were significantly prolonged during the acute T. gondii infection. Decrease of brain cysts was significant in the experimental group during the chronic infection (P<0.01). Taken together, TgHSP60 DNA can be as a vaccine candidate to prevent the acute and chronic T. gondii infections.
... Heat shock protein B2 (HspB2, ∼20 kDa). Molecular chaperones are proteins that promote refolding of denatured proteins (250), recently reviewed in (38). Among them, HspB2 was recently identified as an interacting partner of MYH6 and MYH7 in a yeast-two-hybrid screen (202). ...
Article
Full-text available
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells.
... Cellular quality control networks monitor the cellular proteome by scanning for damaged, misfolded or aggregated proteins and repairing or removing these proteins to maintain protein homeostasis (proteostasis) (Bar-Lavan et al., 2016a;Bett, 2016;Jackson and Hewitt, 2016;McCaffrey and Braakman, 2016;Voos et al., 2016). When proteostasis is breached, cells can activate stress response pathways that induce the expression of various quality control machineries to counter the flux of damaged proteins and restore proteostasis (Morimoto, 2011;Walter and Ron, 2011;Dubnikov et al., 2017;Fiorese and Haynes, 2017). ...
Article
Full-text available
Cell-non-autonomous signals dictate the functional state of cellular quality control systems, remodeling the ability of cells to cope with stress and maintain protein homeostasis (proteostasis). One highly regulated cell-non-autonomous switch controls proteostatic capacity in Caenorhabditis elegans adulthood. Signals from the reproductive system down-regulate cyto-protective pathways, unless countered by signals reporting on germline proliferation disruption. Here, we utilized dihomo-γ-linolenic acid (DGLA) that depletes the C. elegans germline to ask when cell-non-autonomous signals from the reproductive system determine somatic proteostasis and whether such regulation is reversible. We found that diet supplementation of DGLA resulted in the maintenance of somatic proteostasis after the onset of reproduction. DGLA-dependent proteostasis remodeling was only effective if animals were exposed to DGLA during larval development. A short exposure of 16 h during the second to fourth larval stages was sufficient and required to maintain somatic proteostasis in adulthood but not to extend lifespan. The reproductive system was required for DGLA-dependent remodeling of proteostasis in adulthood, likely via DGLA-dependent disruption of germline stem cells. However, arachidonic acid (AA), a somatic regulator of this pathway that does not require the reproductive system, presented similar regulatory timing. Finally, we showed that DGLA- and AA-supplementation led to activation of the gonadal longevity pathway but presented differential regulatory timing. Proteostasis and stress response regulators, including hsf-1 and daf-16, were only activated if exposed to DGLA and AA during development, while other gonadal longevity factors did not show this regulatory timing. We propose that C. elegans determines its proteostatic fate during development and is committed to either reproduction, and thus present restricted proteostasis, or survival, and thus present robust proteostasis. Given the critical role of proteostatic networks in the onset and progression of many aging-related diseases, such a choice could impact susceptibility to protein misfolding diseases later in life.
... The mitochondria localized HSP60-HSP10 and the cytosolic TriC/CCT complex chaperonins act as multimeric ring shaped folding chambers that encapsulate client proteins for folding [55,56]. Co-chaperones, like HSP40/J-proteins and BAG family co-chaperones regulate the activity of their cognate chaperones through the modulation of their ATPase cycle or via binding substrate proteins or other co-chaperones [50,[57][58][59]. ...
Article
Full-text available
Cellular differentiation, developmental processes, and environmental factors challenge the integrity of the proteome in every eukaryotic cell. The maintenance of protein homeostasis, or proteostasis, involves folding and degradation of damaged proteins, and is essential for cellular function, organismal growth, and viability [1, 2]. Misfolded proteins that cannot be refolded by chaperone machineries are degraded by specialized proteolytic systems. A major degradation pathway regulating cellular proteostasis is the ubiquitin/proteasome-system (UPS), which regulates turnover of damaged proteins that accumulate upon stress and during aging. Despite the large number of structurally unrelated substrates, ubiquitin conjugation is remarkably selective. Substrate selectivity is mainly provided by the group of E3 enzymes. Several observations indicate that numerous E3 ubiquitin ligases intimately collaborate with molecular chaperones to maintain the cellular proteome. In this Review, we provide an overview of specialized quality control E3 ligases playing a critical role in the degradation of damaged proteins. The process of substrate recognition and turnover, the type of chaperones they team up with, and the potential pathogeneses associated with their malfunction will be further discussed. This article is protected by copyright. All rights reserved.
... We also review the known interactions between Hsp70s with lipids and with active compounds that may become leads towards Hsp70 modulation for treatment of a variety of diseases. Hsp70 chaperones are highly conserved in all kingdoms; in animals, they are an important member of the collection of protein chaperones including Hsp60, Hsp70, Hsp90, Hsp100 and small Hsps (Bar-Lavan et al. 2016). The archetypical Hsp70 is called DnaK in bacteria and it functions in protein trafficking and protein refolding cycles, acting together with a nucleotide exchange factor (NEF), termed GrpE, and a J-protein, called DnaJ. ...
Article
Hsp70 proteins are key to maintaining intracellular protein homeostasis. To carry out this task, they employ a large number of cochaperones and adapter proteins. Here, we review what is known about the interaction between the chaperones and partners, with a strong slant toward structural biology. Hsp70s in general, and Hsc70 (HSPA8) in particular, display an amazing array of interfaces with their protein cofactors. We also review the known interactions between Hsp70s with lipids and with active compounds that may become leads toward Hsp70 modulation for treatment of a variety of diseases.
... In metazoans, the main chaperone families are Hsp90, Hsp70, Hsp60, and sHsp -small heat-shock proteins. Under non-stress condition, there is a pool of certain Hsp and their cognates Hsc serving an essential function in proper folding of proteins, acting as chaperones during their synthesis, processing, degradation, and translocation across cellular membranes (for a recent review on heat-shock proteins, see Bar-Lavan et al., 2016;Jee, 2016). ...
Article
This mini-review summarizes the recent knowledge concerning the role of temperature in the immune response of insects. The heat-shock is described as a common phenomenon in both homotherms and poikilotherms, and the role of heat-shock proteins in innate immunity is recalled taking into account its evolutionary aspects. Similar to homothermic animals, which show a febrile reaction to infection, poikilothermic invertebrates such as insects develop behavioural fever as part of their immune response. It can be elicited not only by the presence of the pathogen itself but also by injection of immune stimulators i.e. components of the microbial cell wall. In analogy to fever in homotherms, this process seems to be regulated by the prostaglandin/eicosanoid biosynthesis pathway. The positive effects of temperature change on insect immunity are presented in the paper.
