ArticlePDF Available

Biological control of agricultural insect pests in Venezuela; advances, achievements, and future perspectives

Authors:
  • Asesor Corporación de Desarrollo Endógeno del estado Lara. Venezuela

Abstract and Figures

Biological control has been practised in Venezuela from the beginning of the 20th century, beginning with the classical introductions of Rodolia cardinalis for controlling Icerya purchasi, Aphelinus mali for the woolly apple aphid (Eriosoma lanigerum), and Apanteles thurberiae for the cotton pest Sacadodes pyralis. These classical introductions were similar to those of other countries of Latin America. However, the first practical attempts at controlling the sugarcane borer, Diatraea spp., were begun in the 1950s with the introduction of the Amazonian fly, Lydella (= Metagonistylum) minense. Following on from this success, the most important achievements were the introduction of Prospaltella opulenta by which the citrus blackfly, Aleurocanthus woglumi, was brought under complete control, and the introductions of Cotesia flavipes for controlling Diatraea spp. and Telenomus remus for controlling the armyworm, Spodoptera frugiperda. Several laboratories now rear C. flavipes and T. remus on a large scale in Venezuela. At the same time, the use of Metarhizium anisopliae and other related entomopathogens was developed, and these are nowadays produced on a commercial basis and are extensively used in a number of crops. Introduction In South America and the Caribbean region, biological control has been used with much success since the beginning of the twentieth century. However, its practical implementation has been slow, with adequate importance only given to this aspect in the last few decades. Biological control in Venezuela has a similar historical background to that in other Latin American countries, such as in Peru, Argentina and Bolivia. It began in the 1930s and 40s with the introduction of the coccinellid Rodolia cardinalis Mulsant [= Vedalia cardinalis] to control cottony cushion scale, Icerya purchasi Maskell (Hom.,Margarodidae), in citrus, and the parasitoids Aphelinus mali (Haldeman) (Hym, Aphelinidae) and Apanteles thurberiae Muesebeck (Hym., Braconidae) to control woolly apple aphid, Eriosoma lanigerum (Hausmann) (Hom., Aphididae), and the cotton pest Sacadodes pyralis Dyar (Lep., Noctuidae), respectively. In recent years a number of institutions, private and governmental, have introduced beneficial insects. Nevertheless, there are still only a few crops inVenezuela in which entomophagous insects have been used to control other pest insects. This is due, amongst other reasons, to an absence of technology transfer and to the trend towards using agrochemical products by producers. However, successful experience of biological
Content may be subject to copyright.
BiocontrolNews and Information 2001 Vol. 22 No. 3 67N – 74N
Review Article
Biological control of agricultural insect pests
in Venezuela; advances, achievements,
and future perspectives
Francisco Ferrer
Servicio Biológico C. A., Carretera Antigua Yaritagua – Barquisimeto,
Sector Chorobobo, Estado Lara, Venezuela
Abstract
Biological control has been practised in Venezuela from the beginning of the 20th century,
beginning with the classical introductions of Rodolia cardinalis for controlling Icerya
purchasi,Aphelinus mali for the woolly apple aphid (Eriosoma lanigerum), and Apanteles
thurberiae for the cotton pest Sacadodes pyralis. These classical introductions were similar to
those of other countries of Latin America. However, the first practical attempts at controlling
the sugarcane borer, Diatraea spp., were begun in the 1950s with the introduction of the
Amazonian fly, Lydella (= Metagonistylum)minense. Following on from this success, the
most important achievements were the introduction of Prospaltella opulenta by which the
citrus blackfly, Aleurocanthus woglumi, was brought under complete control, and the
introductions of Cotesia flavipes for controlling Diatraea spp. and Telenomus remus for
controlling the armyworm, Spodoptera frugiperda. Several laboratories now rear C. flavipes
and T. remus on a large scale in Venezuela. At the same time, the use of Metarhizium
anisopliae and other related entomopathogens was developed, and these are nowadays
produced on a commercial basisand are extensively used in a number of crops.
Introduction
In South America and the Caribbean region, biological control has
been used with much success since the beginning of the twentieth
century. However, its practical implementation has been slow, with
adequate importance only given to th is aspect in the last few decades.
Biological control in Venezuela has a similar historical background
to that in other Latin American countries, such as in Peru, Argentina
and Bolivia. It began in the 1930s and 40s with the introduction of
the coccinellid Rodolia cardinali s Mulsant [= Vedalia cardinalis]to
control cottony cushion scale, Icerya purchasi Maskell (Hom., Mar-
garodidae), in citrus, and the parasitoids Aphelinus mali (Haldeman)
(Hym, Aphelinidae) and Apanteles thurberiae Muesebeck (Hym.,
Braconidae) to control woolly apple aphid, Eriosoma lanigerum
(Hausmann) (Hom., Aphididae), and the cotton pest Sacadodes
pyralis Dyar (Lep., Noctuidae), respectively.
In recent years a number of institutions, private and governmental,
have introduced beneficial insects. Nevertheless, there are still only
a few crops in V enezuela in which entomophag ous insects have been
used to control other pest insects. This is due, amongst other reasons,
to an absence of technology transfer and to the trend towards using
agrochemical products by producers. However, successful experi-
ence of biological control in crops such as sugarcane, maize and
sorghum raises the expectation that for many other crops biological
control could have major importance from both an economical and
ecological point of view.
Historical Perspective
Releases and introductions related to the development of biological
pest control in Venezuela are summarized in Table 1.
Biological pest control has been very slow to develop, given how
long ago it was first s uggested as a solution for pest problems in Ven-
ezuela, and the length of time since the first introductions were made.
In 1884, Adolfo Ernst and other members of the Public Utility
Society (Sociedad de Utilidad Pública) proposed the use of the native
parasitoid wasp, Scelio famelicus Riley (Hym., Scelionidae), for
locust control. They indicated that this control method would prob-
ably be successful if it was generally and consistently applied
(Guagliumi, 1962).
Between 1939 and 1941, Charles Ballou introduced the predatory
coccinellid Rodolia cardinalis to control Icerya purchasi in citrus,
and two parasitoid species, Aphelinus mali against woolly apple
aphid, Eriosoma lanigerum,andApanteles thurberiae to control
Sacadodes pyralis in cotton (Giraldo, 1988).
68N BiocontrolNews and Information 2001 Vol. 22 No. 3
Table 1. Species of biological control agentsintroduced or released as biocontrol agents in Venezuela.
Date Scientist responsible Control agent Pest Crop
1884 Adolfo Ernst Scelio fermerelis Riley Schistocerca cancellata Serville as
S. paranensis (Burmeister) various
1913 Ernst Cocobacillus acridorium S. cancellata as S. paranensis various
1939-41 Charles H. Balou Rodolia cardinalis Mulsant (as
Vedalia cardinalis)Coccidae citrus
Aphelinus mali (Haldeman) Aphididae fruit crops
Apanteles thurberiae Muesebeck Sacadodes pyralis Dyar cotton
1946-53 Harold Box Lydella minense (Townsend)
(=Metagonistylum minense)Diatraea spp. sugarcane
Paratheresia claripalpis Wulp
1952 Pedro Guagliumi Lixophaga diatraea Townsend Diatraea spp. sugarcane
1956 F. Kern Bacillus thuringiensis Spodoptera frugiperda maize & various other crops
1960 W. Szumkowsky Hippodamia convergens
Guérin-Méneville various pests various crops
1975 Francis Geraud Prospaltella opulenta Silvestri Aleurocanthus woglumi Ashby citrus
1975-80 ANCA1Trichogramma spp. Lepidoptera cotton
1979 F.Linares& Francisco
Ferrer Cotesia flavipes Cameron Diatraea spp. sugarcane
1986 D. Hernández &
Ferrer Telenomus remus Nixon Spodoptera frugiperda maize
1987-92 Ferrer Spalangia endius Walker Muscidae -
Muscidifurax raptor Girault &
Sanders
1991-92 Ferrer Copidosoma koehleri Blanchard Phthorimaea operculella (Zeller) potato, tomato
baculovirus
1991-92 Hugo Chávez Cotesia plutellae Kurdyumov Plutella xylostella (L.) crucifers
1992-99 SERVBIO Chrysoperla externa (Hagen) various pests various crops
baculovirus P. ope rcu lell a potato, tomato
1Asociación Nacional de Cultivadores de Algodón [National Cotton Growers Association].