Preprint
Full-text available
The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Here, we used human tissue RNA-sequencing profiles to analyze the expression and organization of chaperones across 29 main tissues. We found that relative to protein-coding genes, chaperones were significantly more ubiquitously and highly expressed across all tissues. Nevertheless, differential expression analysis revealed that most chaperones were up- or down-regulated in certain tissues, suggesting that they have tissue-specific roles. In agreement, chaperones that were upregulated in skeletal muscle were highly enriched in mouse myoblasts and in nematode’s muscle tissue, and overlapped significantly with chaperones that are causal for muscle diseases. We also identified a distinct subset of chaperones that formed a uniformly-expressed, cross-family core group conducting basic cellular functions that was significantly more essential for cell survival. Altogether, this suggests a layered architecture of chaperones across tissues that is composed of shared core elements that are complemented by variable elements which give rise to tissue-specific functions and sensitivities, thereby contributing to the tissue-specificity of protein misfolding diseases. Significance Statement Protein misfolding diseases, such as neurodegenerative disorders and myopathies, are often manifested in a specific tissue or even a specific cell type. Enigmatically, however, they are typically caused by mutations in widely expressed proteins. Here we focused on chaperones, the main and basic components of the protein-folding machinery of cells. Computational analyses of large scale tissue transcriptomes unveils that the chaperone system is composed of core essential elements that are uniformly expressed across tissues, and of variable elements that are differentially expressed in a tissue-specific manner. This organization allows each tissue to fit the quality control system to its specific requirements and illuminates the mechanisms that underlie a tissue’s susceptibility to protein-misfolding diseases.
Article
Cancer stem cells (CSCs) are a subpopulation of tumor cells with unlimited self-renewal capability, multilineage differentiation potential and long-term tumor repopulation capacity. CSCs reside in anatomically distinct regions within the tumor microenvironment, called niches, and this favors the maintenance of CSC properties and preserves their phenotypic plasticity. Indeed, CSCs are characterized by a flexible state based on their capacity to interconvert between a differentiated and a stem-like phenotype, and this depends on the activation of adaptive mechanisms in response to different environmental conditions. Heat Shock Proteins (HSPs) are molecular chaperones, upregulated upon cell exposure to several stress conditions and are responsible for normal maturation, localization and activity of intra and extracellular proteins. Noteworthy, HSPs play a central role in several cellular processes involved in tumor initiation and progression (i.e. cell viability, resistance to apoptosis, stress conditions and drug therapy, EMT, bioenergetics, invasiveness, metastasis formation) and, thus, are widely considered potential molecular targets. Furthermore, much evidence suggests a key regulatory function for HSPs in CSC maintenance and their upregulation has been proposed as a mechanism used by CSCs to adapt to unfavorable environmental conditions, such as nutrient deprivation, hypoxia, inflammation. This review discusses the relevance of HSPs in CSC biology, highlighting their role as novel potential molecular targets to develop anticancer strategies aimed at CSC targeting.
Article
It is still an enigma why T cell autoreactivity in type 1 diabetes targets few beta cell antigens only. Among these, one primary autoantigen is pro(insulin). Autoimmune T cells preferentially recognise three epitopes on the proinsulin molecule, of which the peptide region B:11-23 is the dominant one. Interestingly, the three regions superimpose with binding sites of the chaperone hsp70, the region B:11-23 being the strongest binding one. Absence of an intact core region B:15-17 prevents autoimmune diabetes in NOD as well as binding of hsp70. A role of hsp70 in selecting autoimmune epitopes is supported by the ability of this and other chaperones to deliver bound peptides to MHC class I and II molecules for efficient antigen presentation. Binding of hsp70 to receptors on antigen presenting cells such as TLR4 results in costimulatory signals for T cell activation. Strongest effects are seen for the mixture of hsp70 with the peptide B:11-23. Thus, hsp70 may assist in proinsulin epitope selection and efficient presentation to autoreactive T cells. The concept of chaperone guided immune reactivity may also apply to other autoimmune diseases.
Article
Full-text available
Heat shock proteins/cognates 70 are chaperones essential for proper protein folding. This protein family comprises inducible members (Hsp70s) with expression triggered by the increased concentration of misfolded proteins due to protein-destabilizing conditions, as well as constitutively expressed cognate members (Hsc70s). Previous works on non-model amphipod species Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, both endemic to Lake Baikal in Eastern Siberia, have only revealed a constitutively expressed form, expression of which was moderately further induced by protein-destabilizing conditions. Here we describe heat-inducible hsp70s in these species. Contrary to the common approach of using sequence similarity with hsp/hsc70 of a wide spectrum of organisms and some characteristic features, such as absence of introns within genes and presence of heat shock elements in their promoter areas, the present study is based on next-generation sequencing for the studied or related species followed by differential expression analysis, quantitative PCR validation and detailed investigation of the predicted polypeptide sequences. This approach allowed us to describe a novel type of hsp70 transcripts that overexpress in response to heat shock. Moreover, we propose diagnostic sequence features of this Hsp70 type for amphipods. Phylogenetic comparisons with different types of Hsp/Hsc70s allowed us to suggest that the hsp/hsc70 gene family in Amphipoda diversified into cognate and heat-inducible paralogs independently from other crustaceans. Thus, the cognate and inducible hsp70 types in distant taxa may not be recognized by sequence similarity.
Article
Full-text available
Protein homeostasis is remodeled early in Caenorhabditis elegans adulthood, resulting in a sharp decline in folding capacity and reduced ability to cope with chronic and acute stress. Endocrine signals from the reproductive system can ameliorate this proteostatic collapse and reshape the quality control network. Given that environmental conditions, such as food availability, impact reproductive success, we asked whether conditions of dietary restriction (DR) can also reverse the decline in quality control function at the transition to adulthood, and if so, whether gonadal signaling and dietary signaling remodel the quality control network in a similar or different manner. For this, we employed the eat‐2 genetic model and bacterial deprivation protocol. We found that animals under DR maintained heat shock response activation and high protein folding capacity during adulthood. However, while gonadal signaling required DAF‐16, DR‐associated rescue of quality control functions required the antagonistic transcription factor, PQM‐1. Bioinformatic analyses supported a role for DAF‐16 in acute stress responses and a role for PQM‐1 in cellular maintenance and chronic stress. Comparing the stress activation and folding capacities of dietary‐ and gonadal‐signaling mutant animals confirmed this prediction and demonstrated that each differentially impacts cellular quality control capabilities. These data suggest that the functional mode of cellular quality control networks can be differentially remodeled, affecting an organism's ability to respond to acute and chronic stresses during adulthood.
Article
Small heat shock proteins (sHSPs) are a class of highly conserved proteins that are ubiquitously found in all types of organisms, from prokaryotes to eukaryotes. In the current study, we identified and characterized the full‐length cDNA encoding sHSP 19.1 from the oak silkworm, Antheraea pernyi. Ap‐sHSP is 510 bp in length, and encodes a protein of 169 amino acid residues. The protein contains conserved domains found in insect sHSPs, and it belongs to the α‐crystallin‐HSPs_p23‐like superfamily. Recombinant Ap‐sHSP was expressed in Escherichia coli cells, and a rabbit anti‐Ap‐sHSP 19.1 antibody was generated to confirm the biological functions of Ap‐sHSP 19.1 in A. pernyi. Real‐time polymerase chain reaction and western blot analysis revealed that Ap‐sHSP 19.1 expression was highest in the fat body, followed by the midgut, and the lowest expression was found in the Malpighian tubule. Ap‐sHSP 19.1 transcript expression was significantly induced following challenge with microbial pathogens. In addition, the expression of Ap‐sHSP 19.1 was strongly induced after heat shock. These results suggest that Ap‐sHSP 19.1 plays a crucial role in immune responses and thermal tolerance in A. pernyi.