2Servicio Biológico C.A. [Biological ControlService Company].
Table 2. History of Telenomus remus use in Venezuela.
Year Activity Maize (ha) Other crops (ha) Total Telenomus
released (1000s) Effect
1979 introduction
1980-86 laboratory studies
1987 1st field trials 10 4 90% parasitism
1988 field trials 10 200 24-100% parasitism
1989 semi-commercial 50 200 90% parasitism
1990 semi-commercial 120 480 50-80% parasitism
1991 commercial 658 1990 19560 50% reduction
1992 commercial 600 1300 15655 ND1
1993 commercial 100 833 7470 ND1
1994 commercial 1500 1000 19925 50% reduction
1995 commercial 1321 900 17772 50% reduction
1996 commercial 4252 0 25512 50% reduction
1997 commercial 1015 535 9320 50% reduction
1998 commercial 569 0 3414 70% reduction
1999 commercial 1640 200 9838 80% reduction
Totals 1979-99 11845 6758 129350
1No data.
ReviewArticle 69N
In 1946, the entomologist Harold Box and his collaborators at the
Ministry of Agriculture at Maracay (Aragua State) began the intro-
duction and breeding of the Amazonian fly, Lydella minense
(Townsend) (= Metagonistylum minense) (Dipt., Tachinidae) to con-
trol sugarcane borers, Diatraea spp. The fly was reared in
laboratories at the Ministry of Agriculture Experimental Station and
the sugarcane factory El Palmar, at Maracay. From this starting
point, several sugar mill companies adopted the method of control-
ling the sugarcane borer, using flies reared under controlled
conditions in specially constructed laboratories. Strains of Parather-
esia claripalpis Wulp (Tachinidae) from Trinidad, Mexico and Peru
were introduced in 1950 and 1952 (Box, 1953). The Cuban fly Lix-
ophaga diatraeae Townsend (Tachinidae) was also introduced in
1952, by Pedro Guagliumi.
Subsequently, the coccinellid Hippodamia convergens Guérin-
Méneville was detected by W. Szumkowski, but there is no record of
its introduction into Venezuela, and it is thought that it could have
migrated from neighbouring countries (Guagliumi, 1962).
The citrus blackfly, Aleurocanthus woglumi Ashby (Hom., Aleyro-
didae) had spread to all parts of the country since 1965, causing
serious damage to citrus. In 1972, the entomologist Jose M. Osorio
Rojas of the West–Central University (Universidad Centro Occi-
dental ‘Lisandro Alvarado’, UCLA) at Barquisimeto (Lara State)
reported on the main natural enemies of this pest in Venezuela for the
first time (Osorio et al., 1972).
In 1975, to combat A. woglumi, experts from the Farmers’ Founda-
tion (Fundación para el Agricultor, FUSAGRI), the Venezuelan
Central University (Universidad Central de Venezuela, UCV), the
National Agricultural Investigation Fund (Fondo Nacional de Inves-
tigaciones Agropecuarias, FONAIAP) and the National Agricultural
Research Centre (Centro Nacional de Investigaciones Agro-
pecuarias, CENIAP) introduced the parasitoid Prospaltella opulenta
Silvestri (Hym., Aphelinidae) from Mexico. This is one of the few
examples of almost complete biological control achieved by the
introduction of a parasitoid (Geraud et al., 1977; Noticias Agricolas,
1978). Further studies on the impact of P. opulenta (Chávez, 1980)
showed that in the Central-Western Region of Venezuela, complete
biological control of A. woglumi was observed 18 months after the
releases were made.
In 1975 the Asian braconid, Cotesia flavipes Cameron, was intro-
duced from Colombia for biological control of Diatraea spp., but
attempts to use it were aborted following unsuccessful initial results.
In 1981, C. flavipes breeding was begun again with material from
Trinidad. Several thousand C. flavipes were produced and released
in a number of regions from 1981 to 1982 by the Biological Control
Service Company (Servicio Biológico C. A., SERVBIO) located in
Barquisimeto, Venezuela (Ferrer, 1984), but without any positive
effects being recorded. Then in 1985, abundant parasitism was
detected for the first time in Ureña (Táchira State) and Cariaco
(Monagas State) (Linares & Ferrer, 1990; Linares & Yepéz, 1992).
More parasitoids were bred and redistributed using specimens cap-
tured at these locations. The programme soon began to achieve good
results after these releases were made. Nowadays, C. flavipes pro-
vides substantial control of Diatraea spp. in several areas of the
country (Ferrer & Guédez, 1990; Linares & Ferrer, 1990).
In 1979, T. remus was introduced by Francisco Ferrer from Trinidad
for controlling the corn armyworm, Spodoptera frugiperda J. E.
Smith (Lep., Noctuidae) (Yaseen et al., 1981; Morales et al., 2000).
Parasitoid mass breeding and release began in several regions of the
country. Positive results were obtained in Yaritagua, Yaracuy State
(Hernández et al., 1989). Later T. remus was used extensively in a
number of areas, and in some of these an immediate response was
recorded. For example, in Túren (Portuguesa State), a very humid
area, parasitism reached 90%. In other warmer and drier localities
results were less striking. Overall, as discussed further below, the
parasitoid has reduced the cost of using pesticides in integrated
insect pest management (Ferrer, 1992).
In 1992, 80 million T. remus were produced in an attempt to protect
some 6000-7000 ha of maize, but 80% of the material could not be
distributed owing to lack of coordination between laboratories, pro-
ducers and agricultural companies. Since then, however, T. remus
has been used on a continuous basis in several areas of the country
with good results (Table 2), especially in Las Velas, Yaracuy State,
where the use of pesticides has been reduced by nearly 80%.
Current Status of Biological Insect Pest Control
Various state and private institutions are currently working in bio-
logical control in Venezuela (Table 3), although the main state
institutions have so far done little in the field of technology transfer.
The Entomology Department at UCLA has worked on the biology
and reproduction of Cotesia plutellae Kurdyumov, and is conducting
field tests to assess its ability to control Plutella xylostella (L.) (Lep.,
Plutellidae) (Chávez et al., 1992). This department is also studying
the reproduction of Copidosoma koehleri Blanchard (Hym., Encyr-
tidae), a biological control agent of potato moth, Phthorimaea
opercullela (Zeller) (Lep., Gelechiidae). FONAIAP is involved in
research on and production of Trichogramma spp., while UCV has a
laboratory that produces predatory mites.
Private enterprise has taken a lead in facilitating the implementation
of biological control. For example, the most important advances in
biological control of sugarcane pests have been made by private
companies. The PROBIOAGRO Company (Productos Biológicos
para el Agro, C. A.) annually treats several thousand hectares of sug-
arcane with Metarhizium anisopliae (Metsch) Sorok. to control
Aeneolamia varia (F.) (Hom., Cercopidae) (Sosa & Zambrano,
1987; Zambrano et al., 1987, 1993). This is complementary to the
long-standing use of entomophages against sugarcane borers. In the
1960s and 70s the Institute for the Promotion of Agricultural Produc-
tivity (Instituto para el Fomento de la Productividad Agropecuaria,
IFPA) had seven laboratories producing sugarcane borer parasitoids.