Article
Full-text available
In a genetic screen to identify genes that promote GLP-1/Notch signaling in Caenorhabditis elegans germline stem cells, we found a single mutation, om40, defining a gene called ego-3. ego-3(om40) causes several defects in the soma and the germline, including paralysis during larval development, sterility, delayed proliferation of germline stem cells, and ectopic germline stem cell proliferation. Whole genome sequencing identified om40 as an allele ofhsp-90, previously known as daf-21, which encodes the C. elegans ortholog of the cytosolic form of HSP90. This protein is a molecular chaperone with a central position in the protein homeostasis network, which is responsible for proper folding, structural maintenance, and degradation of proteins. In addition to its essential role in cellular function, HSP90 plays an important role in stem cell maintenance and renewal. Complementation analysis using a deletion allele of hsp-90 confirmed that ego-3 is the same gene. hsp-90(om40) is an I→N conservative missense mutation of a highly conserved residue in the middle domain of HSP-90. RNA interference-mediated knockdown of hsp-90 expression partially phenocopied hsp-90(om40), confirming the loss-of-function nature ofhsp-90(om40)Furthermore, reduced HSP-90 activity enhanced the effect of reduced function of both the GLP-1 receptor and the downstream LAG-1 transcription factor. Taken together, our results provide the first experimental evidence of an essential role for HSP90 in Notch signaling in development.
Article
BAG3 is a multifunctional protein that can bind to heat shock proteins (Hsp) 70 through its BAG domain and to other partners through its WW domain, proline-rich (PXXP) repeat and IPV (Ile-Pro-Val) motifs. Its intracellular expression can be induced by stressful stimuli, while is constitutive in skeletal muscle, cardiac myocytes and several tumour types. BAG3 can modulate the levels, localisation or activity of its partner proteins, thereby regulating major cell pathways and functions, including apoptosis, autophagy, mechanotransduction, cytoskeleton organisation, motility. A secreted form of BAG3 has been identified in studies on pancreatic ductal adenocarcinoma (PDAC). Secreted BAG3 can bind to a specific receptor, IFITM2, expressed on macrophages, and induce the release of factors that sustain tumour growth and the metastatic process. BAG3 neutralisation therefore appears to constitute a novel potential strategy in the therapy of PDAC and, possibly, other tumours.
Article
Full-text available
Hsp70s chaperone an amazing number and variety of cellular protein folding processes. Key to their versatility is the recognition of a short degenerate sequence motif, present in practically all polypeptides, and a bidirectional allosteric intramolecular regulation mechanism linking their N-terminal nucleotide binding domain (NBD) and their C-terminal polypeptide substrate binding domain (SBD). Through this interdomain communication ATP binding to the NBD and ATP hydrolysis control the affinity of the SBD for polypeptide substrates and substrate binding to the SBD triggers ATP hydrolysis. Genetic screens for defective variants of Hsp70s and systematic analysis of available structures of the isolated domains revealed some residues involved in allosteric control. Recent elucidation of the crystal structure of the Hsp70 homolog DnaK in the ATP bound open conformation as well as numerous NMR and mutagenesis studies bring us closer to an understanding of the communication between NBD and SBD. In this review we will discuss our current view of the allosteric control mechanism of Hsp70 chaperones.
Article
Full-text available
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states 1,2. Healthy meta-zoan cells effectively eliminate intracellular protein aggregates 3,4 , indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems 5,6 , and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro 4,7. This unresolved con-undrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggre-gation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.
Article
Full-text available
One of the key issues in biology is to understand how cells cope with protein unfolding caused by changes in their environment. Self-protection is the natural immediate response to any sudden threat and for cells the critical issue is to prevent aggregation of existing proteins. Cellular response to stress is therefore indistinguishably linked to molecular chaperones, which are the first line of defense and function to efficiently recognize misfolded proteins and prevent their aggregation. One of the major protein families that act as cellular guards includes a group of ATP-independent chaperones, which facilitate protein folding without the consumption of ATP. This review will present fascinating insights into the diversity of ATP-independent chaperones, and the variety of mechanisms by which structural plasticity is utilized in the fine-tuning of chaperone activity, as well as in crosstalk within the proteostasis network. Research into this intriguing class of chaperones has introduced new concepts of stress response to a changing cellular environment, and paved the way to uncover how this environment affects protein folding.
Article
Full-text available
Proteins are essential components of cellular life, as building blocks, but also to guide and execute all cellular processes. Proteins require a three-dimensional folding, which is constantly being challenged by their environment. Challenges including elevated temperatures or redox changes can alter this fold and result in misfolding of proteins or even aggregation. Cells are equipped with several pathways that can deal with protein stress. Together, these pathways are referred to as the protein quality control network. The network comprises degradation and (re)folding pathways that are intertwined due to the sharing of components and by the overlap in affinity for substrates. Here, we will give examples of this sharing and intertwinement of protein degradation and protein folding and discuss how the fate of a substrate is determined. We will focus on the ubiquitylation of substrates and the role of Hsp70 co-chaperones of the DNAJ class in this process.
Article
Full-text available
The discovery that the 70 kD "uncoating ATPase," which removes clathrin coats from vesicles after endocytosis, is the constitutively expressed Hsc70 chaperone was a surprise. Subsequent work, however, revealed that uncoating is an archetypal Hsp70 reaction: the cochaperone auxilin, which contains a clathrin binding domain and an Hsc70 binding J domain, recruits Hsc70(*)ATP to the coat and, concomitant with ATP hydrolysis, transfers it to a hydrophobic Hsc70-binding element found on a flexible tail at the C-terminus of the clathrin heavy chain. Release of clathrin in association with Hsc70(*)ADP follows, and the subsequent, persistent association of clathrin with Hsc70 is important to prevent aberrant clathrin polymerization. Thus, the two canonical functions of Hsp70-dissociation of existing protein complexes or aggregates, and binding to a protein to inhibit its inappropriate aggregation-are recapitulated in uncoating. Association of clathrin with Hsc70 in vivo is regulated by Hsp110, an Hsp70 NEF that is itself a member of the Hsp70 family. How Hsp110 activity is itself regulated to make Hsc70-free clathrin available for endocytosis is unclear, though at synapses it's possible that the influx of calcium that accompanies depolarization activates the Ca(++)/calmodulin dependent calcineurin phosphatase which then dephosphorylates and activates Hsp110 to stimulate ADP/ATP exchange and release clathrin from Hsc70(*)ADP:clathrin complexes.
Article
Full-text available
Unicellular and sessile organisms are particularly exposed to environmental stress such as heat shock causing accumulation and aggregation of misfolded protein species. To counteract protein aggregation, bacteria, fungi, and plants encode a bi-chaperone system composed of ATP-dependent Hsp70 and hexameric Hsp100 (ClpB/Hsp104) chaperones, which rescue aggregated proteins and provide thermotolerance to cells. The partners act in a hierarchic manner with Hsp70 chaperones coating first the surface of protein aggregates and next recruiting Hsp100 through direct physical interaction. Hsp100 proteins bind to the ATPase domain of Hsp70 via their unique M-domain. This extra domain functions as a molecular toggle allosterically controlling ATPase and threading activities of Hsp100. Interactions between neighboring M-domains and the ATPase ring keep Hsp100 in a repressed state exhibiting low ATP turnover. Breakage of intermolecular M-domain interactions and dissociation of M-domains from the ATPase ring relieves repression and allows for Hsp70 interaction. Hsp70 binding in turn stabilizes Hsp100 in the activated state and primes Hsp100 ATPase domains for high activity upon substrate interaction. Hsp70 thereby couples Hsp100 substrate binding and motor activation. Hsp100 activation presumably relies on increased subunit cooperation leading to high ATP turnover and threading power. This Hsp70-mediated activity control of Hsp100 is crucial for cell viability as permanently activated Hsp100 variants are toxic. Hsp100 activation requires simultaneous binding of multiple Hsp70 partners, restricting high Hsp100 activity to the surface of protein aggregates and ensuring Hsp100 substrate specificity.