Since 1977, biological control agent production has been a function
of SERVBIO, which currently serves several sugar mill factories,
and has undertaken the work of the IFPA laboratories (Ferrer, 1984).
SERVBIO together with a new Foundation for the Development of
Sugarcane (FUNDACAÑA) have the production capacity to treat
approximately 40,000 ha of sugarcane per year by releasing the
larval parasitoids C. flavipes and L. minense.
Major Uses of Biological Control
Sugarcane
The area of production of sugarcane in Venezuela is approximately
120,000 ha, and some 20 factories are involved in the industry,
which produces about 60% of the national needs. Two main pests are
important in the sugar industry in Venezuela: the sugarcane borer
Diatraea spp., which comprises five important species (D. sacchar-
alis (F.),D.rosaHeinrich, D. centrella Moscher,D.impersonatella
(Walker),and D. busckella Dyar & Heinrich), and the sugarcane
froghopper, Aeneolamia varia. These pests cause serious losses
because they blight the leaves of the sugarcane leading to serious
impairment of photosynthesis.
70N BiocontrolNews and Information 2001 Vol. 22 No. 3
Table 3. Main centres workingin biological pest control in Venezuela.
Centre Acronym Expertise1
Consejo Nacional de Investigaciones Científicas y
Tecnológicas National Board of Scientific and
Technological Research CONICIT E, I, P
Instituto Venezolano de Investigaciones Científicas Venezuelan Institutefor Scientific Research IVIC E, I, P
Fondo Nacional de Investigaciones Agropecuarias National Agricultural Investigation Fund FONAIAP E, I
Centro de Investigaciones del Estado para la Producción
Experimental Agroindustrial State Research Centre for Experimental
Agro-industrial Production CIEPE E, P
Servicio Biológico C.A. Biological Control Service Company SERVBIO CB, E, P
Productos Biológicos para le Agro C.A, Acarigua,
Portuguesa State Biological Products for Agriculture
Company PROBIOAGRO CB, P
Centro de Producción Biológica, C.A., Guaríco State Centre of Biological Production Company CEPROBIOLCA E
AGROBICA C.A., Valencia, Carabobo State Agrobiologicals Company AGROBICA P
Laboratory de Ingenios Azucareros, FUNDACAÑA
Central Matilde (Yaritagua)
Central La Pastora (El Palmar)
Sugar refineries' engineering laboratories E
Asociación Nacional de Cultivadores de Algodón National Cotton Growers Association ANCA E, P
Algonodera Mata, Anzoátegui State Mata Cotton Station ALMACA E
Universidad Centro Occidental ‘Lisandro Alvarado’,
Departamento de Entomología, Barquisimeto, Lara State Central–West University, Entomology
Department UCLA E, I
Instituto de Zoología, Universidad Central de Venezuela,
Fac. Agronomía, Maracay, Aragua State Zoology Institute, Central University of
Venezuela, Agronomy Faculty UCV E,I,P
1CB = general biological control; E = entomophages; I = research; P = entomopathogens.
Table 4. Distribution of IPM costs in commercial maize fields in Portuguesa, Lara, Yaracuy and Barinas States, Venezuela during the rainy season,
1994.
State Area (ha) Telenomus releases
(1000s) Monitoring visits Estimated cost without
IPM (US$) Totalcostwith
IPM (US$) Estimated saving
with IPM (US$)1
Portuguesa 501 3350 133 30925 19961 10964
Lara 100 926 31 6173 1969 4204
Yaracuy 759 3365 ND246881 20121 26760
Barinas 200 1600 ND28320 5190 3130
Totals 1560 9241 164 92299 47241 45058
1The overall benefit-cost of IPM was 48.82%.
2No data.
Table 5. Summary of real costs of IPM rural programme in Yaracuy State, Venezuela in 1997.
Costs of IPM (US$/ha)
Organization/
community Area (ha) Telenomus Monitoring Insecticide IPM total Real expenditure
with IPM (US$)1Budgeted cost without
IPM (US$)2
Estimated
saving with
IPM (US$)3
Valle Blanco 128 11.49 0.44 10.09 22.02 2819 7466 4647
El Palmar 206 16.11 7.22 9.12 32.43 6681 12016 5335
Las Cañadas 127 10.32 5.24 10.54 26.10 3315 7408 4093
Las Velas 319 8.50 8.45 22.09 39.04 12454 18607 6153
El Rodeo 112 17.55 10.08 6.25 33.88 3795 6533 2738
Agua Viva 52 7.55 10.49 17.70 35.74 1858 3033 1175
Average 11.92 6.98 12.63 31.53
Total 944 30922 55063 24141
1Cost per ha with IPM averaged US$32.76 (Bolivares 16,380); US$1 = Bolivares 500.
2Budgeted costper ha US$58.33 (Bolivares 29,165).
3The benefit-cost of using IPM was 43.84%.
ReviewArticle 71N
As described above, the Amazonian fly, L. minense, has been
released against Diatraea sugarcane borers continuously since 1951,
and its effectiveness is demonstrated by an average parasitism rate of
17.34% over 36 years (Linares & Ferrer, 1990). This parasitoid
showed a preference for D.saccharalis, which was the dominant spe-
cies in the 1950s. In 1959, Box reported stem-borer populations
comprising 81% D. saccharalis, 11% D. busckella and 7% D. cen-
trella, and he found parasitism rates in D. saccharalis of 45-74%
(Box, 1959). In 1976, the entomologist Jhonny Saldivia stated that
the species proportions had changed to 90% D. busckella, 7% D. sac-
charalis and 3% D. centrella, indicating a significant decrease in the
proportion of D. saccharalis (Ferrer, 1984). In a more recent study,
however, Linares (1987) reported that D. busckella was non-existent
in the Turbio River sugar refinery area (Lara State), but that D. rosa
was present. Although he confirmed that there has been a shift in
Diatraea species composition and relative abundance since biolog-
ical control was first implemented, his work suggests there have been
some mistakes made in species identifications during this period.
Since the first releases, the braconid Cotesia flavipes has also con-
tributed significantly to reducing crop losses from sugarcane borers.
Parasitism rates of 90% have been recorded. In the Turbio River
area, the stem-borer infestation rate (assessed by percentage perfo-
rated internodes) was reduced from 20% (in the 1950s) to 9% in
1981 following continuous release of L. minense. An average infes-
tation rate of 6-7% was maintained until 1988, but this was reduced
further, to less than 2.5%, between 1990 and 1992 following mass C.
flavipes releases (Ferrer, 1995). Similar results have been reported
by many other sugar refineries (Salazar, 1993). The add-on effect of
C. flavipes can be attributed to its ability to parasitize all the predom-
inant species: D. centrella,D. rosa and D. saccharalis.
SERVBIO released 7,051,619 L. minense in the period 1981-92, and
265,337,000 C. flavipes in 1988-99.
Control of the cercopid A. varia byMetarhizium anisopliae was first
attempted in 1986. The first positive results were obtained in small
plots of less than 20 ha (Sosa & Zambrano, 1987; Zambrano et. al.,
1987). Nowadays, most sugarcane growers use microbial biological
control for this pest, but to varying extents.
In 1986-90, CORBICAN-1 mycoinsecticide (containing M. anisop-
liae as the active ingredient) was applied to an accumulated area of
87,000 ha, throughout the country (Molina et al., 1992). In Vene-
zuela, as in Brazil, environmental conditions allow epizootics to be
produced in A. varia. The entomopathogen is becoming increasingly
accepted by sugarcane growers with each successive year (Zam-
brano et al., 1993). For example, El Palmar and Tacarigua sugar
refineries applied the fungus via aerial and terrestrial spraying on
89.87% of their combined sugarcane growing area of 15,000 ha in
1990 (N. Molina, pers. comm.).
Sugarcane is an example of well-organized IPM. The inter-institu-
tional IPM programme for control of Aeneolamia and sugarcane
borers (Programa Inter-Institucional de Combate de la Candelilla y
el Taladrador, PICANTA), formed in 1984, established a workplan
that included monitoring, parasitoid releases and entomopathogenic
applications for each sugar refinery area. Control achievements with
sugarcane borers are illustrated by an economic analysis, which
shows that for each bolivar invested in biological control, a min-
imum of 22 bolivares has been saved (Ferrer, 1995).
However, more threats are emerging. A new pest, the sugarcane del-
phacid, Perkinsiella saccharicida Kirkaldy, has been detected in
Lara and Yaracuy States. This is the main pest of sugarcane in Fiji,
and is thus potentially very serious. In addition, Salazar et al. (1991)
report that Fulmekiola serrata (Kobus) (Thysanopt., Thripidae) is
now causing pest problems in sugarcane in Venezuela.
Maize and sorghum
Maize and sorghum crops are of special importance for a large part
of the Venezuelan rural population; for instance in the year 1988 the
combined area of the crops reached 800,000 ha. The main pests in
these crops are the armyworm, Spodoptera frugiperda and, to a
lesser extent, Mocis latipes Guenée (Noctuidae), and Helicoverpa
zea Boddie (Noctuidae). Several pesticides are used for controlling
these pests, but as maize price and production (abou t 3000 kg/ha) are
both low, it is not possible to use excessive control measures. For this
reason, biological control is an alternative that should be taken in
account.
The first field trials with Telenomus remus were conducted near Yar-
itagua (Yaracuy State) in 1987 (see Table 2). Six weeks after the first
releases, 90% parasitism of pest Spodoptera spp. eggs was recorded
within a 100-m radius of the release sites (Hernández et al., 1989). In
1988, another field trial was conducted in order to continue the study
of T. remus dispersion. A total of 165,000 individuals was released
over a 0.8-ha plot. Results indicated 14% parasitism one week after
first releases, and 100% eight weeks later (Meléndez, 1988).
In 1989, semi-commercial releases of T. remus were made around
Turén (Portuguesa State) (Ferrer & Meléndez, 1990). Parallel with
the releases, and as set out in the agreement between the University
of Los Llanos (Barinas, Portuguesa State) and the National Associa-
tion of Cotton Growers (Asociación Nacional de Cultivadores de
Algodón, ANCA), a trial was set up in commercially planted maize
to study (a) levels of Telenomus parasitism in Spodoptera eggs, and
(b) the effective range of the parasitoid. Parasitism levels of 55.7-
71.4% were recorded, and Telenomus was found to be active for a
distance 60 m from the point of release, within 24 h.
In 1990, T. remus was released in an area spread over several states,
a total of 120 ha. In 1991, the release programme covered 658 ha of
winter maize in areas of four states: Lara, Yaracuy, Portuguesa and
Guárico. A total of five million wasps was released and positive con-
trol results were obtained in all except warm dry areas such as, for
example, at El Sombrero in Guárico State (Ferrer, 1992).
At the end of 1991, an IPM programme was begun in sorghum in El
Tigre (Anzoátegui State). The programme was implemented over an
area of 1990 ha by individual producers and was financed by a com-
pany that produces sorghum seeds, Agropecuaria Los Riecitos. A
total of 18,820,000 T. remus was released along with 89.375 square
inches of Trichogramma sp. wasps (one square inch is equivalent to
2500 to 3000 trichogramma wasps). Together the releases led to
farmers reducing their pest control costs by an average of US$23/ha
(at that time US$1 = Bolivares 171) over the budgeted cost for non-
IPM management of close to US$72/ha (12,300 bolivares). Some
farmers saved US$ 50/ha (Ferrer, 1992; Ferrer, 1996). In 1992,
SERVBIO planned the management of 5000 ha of maize using bio-
logical inputs in the winter season. However, only 600 ha in
Portuguesa, Lara and Yaracuy States were included. Producers were
discouraged by low maize prices, and by the fact that loan and input
supplies were made available out of time.
In 1994, IPM programmes implemented in Lara, Yaracuy, Portu-
guesa and Guárico States made cost savings of 49%, compared to the
budgeted cost of non-IPM management. The figures for these states
are summarised in Table 4.
Since 1991, Telenomus remus has been released in Las Velas valley,
Yaracuy State and outstanding results have been obtained over an
72N BiocontrolNews and Information 2001 Vol. 22 No. 3
area of 944 ha (Table 5). The monitoring activity for this programme
was managed by an NGO, the Inter-Institutional Cooperative Move-
ment of Las Velas and El Palmar (Movimiento Ecológico Coopera-
tivo de Investigacion Las Velas–El Palmar, MECOIVEPAL), in
collaboration with SERVBIO, who provided laboratory services and
supplied T. remus to the programme. In 1997 the averagenumber of
Telenomus released was 3848 wasps/ha, together with a small
number of Trichogramma pretiosum Riley (Hym., Trichogramma-
tidae). It was evident that substantial savings were made when insec-
ticide costs were considered. In total, 34.2% and 21.8% of the
amounts of powder and liquid insecticides, respectively, budgeted
for use in non-IPM areas were used in the IPM programme, and the
total cost of Spodoptera control in the IPM area was reduced by
nearly 50% (Ferrer, 1995). In 1999, this success was repeated when
growers from Las Velas applied almost no insecticides in nearly
1600 ha of IPM maize (F. Ferrer, unpublished data).
On this basis, if the maize crop of the whole country, averaging some
300,000 ha, were managed under IPM, the saving would be nearly
3,556,193,200 bolivares, or some US$7 million. This, however, is
likely to be an underestimate of the actual saving, because the budg-
eted cost of pest control in Las Velas rural sector (29,166 bolivares/
ha, or near US$58.33) is low compared to figures for the country as
awhole.
Spodoptera nuclear polyhedrosis virus (NPV) is produced by
SERVBIO as one of its research projects in biologic al control, which
aims to provide an alternative for Spodoptera control in maize. In
1992, laboratory and field bioassays were conducted to determine
the infective capacity of Spodopterin, a commercial Spodopera NPV
product produced by Calliope, France (Romero, 1997). At the labo-
ratory level, studies were conducted on inoculation dose, effect of
larval size, and the time scale of virus action. Field applications were
tested on established maize crops. Although more research is still
needed, expertise in laboratory production of NPVs has been devel-
oped, and it is intended to adapt the production system for native
NPV isolates.
There is potential for integrating NPV use with a wide range of bio-
logical inputs to improve control in the maize system, for example
Nomurea rileyi (Farlow) Samson and Bacillus thuringiensis as well
as Telenomus remus and Trichogramma spp.
Cotton
Biological control in c otton through Trichogramma spp. releases has
been facilitated by the activities of several laboratories (one of which
is the National Association of Cotton Growers, ANCA) since the
middle of the 1970s. The use of parasitoids has reduced insecticide
applications by a significant amount.
The basic studies for mass rearing Trichogramma s pp. began in 1973
under an agreement between the Cotton Development Fund (FDA),
ANCA, and the Experimental Station at Araure – FONAIAP (Portu-
guesa State). Between 1973 and 1976 releases of this parasitoid to
control Heliothis spp. and Alabama argillacea Hübner (Noctuidae)
were initiated in cotton fields of Portuguesa and Anzoátegui States
in the east of the country. The goal of this project was to establish,
together with other cultural practices, the training of technical per-
sonnel. The application of pesticides was reduced from 14.8 to 6
applications (Salas, 1993). The establishment of a Trichogramma
laboratory was achieved in Anzoátegui in 1987, and recently (1997)
SERVBIO has installed a laboratory in the locality of Sanare (Lara
State) with the aim of controlling several lepidopteran pests on veg-
etables and other crops (Giraldo, 1988).
Trichogramma is a parasitic wasp in common use by the national
producer groups, but this service has been diminished in the last four
years because of a reduction in the areas of cotton in the country.