Article
Full-text available
Members of the HSP70/HSP110 family (HSP70s) form a central hub of the chaperone network controlling all aspects of proteostasis in bacteria and the ATP-containing compartments of eukaryotic cells. The heat-inducible form HSP70 (HSPA1A) and its major cognates, cytosolic HSC70 (HSPA8), endoplasmic reticulum BIP (HSPA5), mitochondrial mHSP70 (HSPA9) and related HSP110s (HSPHs), contribute about 3 % of the total protein mass of human cells. The HSP70s carry out a plethora of housekeeping cellular functions, such as assisting proper de novo folding, assembly and disassembly of protein complexes, pulling of polypeptides out of the ribosome and across membrane pores, activating and inactivating signaling proteins and controlling their degradation. The HSP70s can induce structural changes in alternatively folded protein conformers, such as clathrin cages, hormone receptors and transcription factors, thereby regulating vesicular trafficking, hormone signaling and cell differentiation in development and cancer. To carry so diverse cellular housekeeping and stress-related functions, the HSP70s act as ATP-fuelled unfolding nanomachines capable of switching polypeptides between different folded states. During stress, the HSP70s can bind (hold) and prevent the aggregation of misfolding proteins and thereafter act alone or in collaboration with other unfolding chaperones to solubilize protein aggregates. Here, we discuss the common ATP-dependent mechanisms of holding, unfolding-by-clamping and unfolding-by-entropic pulling, by which the HSP70s can apparently convert various alternatively folded and misfolded polypeptides into differently active conformers. Understanding how HSP70s can prevent the formation of cytotoxic protein aggregates, pull, unfold and solubilize them into harmless species is central to the design of therapies against protein conformational diseases.
Article
Full-text available
Molecular chaperones of the Hsp70 family form an important hub in the cellular protein folding networks in bacteria and eukaryotes, connecting translation with the downstream machineries of protein folding and degradation. The Hsp70 folding cycle is driven by two types of cochaperones: J-domain proteins stimulate ATP hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) promote replacement of Hsp70-bound ADP with ATP. Bacteria and organelles of bacterial origin have only one known NEF type for Hsp70, GrpE. In contrast, a large diversity of Hsp70 NEFs has been discovered in the eukaryotic cell. These NEFs belong to the Hsp110/Grp170, HspBP1/Sil1 and BAG domain protein families. In this short review we compare the structures and molecular mechanisms of nucleotide exchange factors for Hsp70 and discuss how these cochaperones contribute to protein folding and quality control in the cell.
Article
Full-text available
The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation in vivo. Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover.
Article
Full-text available
Classic semiquantitative proteomic methods have shown that all organisms respond to a mild heat shock by an apparent massive accumulation of a small set of proteins, named heat-shock proteins (HSPs) and a concomitant slowing down in the synthesis of the other proteins. Yet unexplained, the increased levels of HSP messenger RNAs (mRNAs) may exceed 100 times the ensuing relative levels of HSP proteins. We used here high-throughput quantitative proteomics and targeted mRNA quantification to estimate in human cell cultures the mass and copy numbers of the most abundant proteins that become significantly accumulated, depleted, or unchanged during and following 4 h at 41 °C, which we define as mild heat shock. This treatment caused a minor across-the-board mass loss in many housekeeping proteins, which was matched by a mass gain in a few HSPs, predominantly cytosolic HSPCs (HSP90s) and HSPA8 (HSC70). As the mRNAs of the heat-depleted proteins were not significantly degraded and less ribosomes were recruited by excess new HSP mRNAs, the mild depletion of the many housekeeping proteins during heat shock was attributed to their slower replenishment. This differential protein expression pattern was reproduced by isothermal treatments with Hsp90 inhibitors. Unexpectedly, heat-treated cells accumulated 55 times more new molecules of HSPA8 (HSC70) than of the acknowledged heat-inducible isoform HSPA1A (HSP70), implying that when expressed as net copy number differences, rather than as mere “fold change” ratios, new biologically relevant information can be extracted from quantitative proteomic data. Raw data are available via ProteomeXchange with identifier PXD001666. Electronic supplementary material The online version of this article (doi:10.1007/s12192-015-0583-2) contains supplementary material, which is available to authorized users.
Article
Full-text available
Loss of protein homeostasis (proteostasis) is a common feature of aging and disease that is characterized by the appearance of nonnative protein aggregates in various tissues. Protein aggregation is routinely suppressed by the proteostasis network (PN), a collection of macromolecular machines that operate in diverse ways to maintain proteome integrity across subcellular compartments and between tissues to ensure a healthy life span. Here, we review the composition, function, and organizational properties of the PN in the context of individual cells and entire organisms and discuss the mechanisms by which disruption of the PN, and related stress response pathways, contributes to the initiation and progression of disease. We explore emerging evidence that disease susceptibility arises from early changes in the composition and activity of the PN and propose that a more complete understanding of the temporal and spatial properties of the PN will enhance our ability to develop effective treatments for protein conformational diseases. Expected final online publication date for the Annual Review of Biochemistry Volume 84 is June 02, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Article
Full-text available
Chaperones are central to the proteostasis network (PN) and safeguard the proteome from misfolding, aggregation, and proteotoxicity. We categorized the human chaperome of 332 genes into network communities using function, localization, interactome, and expression data sets. During human brain aging, expression of 32% of the chaperome, corresponding to ATP-dependent chaperone machines, is repressed, whereas 19.5%, corresponding to ATP-independent chaperones and co-chaperones, are induced. These repression and induction clusters are enhanced in the brains of those with Alzheimer?s, Huntington?s, or Parkinson?s disease. Functional properties of the chaperome were assessed by perturbation in C. elegans and human cell models expressing A?, polyglutamine, and Huntingtin. Of 219 C. elegans orthologs, knockdown of 16 enhanced both A? and polyQ-associated toxicity. These correspond to 28 human orthologs, of which 52% and 41% are repressed, respectively, in brain aging and disease and 37.5% affected Huntingtin aggregation in human cells. These results identify a critical chaperome subnetwork that functions in aging and disease.
Article
Full-text available
By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed "holdases". Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.
Article
Full-text available
The Hsp70-interacting protein, Hip, cooperates with the chaperone Hsp70 in protein folding and prevention of aggregation. Hsp70 interacts with non-native protein substrates in an ATP-dependent reaction cycle regulated by J-domain proteins and nucleotide exchange factors (NEFs). Hip is thought to delay substrate release by slowing ADP dissociation from Hsp70. Here we present crystal structures of the dimerization domain and the tetratricopeptide repeat (TPR) domain of rat Hip. As shown in a cocrystal structure, the TPR core of Hip interacts with the Hsp70 ATPase domain through an extensive interface, to form a bracket that locks ADP in the binding cleft. Hip and NEF binding to Hsp70 are mutually exclusive, and thus Hip attenuates active cycling of Hsp70-substrate complexes. This mechanism explains how Hip enhances aggregation prevention by Hsp70 and facilitates transfer of specific proteins to downstream chaperones or the proteasome.