This reduction was due to the high costs of national cotton produc-
tion compared to imported cotton prices. At present (2001) the
government is providing financial help for the cotton growers and it
seems likely that this will lead to a revival of this crop, with good
prospects for biological control.
Other crops
Since 1998, an IPM package (which includes the use of chrysopids
and Trichogramma, sticky traps and weekly monitoring) has been in
use in vegetable crop s, and has been particularly successfully applied
in sweet pepper, cucumber, tomato, potato and melon. In 1998 in
Humocaro (Lara State), for example, where sweet pepper is an
important crop, producers made savings of 80% in pest control costs
by adopting the IPM practices rather than applying pesticides in the
conventional programmed manner. In 1999, excellent results were
achieved using chrysopids in melon in Isle of Margarita (Nueva
Esparta State), where there was almost no necessity for pesticide
applications because of successful control of the whitefly (Bemisia
tabaci (Gennadius); Hom., Aleyrodidae) by these predators.
Future Prospects
Recently, PROBIOAGRO has begun to produce the entomopatho-
genic fungus Verticillium lecanii (Zimmerman) Viegas for
controlling B. tabaci,Nomurea rileyi for controlling Spodoptera fru-
giperda,andBeauveria bassiana (Balsamo) Vuillemin for
controlling a number of different pests. From 1987 to 1992,
SERVBIO introduced Spalangia endius Walker (Hym., Pteromal-
idae), Muscidifurax raptor Girault & Sanders (Pteromalidae) and
Copidosoma koehleri from the Centre for Introduction and Breeding
of Useful Insects (Centro de Introducción y Cría de Insecto Utiles,
CICIU), Peru; Spalangia cameroni Perkins from Colombia, and
Baculovirus phthorimaea from the International Potato Centre
(CIP), Peru. All of these are currently under investigation and/or in
use. More recently, from 1996 to 1999, SERVBIO has established a
laboratory to produce Trichogramma and Chrysoperla.
Demand for biological control in IPM in Venezuela is growing,
owing to recent pest outbreaks that have affected extensive agricul-
ture. Although physical, budgetary and human resources are limited,
some incentives have appeared to encourage adoption and imple-
mentation of biological control. Many farmers with extensive areas
plantedtosorghumandmaizearesupervisedbytheIntegralTech-
nical Assistance (Asistencia Técnica Integral, ATI) programme of
PALMAVEN (a subsidiary of the company Petróleos de Vene-
zuela). This organization has an agreement to promote IPM. Field
days have been held to show the effectiveness of IPM, and interest
in it is growing. Some 3500 ha of cereal crops were expected to be
under IPM in 2001. An annual increase in the area under IPM of 5%
is anticipated, as experience has already shown that 50% savings in
the pest control budget can be made (Ferrer et al., 1992). The IPM
package includes: a monitoring system for pests (with the recom-
mendation that chemicals products be used only when the economic
threshold is exceeded), the use of N. rileyi, Telenomus remus and
Trichogramma spp., and various other biologically-based
techniques.
Conclusions
Even though Venezuelan national organizations are in a critical eco-
nomic situation, research must still be conducted that is directed
towards immediate transfer of IPM technology, to generate income,
which will then help to develop projects. It is essential to establish
better communication inside Venezuela so those projects can be exe-
ReviewArticle 73N
cuted. Nowadays, very few researchers really understand that the
economic situation means that the Government is not a realistic
source of funding. Instead, a way of tapping other sources from
national and international institutions has to be found so that basic
and applied research can continue. Researchers need to become
more aware of grant-awarding bodies such as the National Board of
Scientific and Technological Research (Consejo Nacional de Inves-
tigaciones Científicas y Tecnológicas, CONICIT) and a number of
international organizations. In this context, the formation of an NGO
might be a useful step.
A growing demand for IPM services in a number of crops has arisen
because of a realization of the problems created by misuse of agro-
chemicals. Agricultural products free from pollutants are also
demanded in the majority of industrialized countries, so IPM serv-
ices are becoming essential. However, the reality shows that little
preparation has been made to cope with this change in strategy. In
view of the scattered resources in Latin America to tackle the
problem, technology exchange and improved communications are
vital. In this way, achievements in one country would be able to
spread more quickly to others, and the challenge can be confronted
regionally.
Many factors affecting the success of biological control need to be
taken into account when working directly with producers. Hence, it
is necessary to deal separately with each social and economic group.
The key approach to technology transfer activities should be through
demonstrations of economic cost-benefit, and the beneficial effects
of biological control on the environment and human health.
Acknowledgements
The author acknowledges the kind translation of the manuscript by
Ms Iratxe Rodríguez and the collaboration and comments by Dr Jose
Morales, and Dr Robert Smith (Universidad Centro Occidental
‘Lisandro Alvarado’) and Ing Alfredo Trelles (SERVBIO).
References
Box. H. (1953) The control of sugarcane moth borers (Diatraea)in
Venezuela. A preliminary account. Tropical Agriculture 30, 97-113.
Box, H. (1959) Informe No 4 sobre la situation actual de Diatraea ysus
parasites dipteros en zonas que proveen caña para el Central
Yaritagua, Estado Yaracuy. Reporte sobre la visita de inspeccion
realizada en el mes de mayo de1959. [Unpublished report of a survey
conducted in May 1959].
Chávez, H.A. (1980) Biological control of the citrus blackfly
(Aleurocanthus woglumi Ashby) by Prospaltella opulenta Silv. in
Central–Western Venezuela with a review of the pest’s invasion of
the Western Hemisphere, and supression by introduced parasites.
PhD thesis, University of Florida, USA, 118 pp.
Chávez, H.A.; Diaz, F.A.; Briceño, R.A. (1992) Introduccíon biológica de
Cotesia plutella (Hymenoptera) (Kurdj) en Venezuela, parasitoide de
Plutella xylostella (Lepidoptera: Plutellidae). Ier Congreso
Centroamericano de Entomolgía y Combate Natural de Plagas/2do
Congreso Costarricense de Entomología [1st Central American
Congress of Entomology and Natural Pest Control/2nd Costa Rican
Congress of Entomology], San José, Costa Rica, 16-20 November
1992.
Ferrer, F.R. (1984) Sinopsis historica sobre el control biológico de la
Diatraea spp. en Venezuela. In: Memorias, II Seminario sobre
problemas de la candelilla y el taladrador de la caña de azúcar y
pastos [Proceedings, 2nd seminar on problems of froghopper and
borer of sugarcane and pasture], UPAVE-DIVENAZ, Barquisimeto,
Venezuela, November 1984, pp. 253-290.
Ferrer, F.R. (1992) Producción industrial de Metagonistylum minense
(Dip: Tachnidae), Cotesia flavipes (Hym: Braconidae) y Telenomus
remus (Hym: Scelionidae) y su impacto dentro de los programas de
manejo integrado de plagas de la caña de azúcar, maíz y sorgo. La
Reunión Latinoamericana y del Caribe in Biotechnología, Industrial
yPol
íticas Públicas para el Control Biológico de Plagas. Alimentos,
Comercializacion y Ambiente [Latin American and Caribbean
meeting on biotechnology, industrial and public policy for biological
control of pests], Universidad Centro Occidental Lisandro Alvarado
– UCLA-OEA, Barquisimeto, Lara State, Venezuela, 18-20 May
1992.
Ferrer, F.R. (1995) Control biológico delas plagas de la caña de azúcar. In:
Gomero, L; Lizarraga, A. (eds) Aportes del control biológico en la
agricultura sostenible. Red de Acción en Alternativas al Uso de
Agroquímicos, RAAA (ONG), Lima, Perú, August 1995, pp. 191-
224.
Ferrer, F.R. (1996) The effect of Telenomus remus Nixon on commercial
corn fields in Venezuela. IOBC conference, Technology Transfer in
Biological Control: from Research to Practice, Montpellier, France,
9-12 September 1996.
Ferrer, F.R.; Guédez, E. (1990) Evalaciones de Diatraea spp.
(Lepidoptera: Pyralidae) y el efecto de Cotesia flavipes Cameron
(Hymenoptera: Braconidae) como nuevo parásito en el área de
influencia de la Azucarera Río Turbio. Caña de Azúcar 8, 37-57.
Ferrer, F.R.; Meléndez, E. (1990) Producción masiva de Telenomus remus
y resultados preliminares en el cultivo de maíz. In:Memorias,
seminar sobre alternativas para el control del gusano cogollero del
maíz Spodoptera frugiperda. (Smith) [Proceedings, seminar on
alternatives for control of maize earworm, Spodoptera frugiperda
(Smith)]. Asociacion de Productores Agropecuarios de la Region
Centro Occidental (APROPECO), Productos para el Agro
(Probioagro), and Universidad Centro Occidental, Barquisimeto,
Venezuela, pp. 64-78.
Ferrer, F.R.; Barradas, A.; Sanchez, F.; Velasquez, J.; Colmena, Res, J.
(1992) Control biológico de Spodoptera ano Smith (Lep:
Noctuidae), con enfasis en el uso de Telenomus remus Nixon (Hym:
Scelionidae) en cultivos de maíz y sorgo. In: Primera Jornada
Científica del Maíz [Report, 1st Scientific Meeting on Maize],
UNELLEZ-Guanare, Venezuela, 9-11 September 1992, 37 pp.
Geraud, P. F.; Perez G.; De Martinez, N.B; Teran, J. (1977) La mosca
prieta de los citricos en Venezuela y su control biológico. V Reunion
Nacional de Control Biológico y Sector Agropecuario [5th National
Meeting on Biological Control and the Agricultural Sector],
Tamaulipas, Mexico.
Giraldo, H. (1988) Manejo integrado de plagas. Experiencias de control
biológico en Venezuela. In: Manejo y liberación en los cultivos del
parásito Trichograma spp. [Management and release in crops of the
parasitoid Trichogramma spp.] El Tigre, Venezuela, 10 June 1988,
57 pp.
Guagliumi, P. (1962) Las plagas de la caña de azúcar en Venezuela. 2
volumes. Maracay, Venezuela; Min. Agricultura y Cría, 850 pp.
Hernández, D.; Ferrer, F.; Linares, B. (1989) Introducción de Telenomus
remus Nixon (Hym: Scelionidae) para controlar Spodoptera año
(Lep: Noctuidae) en Yaritagua, Venezuela. Agronomía Tropical 39,
199-205.
Linares, F. (1987) Estudios sobre los taladradores de la caña de azúcar,
Diatraea spp. en Venezuela. MSc thesis, Universidad Central de
Venezuela, Maracay, Venezuela, 219 pp.
Linares, B.; Ferrer, F.R. (1990) Introducción deCotesia flavipes Cameron
(Hym: Braconidae) para el control de Diatraea spp. (Lepidoptera:
Pyralidae) en Venezuela. Caña de Azúcar 8,1-5.
Linares, B.; Yepéz, G. (1992) Presencia de Cotesia flavipes Cameron
(Hym: Braconidae) parásito de los taladradores de la caña de azúcar
Diatraea spp. (Lep.: Pyralidae) en Venezuela. Boletín Entomologiá
Venezolana 7, 81-83.
Meléndez E. (1988) Capacidad de dipersión de Telenomus remus (Hym:
Scelionidae) como controlador biológico del gusano cogollero,
Spodoptera año (Lep: Noctuidae) en campo de maíz (Zea mays).
Presentation, Senior Agricultural Technician grade, Tecnológico del
Yaracuy, San Felipe, Yaracuy, Venezuela, 37 pp.
Molina, N.; Linares, B.; Zambrano, C. (1992) Control biológico de
Aeneolamia varia F. (Homoptera Cercopidae) con el hyphomicete,
Metarhizium anisopliae (Metsch) Sor. en Venezuela. In:Panis,C.;
Kermarrec, A. (eds) Recontres caraïbes en lutte biologique.
Guadeloupe, French West Indies, pp. 343-360.
Morales, J.; Gallardo, J.; Vasquez, C.; Rios, Y. (2000) Partron de
emergencia, longevidad, parasitismo y proporción sexual de
74N BiocontrolNews and Information 2001 Vol. 22 No. 3
Telenomus remus (Hymenoptera: Scelionidae) con relacion al
cogollero del maiz. Bioagro 8, 47-54.
Noticias Agricolas (1978) Pest control: the case of black fly shows the
effectiveness of biological control. Fundacion Servicio para el
Agricultor No. 8(13), pp. 51 – 52.
Osorio, J.M., Chávez, H.; Ferrer, F.; Morales S., J. (1972) Observaciones
sobre la mosca prieta de los cítricos en Venezuela. Su distribución
actual y enemigos naturales nativos. Escuela de Agronomía,
Universidad Centro Occidental, Lara State, Venezuela, 25 pp.
Romero, Y. (1997) Control biológico del cogollero del maíz Spodoptera
frugiperda Smith. con baculovirus. MSc thesis, Universidad Centro
Occidental Lisandro Alvarado, Barquisimeto,Venezuela, 75 pp.
Salas, J. (1993) Manejo integrado de plagas. Una alternativa ante la
problemática del uso creciente e irracional de plaguicidas. In: VI
Curso de manejo integrado de plagas y malezas [6th course on
integrated management of pests and diseases]. FONAIAP, Maturín,
Monagas State, Venezuela, pp. 1-25.
Salazar, J. (1993) Impacto económico del programa PICANTA.
Venezuela Azucarera, Asociacion de Tecnicos Azucareros de
Venezuela (ATAVE) No. 44, pp. 24-25.
Salazar, J.; Linares, B.; Proaño, L.; Molina, N. (1991) Fulmekiola serrata
(Thysanoptera: Thripidae), nueveo registro para la entomofaunade la
caña de azúcar. In: Resúmenes, XII Congreso Venezolano de
Entomología, ‘Dr Arnaldo Gabaldón’ [Summaries, 12th Venezuelan
Congress of Entomology], Mérida, Venezuela, 1-4 July 1991.
Sosa, M. L.; Zambrano, C. (1987) Posibilidades del control de Aeneolamia
spp. con el entomopatógeno M. anisopliae.XSeminario
Fitopatología [10th Plant Pathology Seminar], 10 October 1987,
Maracay, Venezuela.
Yaseen, M.; Bennett, F.; Barrow, M. (1981) Introduction of exotic
parasites for control of Spodoptera frugiperda in Trinidad, the
eastern Caribbean and Latin America. Urgent plant pest and disease
problems in the Caribbean. In: Proceedings, 1st Meeting of the
Society for Plant Protection in the Caribbean. Jamaica; Ministry of
Agriculture (IICA) and Society for Plant Protection in the Caribbean
(SPPC), pp. 161-171.
Zambrano, C.; Molina, N.; Sosa, M.L. (1987) Control biológico de la
candelilla (A. varia) mediante el uso de M. anisopliae en las fincas
‘Las Raíces’ y ‘Choro’ del Estado Portuguesa. Venezuela Azucarera
No 26, September 1987, pp. 4-8.
Zambrano, C.; Aguero, C.; Linares, B.; Molina, N. (1993) Metarhizium
anisopliae (Metsch) Sorok: pasado, presente y futuro en Venezuela.
Programa de Manejo Integrado de Plagas de la Caña de Azúcar
(PICANTA), VII Reunión Técnica [Report, 7th Technical Meeting,
Programme for Integrated Control of Sugarcane Pests], Acarigua,
Venezuela, 22-23 April 1993, 29 pp.