Article
Full-text available
Structurally and sequence-wise, the Hsp110s belong to a subfamily of the Hsp70 chaperones. Like the classical Hsp70s, members of the Hsp110 subfamily can bind misfolding polypeptides and hydrolyze ATP. However, they apparently act as a mere subordinate nucleotide exchange factors, regulating the ability of Hsp70 to hydrolyze ATP and convert stable protein aggregates into native proteins. Using stably misfolded and aggregated polypeptides as substrates in optimized in vitro chaperone assays, we show that the human cytosolic Hsp110s (HSPH1 and HSPH2) are bona fide chaperones on their own that collaborate with Hsp40 (DNAJA1 and DNAJB1) to hydrolyze ATP and unfold and thus convert stable misfolded polypeptides into natively refolded proteins. Moreover, equimolar Hsp70 (HSPA1A) and Hsp110 (HSPH1) formed a powerful molecular machinery that optimally reactivated stable luciferase aggregates in an ATP- and DNAJA1-dependent manner, in a disaggregation mechanism whereby the two paralogous chaperones alternatively activate the release of bound unfolded polypeptide substrates from one another, leading to native protein refolding.
Article
Full-text available
The heat shock response (HSR) is essential to survive acute proteotoxic stress and has been studied extensively in unicellular organisms and tissue culture cells, but to a lesser extent in intact metazoan animals. To identify the regulatory pathways that control the HSR in Caenorhabditis elegans, we performed a genome-wide RNAi screen and identified 59 genes corresponding to 7 positive activators required for the HSR and 52 negative regulators whose knockdown leads to constitutive activation of the HSR. These modifiers function in specific steps of gene expression, protein synthesis, protein folding, trafficking, and protein clearance, and comprise the metazoan heat shock regulatory network (HSN). Whereas the positive regulators function in all tissues of C. elegans, nearly all of the negative regulators exhibited tissue-selective effects. Knockdown of the subunits of the proteasome strongly induces HS reporter expression only in the intestine and spermatheca but not in muscle cells, while knockdown of subunits of the TRiC/CCT chaperonin induces HS reporter expression only in muscle cells. Yet, both the proteasome and TRiC/CCT chaperonin are ubiquitously expressed and are required for clearance and folding in all tissues. We propose that the HSN identifies a key subset of the proteostasis machinery that regulates the HSR according to the unique functional requirements of each tissue.
Article
Full-text available
Chaperonins are cage-like complexes in which nonnative polypeptides prone to aggregation are thought to reach their native state optimally. However, they also may use ATP to unfold stably bound misfolded polypeptides and mediate the out-of-cage native refolding of large proteins. Here, we show that even without ATP and GroES, both GroEL and the eukaryotic chaperonin containing t-complex polypeptide 1 (CCT/TRiC) can unfold stable misfolded polypeptide conformers and readily release them from the access ways to the cage. Reconciling earlier disparate experimental observations to ours, we present a comprehensive model whereby following unfolding on the upper cavity, in-cage confinement is not needed for the released intermediates to slowly reach their native state in solution. As over-sticky intermediates occasionally stall the catalytic unfoldase sites, GroES mobile loops and ATP are necessary to dissociate the inhibitory species and regenerate the unfolding activity. Thus, chaperonin rings are not obligate confining antiaggregation cages. They are polypeptide unfoldases that can iteratively convert stable off-pathway conformers into functional proteins.
Article
Full-text available
In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chaperones and folding enzymes, termed here "the chaperome," which can prevent formation of potentially harmful misfolded protein conformers and use the energy of adenosine triphosphate (ATP) to rehabilitate already formed toxic aggregates into native functional proteins. In an attempt to extend knowledge of chaperome mechanisms in cellular proteostasis, we performed a meta-analysis of human chaperome using high-throughput proteomic data from 11 immortalized human cell lines. Chaperome polypeptides were about 10 % of total protein mass of human cells, half of which were Hsp90s and Hsp70s. Knowledge of cellular concentrations and ratios among chaperome polypeptides provided a novel basis to understand mechanisms by which the Hsp60, Hsp70, Hsp90, and small heat shock proteins (HSPs), in collaboration with cochaperones and folding enzymes, assist de novo protein folding, import polypeptides into organelles, unfold stress-destabilized toxic conformers, and control the conformal activity of native proteins in the crowded environment of the cell. Proteomic data also provided means to distinguish between stable components of chaperone core machineries and dynamic regulatory cochaperones.
Article
Full-text available
Point mutations in either of the two nucleotide-binding domains (NBD) of Hsp104 (NBD1 and NBD2) eliminate its thermotolerance function in vivo. In vitro, NBD1 mutations virtually eliminate ATP hydrolysis with little effect on hexamerization; analogous NBD2 mutations reduce ATPase activity and severely impair hexamerization. We report that high protein concentrations overcome the assembly defects of NBD2 mutants and increase ATP hydrolysis severalfold, changing Vmax with little effect on Km. In a complementary fashion, the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate inhibits hexamerization of wild-type (WT) Hsp104, lowering Vmax with little effect on Km. ATP hydrolysis exhibits a Hill coefficient between 1.5 and 2, indicating that it is influenced by cooperative subunit interactions. To further analyze the effects of subunit interactions on Hsp104, we assessed the effects of mutant Hsp104 proteins on WT Hsp104 activities. An NBD1 mutant that hexamerizes but does not hydrolyze ATP reduces the ATPase activity of WT Hsp104 in vitro. In vivo, this mutant is not toxic but specifically inhibits the thermotolerance function of WT Hsp104. Thus, interactions between subunits influence the ATPase activity of Hsp104, play a vital role in its biological functions, and provide a mechanism for conditionally inactivating Hsp104 function in vivo.
Article
Full-text available
Cellular chaperone networks prevent potentially toxic protein aggregation and ensure proteome integrity. Here, we used Escherichia coli as a model to understand the organization of these networks, focusing on the cooperation of the DnaK system with the upstream chaperone Trigger factor (TF) and the downstream GroEL. Quantitative proteomics revealed that DnaK interacts with at least ~700 mostly cytosolic proteins, including ~180 relatively aggregation-prone proteins that utilize DnaK extensively during and after initial folding. Upon deletion of TF, DnaK interacts increasingly with ribosomal and other small, basic proteins, while its association with large multidomain proteins is reduced. DnaK also functions prominently in stabilizing proteins for subsequent folding by GroEL. These proteins accumulate on DnaK upon GroEL depletion and are then degraded, thus defining DnaK as a central organizer of the chaperone network. Combined loss of DnaK and TF causes proteostasis collapse with disruption of GroEL function, defective ribosomal biogenesis, and extensive aggregation of large proteins.
Article
Full-text available
The redox-regulated chaperone Hsp33 protects organisms against oxidative stress that leads to protein unfolding. Activation of Hsp33 is triggered by the oxidative unfolding of its own redox-sensor domain, making Hsp33 a member of a recently discovered class of chaperones that require partial unfolding for full chaperone activity. Here we address the long-standing question of how chaperones recognize client proteins. We show that Hsp33 uses its own intrinsically disordered regions to discriminate between unfolded and partially structured folding intermediates. Binding to secondary structure elements in client proteins stabilizes Hsp33's intrinsically disordered regions, and this stabilization appears to mediate Hsp33's high affinity for structured folding intermediates. Return to nonstress conditions reduces Hsp33's disulfide bonds, which then significantly destabilizes the bound client proteins and in doing so converts them into less-structured, folding-competent client proteins of ATP-dependent foldases. We propose a model in which energy-independent chaperones use internal order-to-disorder transitions to control substrate binding and release.
Article
Full-text available
Limb-girdle muscular dystrophy type 1D (LGMD1D) was linked to chromosome 7q36 over a decade ago, but its genetic cause has remained elusive. Here we studied nine LGMD-affected families from Finland, the United States and Italy and identified four dominant missense mutations leading to p.Phe93Leu or p.Phe89Ile changes in the ubiquitously expressed co-chaperone DNAJB6. Functional testing in vivo showed that the mutations have a dominant toxic effect mediated specifically by the cytoplasmic isoform of DNAJB6. In vitro studies demonstrated that the mutations increase the half-life of DNAJB6, extending this effect to the wild-type protein, and reduce its protective anti-aggregation effect. Further, we show that DNAJB6 interacts with members of the CASA complex, including the myofibrillar myopathy-causing protein BAG3. Our data identify the genetic cause of LGMD1D, suggest that its pathogenesis is mediated by defective chaperone function and highlight how mutations in a ubiquitously expressed gene can exert effects in a tissue-, isoform- and cellular compartment-specific manner.
Article
Full-text available
Hsp90 is a dimeric molecular chaperone required for the activation and stabilization of numerous client proteins many of which are involved in essential cellular processes like signal transduction pathways. This activation process is regulated by ATP-induced large conformational changes, co-chaperones and posttranslational modifications. For some co-chaperones, a detailed picture on their structures and functions exists, for others their contributions to the Hsp90 system is still unclear. Recent progress on the conformational dynamics of Hsp90 and how co-chaperones affect the Hsp90 chaperone cycle significantly increased our understanding of the gearings of this complex molecular machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (Hsp90).
Article
Full-text available
After endocytosis, most cargo enters the pleiomorphic early endosomes in which sorting occurs. As endosomes mature, transmembrane cargo can be sequestered into inwardly budding vesicles for degradation, or can exit the endosome in membrane tubules for recycling to the plasma membrane, the recycling endosome, or the Golgi apparatus. Endosome to Golgi transport requires the retromer complex. Without retromer, recycling cargo such as the MIG-14/Wntless protein aberrantly enters the degradative pathway and is depleted from the Golgi. Endosome-associated clathrin also affects the recycling of retrograde cargo and has been shown to function in the formation of endosomal subdomains. Here, we find that the Caemorhabditis elegans endosomal J-domain protein RME-8 associates with the retromer component SNX-1. Loss of SNX-1, RME-8, or the clathrin chaperone Hsc70/HSP-1 leads to over-accumulation of endosomal clathrin, reduced clathrin dynamics, and missorting of MIG-14 to the lysosome. Our results indicate a mechanism, whereby retromer can regulate endosomal clathrin dynamics through RME-8 and Hsc70, promoting the sorting of recycling cargo into the retrograde pathway.
Article
Full-text available
Folding within the crowded cellular milieu often requires assistance from molecular chaperones that prevent inappropriate interactions leading to aggregation and toxicity. The contribution of individual chaperones to folding the proteome remains elusive. Here we demonstrate that the eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) has broad binding specificity in vitro, similar to the prokaryotic chaperonin GroEL. However, in vivo, TRiC substrate selection is not based solely on intrinsic determinants; instead, specificity is dictated by factors present during protein biogenesis. The identification of cellular substrates revealed that TRiC interacts with folding intermediates of a subset of structurally and functionally diverse polypeptides. Bioinformatics analysis revealed an enrichment in multidomain proteins and regions of beta-strand propensity that are predicted to be slow folding and aggregation prone. Thus, TRiC may have evolved to protect complex protein topologies within its central cavity during biosynthesis and folding.
Article
Full-text available
Although there is very little sequence identity between the two proteins, the structures of rabbit skeletal muscle actin (375-amino acid residues) and the 44-kDa ATPase fragment of the bovine 70-kDa heat shock cognate protein (HSC70; 386 residues) are very similar. The alpha-carbon positions of 241 pairs of amino acid residues that are structurally equivalent within the two proteins can be superimposed with a root-mean-square difference in distance of 2.3 A; of these, 39 residues are identical, and 56 are conservative substitutions. In addition, the conformations of ADP are very similar in both proteins. A local sequence "fingerprint," which may be diagnostic of the adenine nucleotide beta-phosphate-binding pocket, has been derived. The fingerprint identifies members of the glycerol kinase family as candidates likely to have a similar structure in their nucleotide-binding domains. The structural differences between the two molecules mainly occur in loop regions of actin known to be involved in interactions with other monomers in the actin filament or in the binding of myosin; the corresponding regions in heat shock proteins may have functions that are as yet undetermined. Placing the Ca2+ ATP of actin on the ATPase fragment structure suggests Asp-206 (corresponding to His-161 of actin) as a candidate proton acceptor for the ATPase reaction.
Article
Small heat shock proteins (sHsps) can efficiently prevent the aggregation of unfolded proteins in vitro. However, how this in vitro activity translates to function in vivo is poorly understood. We demonstrate that sHsps of Escherichia coli, IbpA and IbpB, co-operate with ClpB and the DnaK system in vitro and in vivo, forming a functional triade of chaperones. IbpA/IbpB and ClpB support independently and co-operatively the DnaK system in reversing protein aggregation. A delta ibpAB delta clpB double mutant exhibits strongly increased protein aggregation at 42 degrees C compared with the single mutants. sHsp and ClpB function become essential for cell viability at 37 degrees C if DnaK levels are reduced. The DnaK requirement for growth is increasingly higher for delta ibpAB, delta clpB, and the double delta ibpAB delta clpB mutant cells, establishing the positions of sHsps and ClpB in this chaperone triade.
Article
Proteotoxic stresses and aging cause breakdown of cellular protein homeostasis, allowing misfolded proteins to form aggregates, which dedicated molecular machines have evolved to solubilize. In bacteria, fungi, protozoa and plants protein disaggregation involves an Hsp70 • J-protein chaperone system, which loads and activates a powerful AAA+ ATPase (Hsp100) disaggregase onto protein aggregate substrates. Metazoans lack cytosolic and nuclear Hsp100 disaggregases but still eliminate protein aggregates. This longstanding puzzle of protein quality control is now resolved. Robust protein disaggregation activity recently shown for the metazoan Hsp70-based disaggregases relies instead on a crucial cooperation between two J-protein classes and interaction with the Hsp110 co-chaperone. An expanding multiplicity of Hsp70 and J-protein family members in metazoan cells facilitates different configurations of this Hsp70-based disaggregase allowing unprecedented versatility and specificity in protein disaggregation. Here we review the architecture, operation, and adaptability of the emerging metazoan disaggregation system and discuss how this evolved.