© CAB International 2001
... Since then, Te. remus has been frequently utilized in experimental and commercial field releases in Latin America (Cave 2000;Colmenarez et al. 2022). The most extensive use of Te. remus in ABC against FAW took place in Venezuela where it was imported in 1979 and has been commercially produced since the early 1990s (Hernández et al. 1989;Ferrer 2001;. Releases of Te. remus in Venezuela resulted in an overall reduction of between 50% to 80% in pesticide use against FAW and parasitism rates up to 90% (Ferrer 2001;. ...
... The most extensive use of Te. remus in ABC against FAW took place in Venezuela where it was imported in 1979 and has been commercially produced since the early 1990s (Hernández et al. 1989;Ferrer 2001;. Releases of Te. remus in Venezuela resulted in an overall reduction of between 50% to 80% in pesticide use against FAW and parasitism rates up to 90% (Ferrer 2001;. Not all field experiments with Te. remus have been successful (e.g. ...
... Other EPF isolates from soil and other arthropods have been screened for efficacy against FAW life stages and potent isolates have been identified (Akutse et al. 2019;Akutse et al. 2020b;Herlinda et al. 2020;Montecalvo & Navasero 2021;Ramanujam et al. 2020;Russo et al. 2021). High infectivity of M. anisopliae, B. bassiana, and Isaria isolates has been reported on eggs and neonates (Akutse et al. 2019;Lezama-Gutierrez et al. 1996;2001) as well as adults of FAW (Akutse et al. 2020b). Field efficacy of these isolates has also been established (Ramanujam et al. 2020), and some of them further progressed for commercialization (Akutse et al. 2020a). ...
Article
Full-text available
The fall armyworm (FAW), Spodoptera frugiperda (JE Smith, 1797), is a serious pest of several crops, particularly maize and other cereals. It has long been known as a pest in the Americas and has invaded most of Africa and parts of the Middle East, Asia, and Australia in the last six years. Its new status as an invasive species causing serious damage in many regions worldwide has highlighted the need for better understanding and has generated much research. In this article, we provide a comprehensive review of FAW covering its (i) taxonomy, biology, ecology, genomics, and microbiome, (ii) worldwide status and geographic spread, (iii) potential for geographic expansion and quarantine measures in place, and (iv) management including monitoring, sampling, forecasting, biological control, biopesticides, agroecological strategies, chemical control, insecticide resistance, effects of insecticides on natural enemies, as well as conventional and transgenic resistant cultivars. We conclude with recommendations for research to enhance the sustainable management of FAW in invaded regions.
... Telenomus spp. (remus) reportedly has great potential for biological control (Liao et al., 2019) of FAW in the field (Cave, 2000) with parasitism reaching about 90% through inundative release (Ferrer et al., 2001). Chelonus formosanus is an egg and larval parasitoid of S. frugiperda amenable to laboratory mass production and a potential biocontrol agent for use in the field (Gupta et al., 2020). ...
Article
Full-text available
Fall Armyworm (Spodoptera frugiperda), which began to spread in Bhutan in recent years, is a highly destructive pest of maize that is native to the Americas. Due to the limited information available for developing sustainable management options for the new pest, current management practices are largely chemical-dependent. For use as a biological control option, we present a preliminary list of native natural enemies associated with Fall Armyworm that is collected from infested maize fields in west-central Bhutan. Visual observation, sweep net collection, and rearing of different Fall Armyworm stages were used for detection of the natural enemies. We identified 48 natural enemy species associated with the Fall Armyworm-infested maize fields. Parasitism was noted for Chelonus formosanus, Trichogramma sp., Winthemia trinitatis, Linnaemya sp. and Campoletis sonorensis while predation was observed by Polistes olivaceus, Stenodynerus smilibaronii, Tetraponera allaborans, Crematogaster rogennhoferi and Dolichoderus thoracicus on the Fall Armyworm.
... La creciente necesidad de reducir el uso de agroquímicos para el control fitosanitario de los cultivos, hace necesario desarrollar tecnologías que permitan de forma fácil, económica y efectiva obtener productos a partir de microorganismos, insectos o nemátodos con alta calidad y en cantidades suficientes para su aplicación en las zonas cultivadas (Ferrer 2001). Por tales razones, el control biológico mediante virus entomopatógenos como componentes de una estrategia de manejo integrado de plagas, se acerca más a una solución duradera y efectiva, debido a su reducido efecto sobre el ambiente. ...
Article
El gusano cogollero del maíz, Spodoptera frugiperda, es un insecto polífago que causa importantes pérdidas económicas a nivel mundial. Su control mediante insecticidas químicos de alta toxicidad es ineficiente debido a la generación de resistencia. El control biológico con nucleopoliedrovirus surge como una alternativa, considerando la eficacia y alta especificidad de estos agentes. Sin embargo, los baculovirus se ven afectados por condiciones ambientales, siendo la radiación ultravioleta del sol el factor más limitante para su efectividad en campo. Por tal razón, el presente trabajo determinó la susceptibilidad de un nucleopoliedrovirus de S. frugiperda a las radiaciones ultravioleta monocromáticas UVA, UVB y UVC. Cinco concentraciones de virus purificado fueron expuestas a cada tipo de radiación UV durante diferentes tiempos por un máximo de una hora. Se observó un efecto negativo de los tres tipos de radiación sobre la actividad insecticida, siendo éste mayor al aumentar el tiempo de exposición y la energía de la radiación UV. Estos resultados confirmaron la necesidad de desarrollar una formulación que incluya protectores solares para asegurar la eficacia del bioplaguicida bajo condiciones de campo.
... On the other hand, T. remus is a parasitoid highly specialized in parasitizing members of the Noctuidae family, in particular the genus Spodoptera, being able to parasitize egg masses with large amounts of scales and many egg layers, even parasitizing eggs located internally in the different layers of the egg mass (Cave 2000). However, despite its ability to parasitize S. frugiperda egg masses with great efficiency, there are only a few reports of successful biological control programs of S. frugiperda using T. remus (Cave 2000, Ferrer 2001) suggesting that the parasitism dynamics of T. remus and S. frugiperda still needs to be better understood. ...
Conference Paper
Full-text available
The Sixth International Symposium on Biological Control of Arthropods, held virtually from British Columbia, Canada, continues the series of International Symposia on Biological Control of Arthropods, organized every four years. The history of the meetings is: • First ISBCA, Hawaii, USA – January 2002 • Second ISBCA, Davos, Switzerland – September 2005 • Third ISBCA, Christchurch, New Zealand – February 2009 • Fourth ISBCA: Pucón, Chile – March 2013 • Fifth ISBCA: Langkawi, Malaysia – September 2017 The goal of these symposia is to create a forum where biological control researchers and practitioners can meet and exchange information, to promote discussions of up to date issues affecting biological control, particularly pertaining the use of parasitoids and predators as biological control agents. This includes all approaches to biological control: conservation, augmentation, and importation of natural enemy species for the control of arthropod targets, as well as other transversal issues related to its implementation. To this end, 12 sessions have been organized in order to address the most relevant and current topics in the field of biological control of arthropods, delivered by invited speakers, contributed talks and poster presentations. To kick off ISBCA 2022, Dr. Martin Hill, Global President of the International Organization for Biological Control, presents an opening keynote talk on the current state of biological control. Some of the topics covered in ISBCA 2022 have remained as important issues since the first meeting, like the importance of biological control for managing invasive species, sustainable pest regulation in agricultural landscapes, the continuing challenges for biological control of forest pests, and the role of native vegetation in conservation biological control. But also, as new challenges and environmental concerns arise, some fresh topics have emerged. Among them are climate change and the disruption of biological control, stakeholder knowledge and perceptions of biological control, the use of native and exotic natural enemies for augmentative biological control, and functional diversity supporting biological control. For the first time, a workshop on biological control of ticks will be held. To show that biological control is a continuum linked to other disciplines, there will be a session on the science underpinning the successful use of pathogens in biological control. An important goal of the International Symposium on Biological Control of Arthropods is to promote early career researchers, and the first session Proceedings of ISBCA 6 – D.C. Weber, T.D. Gariepy, and W.R. Morrison III, eds. (2022) iii is organized to showcase the work of select individuals. The International Organization for Biological Control (IOBC) has sponsored these presentations. Another important goal of these meetings has been to be truly international, and this is why every conference so far has been organized in a different continent. This year we are excited in having achieved this goal despite the many world crises, by having participants from over 30 countries and all continents except Antarctica. We are particularly happy for the many works and participants from South America, a region that in the past has been poorly represented in these symposia. As a result, this meeting represents an opportunity for creating and expanding networks between researchers worldwide. Thus we expect that, despite the virtual format, the 6th International Symposium on Biological Control of Arthropods would be an important milestone in keep moving forward the research and practice on biological control of arthropods, thereby helping to improve the sustainability of managed systems as well as aiding in the protection of biodiversity on the planet.