Article
The bacterial chaperonin GroEL and its cofactor GroES constitute the paradigmatic molecular machine of protein folding. GroEL is a large double-ring cylinder with ATPase activity that binds non-native substrate protein (SP) via hydrophobic residues exposed towards the ring center. Binding of the lid-shaped GroES to GroEL displaces the bound protein into an enlarged chamber, allowing folding to occur unimpaired by aggregation. GroES and SP undergo cycles of binding and release, regulated allosterically by the GroEL ATPase. Recent structural and functional studies are providing insights into how the physical environment of the chaperonin cage actively promotes protein folding, in addition to preventing aggregation. Here, we review different models of chaperonin action and discuss issues of current debate.
Article
Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and further use ATP to dissociate and convert them into native conformers. A decade later, other chaperones were shown to use ATP-hydrolysis to solubilize by unfolding stable protein aggregates, leading to their native refolding. Presently, the main conserved chaperone families Hsp70, Hsp104, Hsp90, Hsp60 and sHSPs apparently act as unfolding nanomachines, capable of converting functional alternatively-folded or toxic misfolded polypeptides into harmless, protease-degradable or differently functional native proteins. Being unfoldases, the chaperones can proofread protein 3D structures and thus control the quality of cellular proteostasis. Understanding the mechanisms of the cellular unfol
Article
Members of the HSP70/HSP110 family (HSP70s) form a central hub of the chaperone network controlling all aspects of proteostasis in bacteria and the ATP-containing compartments of eukaryotic cells. The heat-inducible form HSP70 (HSPA1A) and its major cognates, cytosolic HSC70 (HSPA8), endoplasmic reticulum BIP (HSPA5), mitochondrial mHSP70 (HSPA9) and related HSP110s (HSPHs), contribute about 3 % of the total protein mass of human cells. The HSP70s carry out a plethora of housekeeping cellular functions, such as assisting proper de novo folding, assembly and disassembly of protein complexes, pulling of polypeptides out of the ribosome and across membrane pores, activating and inactivating signaling proteins and controlling their degradation. The HSP70s can induce structural changes in alternatively folded protein conformers, such as clathrin cages, hormone receptors and transcription factors, thereby regulating vesicular trafficking, hormone signaling and cell differentiation in development and cancer. To carry so diverse cellular housekeeping and stress-related functions, the HSP70s act as ATP-fuelled unfolding nanomachines capable of switching polypeptides between different folded states. During stress, the HSP70s can bind (hold) and prevent the aggregation of misfolding proteins and thereafter act alone or in collaboration with other unfolding chaperones to solubilize protein aggregates. Here, we discuss the common ATP-dependent mechanisms of holding, unfolding-by-clamping and unfolding-by-entropic pulling, by which the HSP70s can apparently convert various alternatively folded and misfolded polypeptides into differently active conformers. Understanding how HSP70s can prevent the formation of cytotoxic protein aggregates, pull, unfold and solubilize them into harmless species is central to the design of therapies against protein conformational diseases.
Article
Aging has been associated with a progressive decline of proteostasis, but how this process affects proteome composition remains largely unexplored. Here, we profiled more than 5,000 proteins along the lifespan of the nematode C. elegans. We find that one-third of proteins change in abundance at least 2-fold during aging, resulting in a severe proteome imbalance. These changes are reduced in the long-lived daf-2 mutant but are enhanced in the short-lived daf-16 mutant. While ribosomal proteins decline and lose normal stoichiometry, proteasome complexes increase. Proteome imbalance is accompanied by widespread protein aggregation, with abundant proteins that exceed solubility contributing most to aggregate load. Notably, the properties by which proteins are selected for aggregation differ in the daf-2 mutant, and an increased formation of aggregates associated with small heat-shock proteins is observed. We suggest that sequestering proteins into chaperone-enriched aggregates is a protective strategy to slow proteostasis decline during nematode aging.
Article
Protein folding in the cell requires the assistance of enzymes collectively called chaperones. Among these, the chaperonins are 1 MDa ring-shaped oligomeric complexes that bind unfolded polypeptides and promote their folding within an isolated chamber in an ATP-dependent manner. Group II chaperonins, found in archaea and eukaryotes, contain a built-in lid that opens and closes over the central chamber. In eukaryotes, the chaperonin TRiC/CCT is hetero-oligomeric, consisting of two stacked rings of eight paralogous subunits each. TRiC facilitates folding of approximately 10% of the eukaryotic proteome, including many cytoskeletal components and cell cycle regulators. Folding of many cellular substrates of TRiC cannot be assisted by any other chaperone. A complete structural and mechanistic understanding of this highly conserved and essential chaperonin remains elusive. However, recent work is beginning to shed light on key aspects of chaperonin function, and how their unique properties underlie their contribution to maintaining cellular proteostasis. Copyright © 2015. Published by Elsevier Ltd.
Article
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfil well-defined roles in protein folding and conformational stability via ATP dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23 and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone mediated folding process. However, chaperones are also involved in ubiquitin-mediated proteasomal degradation of client proteins. Similar to folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C terminal Hsp70 binding protein (CHIP). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome system. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Article
The eukaryotic chaperonin TRiC (also called CCT) is the obligate chaperone for many essential proteins. TRiC is hetero-oligomeric, comprising two stacked rings of eight different subunits each. Subunit diversification from simpler archaeal chaperonins appears linked to proteome expansion. Here, we integrate structural, biophysical, and modeling approaches to identify the hitherto unknown substrate-binding site in TRiC and uncover the basis of substrate recognition. NMR and modeling provided a structural model of a chaperonin-substrate complex. Mutagenesis and crosslinking-mass spectrometry validated the identified substrate-binding interface and demonstrate that TRiC contacts full-length substrates combinatorially in a subunit-specific manner. The binding site of each subunit has a distinct, evolutionarily conserved pattern of polar and hydrophobic residues specifying recognition of discrete substrate motifs. The combinatorial recognition of polypeptides broadens the specificity of TRiC and may direct the topology of bound polypeptides along a productive folding trajectory, contributing to TRiC's unique ability to fold obligate substrates.
Article
Chaperones are abundant cellular proteins that promote the folding and function of their substrate proteins (clients). In vivo, chaperones also associate with a large and diverse set of cofactors (cochaperones) that regulate their specificity and function. However, how these cochaperones regulate protein folding and whether they have chaperone-independent biological functions is largely unknown. We combined mass spectrometry and quantitative high-throughput LUMIER assays to systematically characterize the chaperone-cochaperone-client interaction network in human cells. We uncover hundreds of chaperone clients, delineate their participation in specific cochaperone complexes, and establish a surprisingly distinct network of protein-protein interactions for cochaperones. As a salient example of the power of such analysis, we establish that NUDC family cochaperones specifically associate with structurally related but evolutionarily distinct β-propeller folds. We provide a framework for deciphering the proteostasis network and its regulation in development and disease and expand the use of chaperones as sensors for drug-target engagement.
Article
The function of the yeast SSB 70 kd heatshock proteins (hsp70s) was investigated by a variety of approaches. The SSB hsp70s () are associated with translating ribosomes. This association is disrupted by puromycin, suggesting that may bind directly to the nascent polypeptide. Mutant ssb1 ssb2 strains grow slowly, contain a low number of translating ribosomes, and are hypersensitive to several inhibitors of protein synthesis. The slow growth phenotype of ssb1 ssb2 mutants is suppressed by increased copy number of a gene encoding a novel translation elongation factor 1α (EF-1α)-like protein. We suggest that cytosolic hsp70 aids in the passage of the nascent polypeptide chain through the ribosome in a manner analogous to the role played by organellelocalized hsp70 in the transport of proteins across membranes.
Article
Molecular chaperones are diverse families of multidomain proteins that have evolved to assist nascent proteins to reach their native fold, protect subunits from heat shock during the assembly of complexes, prevent protein aggregation or mediate targeted unfolding and disassembly. Their increased expression in response to stress is a key factor in the health of the cell and longevity of an organism. Unlike enzymes with their precise and finely tuned active sites, chaperones are heavy-duty molecular machines that operate on a wide range of substrates. The structural basis of their mechanism of action is being unravelled (in particular for the heat shock proteins HSP60, HSP70, HSP90 and HSP100) and typically involves massive displacements of 20-30 kDa domains over distances of 20-50 Å and rotations of up to 100°.
Article
The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.
Article
The ATP-hydrolyzing molecular chaperones Hsc70/Hsp70 and Hsp90 bind a diverse set of tetratricopeptide repeat (TPR) containing cofactors via their C-terminal peptide motifs IEEVD and MEEVD. These cochaperones contribute to substrate turnover and confer specific activities to the chaperones. Higher eukaryotic genomes encode a large number of TPR domain containing proteins. The human proteome contains more than 200 TPR-proteins and that of Caenorhabditis elegans about 80. It is unknown how many of them interact with Hsc70 or Hsp90. We systematically screened the C. elegans proteome for TPR-domain containing proteins that likely interact with Hsc70 and Hsp90 and ranked them due to their similarity with known chaperone-interacting TPRs. We find C. elegans to encode many TPR-proteins, which are not present in yeast. All of these have homologs in fruit fly or humans. Highly ranking uncharacterized ORFs C33H5.8, C34B2.5 and ZK370.8 may encode weakly conserved homologs of the human proteins RPAP3, TTC1 and TOM70. C34B2.5 and ZK370.8 bind both, Hsc70 and Hsp90, with low micromolar affinities. Mutation of amino acids involved in EEVD-binding disrupts the interaction. In vivo, ZK370.8 is localized to mitochondria in tissues with known chaperone requirements, while C34B2.5 co-localizes with Hsc70 in intestinal cells. The highest ranking ORF with non-conserved EEVD-interacting residues, F52H3.5, did not show any binding to Hsc70 or Hsp90, suggesting that only about 15 of the TPR-domain containing proteins in C. elegans interact with chaperones, while the many others may have evolved to bind other ligands.
Article
The heat shock protein (Hsp)90 chaperone machinery regulates the activity of hundreds of client proteins in the eukaryotic cytosol. It undergoes large conformational changes between states that are similar in energy. These transitions are rate-limiting for the ATPase cycle. It has become evident that several of the many Hsp90 co-chaperones affect the conformational equilibrium by stabilizing specific intermediate states. Consequently, there is an ordered progression of different co-chaperones during the conformational cycle. Asymmetric complexes containing two different co-chaperones may be important for the processing of the client protein, although our understanding of this aspect, as well as the details of the interaction of Hsp90 with client proteins, is still in its infancy.
Article
HSP90 is a molecular chaperone that associates with numerous substrate proteins called clients. It plays many important roles in human biology and medicine, but determinants of client recognition by HSP90 have remained frustratingly elusive. We systematically and quantitatively surveyed most human kinases, transcription factors, and E3 ligases for interaction with HSP90 and its cochaperone CDC37. Unexpectedly, many more kinases than transcription factors bound HSP90. CDC37 interacted with kinases, but not with transcription factors or E3 ligases. HSP90::kinase interactions varied continuously over a 100-fold range and provided a platform to study client protein recognition. In wild-type clients, HSP90 did not bind particular sequence motifs, but rather associated with intrinsically unstable kinases. Stabilization of the kinase in either its active or inactive conformation with diverse small molecules decreased HSP90 association. Our results establish HSP90 client recognition as a combinatorial process: CDC37 provides recognition of the kinase family, whereas thermodynamic parameters determine client binding within the family.
Article
Small heat shock proteins (sHsps) are a ubiquitous family of molecular chaperones. They form homo-oligomers, composed of mostly 24 subunits. The immunoglobulin-like alpha-crystallin domain, which is flanked by N- and C-terminal extensions, is the most conserved element in sHsps. It is assumed to be the dimeric building block from which the sHsp oligomers are assembled. Hsp26 from Saccharomyces cerevisiae is a well-characterized member of this family. With a view to study the structural stability and oligomerization properties of its alpha-crystallin domain, we produced a series of alpha-crystallin domain constructs. We show that a minimal alpha-crystallin domain can, against common belief, be monomeric and stably folded. Elongating either the N- or the C-terminus of this minimal alpha-crystallin domain with the authentic extensions leads to the formation of dimeric species. In the case of N-terminal extensions, their population is dependent on the presence of the complete so-called Hsp26 "middle domain". For the C-terminal extensions, the presence of the conserved IXI motif of sHsps is necessary and sufficient to induce dimerization, which can be inhibited by increasing ionic strength. Dimerization does not induce major changes in secondary structure of the Hsp26 alpha-crystallin domain. A thermodynamic analysis of the monomeric and dimeric constructs revealed that dimers are not significantly stabilized against thermal and chemical denaturation in comparison to monomers, supporting our notion that dimerization is not a prerequisite for the formation of a well-folded Hsp26 alpha-crystallin domain.
Article
Mutations in the groE gene of Escherichia coli, which block the correct assembly of the phage lambda head, have been previously described. Many groE mutations exert pleiotropic effects, such as inability to propagate phages T4 and T5 and inability to form colonies at 43 degrees. With the help of the EcoRI and HindIII restrictionenzymes and the appropriate phage vectors, we have constructed two lambda transducing phages, called W3 and H18, that carry the groE+ bacterial gene. Upon lysogenization by phage H18 the groE bacterial mutants recover their gro+ phenotype for both phage growth and the ability to form colonies at 43 degrees. We have identified the groE+ bacterial gene product as a protein of 65,000 molecular weight. Mutants of the W3 transducing phage that were selected on the basis of their ability to propagate on some groE mutant hosts induce the synthesis of a groE protein with altered electrophoretic mobility.
Article
We show that a collection of 93 E. coli mutations which map between thr and leu and which block phage lambda DNA replication define two closely linked cistrons. Work published in the accompanying paper shows that these mutations also affect host DNA replication, so we designate them dnaJ and dnaK; the gene order is thr--dnaK--dnaJ--leu. Demonstration of two cistrons was possible with the isolation of lambda transducing phages carrying one or the other or both of the dna genes. These phages were employed in phage vs bacterial complementation studies which unambiguously show that dnaK and dnaJ are different cistrons.
Article
Pelham previously proposed that the hsp70 family of heat shock proteins could prevent the formation and/or allow the dissolution of protein aggregates created during stress conditions. We confirmed this hypothesis by showing that the E. coli hsp70 homolog, the dnaK gene product, protects the host RNA polymerase enzyme from heat inactivation in an ATP-independent reaction. In addition, we show that heat-inactivated and aggregated RNA polymerase is both disaggregated and reactivated following simultaneous incubation with DnaK protein and hydrolyzable ATP. The DnaK756 mutant protein has lost the ability to disaggregate the inactivated RNA polymerase enzyme. Our results demonstrate that the DnaK protein contributes to E. coli's growth not only by protecting some enzymes from denaturation but also by reactivating some once they are misfolded or aggregated.