... Pomari et al. (2013) reported that a ratio of 0.165 female T. remus parasitoids per FAW egg can be recommended to be released in maize since this release rate resulted in ≥80% parasitism. In Latin America, inundative releases of T. remus resulted in 90% parasitism, providing control of FAW (Cave 2000;Ferrer 2001). ...
... Pomari et al. (2013) reported that a ratio of 0.165 female T. remus parasitoids per FAW egg can be recommended to be released in maize since this release rate resulted in ≥80% parasitism. In Latin America, inundative releases of T. remus resulted in 90% parasitism, providing control of FAW (Cave 2000;Ferrer 2001). ...
... Pomari et al. (2013) reported that a ratio of 0.165 female T. remus parasitoids per FAW egg can be recommended to be released in maize since this release rate resulted in ≥80% parasitism. In Latin America, inundative releases of T. remus resulted in 90% parasitism, providing control of FAW (Cave 2000;Ferrer 2001). ...
Chapter
Full-text available
This chapter describes several methods for the detection of Fall armyworm (FAW) and the use of the Fall armyworm (FAW) incidence data in making treatment decisions (which may sometimes include the decision not to treat). Fall armyworm (FAW) incidence (pest pressure) is one component of the decision-making process. The risk of crop loss is the result of the interaction between pest pressure, plant growth stage, and environmental conditions.
... Pomari et al. (2013) reported that a ratio of 0.165 female T. remus parasitoids per FAW egg can be recommended to be released in maize since this release rate resulted in ≥80% parasitism. In Latin America, inundative releases of T. remus resulted in 90% parasitism, providing control of FAW (Cave 2000;Ferrer 2001). ...
Chapter
Full-text available
The fall armyworm (FAW) has been effectively managed in the Americas for decades using a Good Agricultural Practices–Integrated Pest Management (GAP-IPM) approach. GAP-IPM uses a combination of the control methods described in this manual, including host plant resistance, cultural control, biological control, and pesticides. This chapter will provide and summarize information about the efficacy of pesticides (both synthetic and biopesticides) from rigorously conducted experiments, review application parameters that maximize efficacy, and discuss insect resistance management (IRM)*. The chapter also quantifies the risks to human health and the environment that must be considered in the face of limited access by farmers to education and personal protective equipment (PPE)
... Pomari et al. (2013) reported that a ratio of 0.165 female T. remus parasitoids per FAW egg can be recommended to be released in maize since this release rate resulted in ≥80% parasitism. In Latin America, inundative releases of T. remus resulted in 90% parasitism, providing control of FAW (Cave 2000;Ferrer 2001). ...
Chapter
Full-text available
In this chapter, biological control efforts for management of Fall armyworm (FAW) are discussed using two case studies—India and Bangladesh. The principles and protocols could be applicable across the FAW-affected countries in Asia.
... Pomari et al. (2013) reported that a ratio of 0.165 female T. remus parasitoids per FAW egg can be recommended to be released in maize since this release rate resulted in ≥80% parasitism. In Latin America, inundative releases of T. remus resulted in 90% parasitism, providing control of FAW (Cave 2000;Ferrer 2001). ...
Chapter
Full-text available
With a focus on providing practical and actionable advice for extension services, and following a review of invasive species biology as it pertains to Fall armyworm (FAW), this chapter focuses on the applicability of agroecological methods to manage Fall armyworm in Asia’s diverse farming systems.
Article
Full-text available
En muestreos realizados para determinar la distribución y abundancia de los taladradores de la caña de azúcar y sus biorreguladores en las zonas cañeras de Venezuela, se detectó entre 1985 y 19871a presencia del parásito Cotesia flavipes en dos localidades de Ureña (Estado Táchira) y una en Cariaco (Estado Sucre), con valores de parasitismo de 50,00; 43,33 y 21,00% respectivamente. El material colectado se reprodujo en el laboratorio y se liberó sistemáticamente en varias haciendas de la región Centro Occidental de Venezuela, lográndose una primera recuperación de campo el 5 de marzo de 1987 en la finca Malagana, Sarare, Estado Lara. Posteriormente se localizó el parásito en las regiones cañeras de los Estados Lara, Portuguesa, Yaracuy y Aragua, observándose una considerable reducción en los daños causados por el taladrador, en las áreas tratadas con C. flavipes.
Article
Full-text available
RESUMEN El parásito de huevos Telenomas remus Nixon (Hym.: Scelionidae) fue liberado en un campo de maíz para controlar el gusano cogollero Spodoptera frugiperda (Smith), en el Asentamiento Campesino Tapa la lucha situado cerca de la localidad de Yaritagua, estado Yaracuy, Venezuela, durante el mes de julio de 1987. Se logró un parasitismo hasta de 100% en el área cercana donde se hicieron las liberaciones y también se observó un parasitismo en un radio de acción hasta de 2 400 m, después de seis semanas, con rangos entre 60 y 80% la evidencia del alto porcentaje de parasitismo indica que el parásito se estableció en la zona bajo estudio. P.C.: Control biológico, gusano cogollero del maíz. INTRODUCCION El gusano cogollero, S. frugiperda, se presenta todo el año en las áreas maiceras de Venezuela causando pérdidas en su producción, además del subsecuente aumento en los costos por la necesidad de implantar medidas de control químico. Algunos autores opinan que los daños de este insecto han sido magnificados (1, 2,); sin embargo, por la experiencia regional esta plaga es un factor importante de pérdida y debe ser controlado con prontitud para evitar sus efectos destructivos.
Article
Full-text available
RESUMEN En el presente trabajo se analiza la información de las evaluaciones hechas a los taladradores de la caña de azúcar Díatraea spp., y sus parásitos en el área de influencia de la Azucarera Río Turbio. Desde la introducción en 1987 de Cotesía flavípes (anteriormente Apanteles flavípes CAM.) en la zona, se ha observado un predominio de su parasitismo en casi todas las unidades de producción de la Azucarera, el cual llegó a situarse en 24,71% en septiembre de 1989. Por su parte, la mosca amazónica Metagonístylum mínense Townsend (Díptera: Tachinidae) declinó su eficiencia hasta 4, 71% para 1989. Sin embargo, el parasitismo general fue más alto que en los años anteriores, alcanzando 32,35%, lo cual denota un efecto complementario de control. La información fue analizada por el sistema de procesamiento de datos denominados FOXBASE (R) , el cual es sumamente práctico y de gran rapidez. EVALUATIONS OF Diatraea spp. (Lepidoptera: Pyralidae) AND THE EFFECT OF Cotesia flavipesCAMERON (Hymenoptera: Braconidae) AS NEW PARASITE IN THE AZUCARERA RÍO TURBIO AREA ABSTRACT In this paper is analyzed the evaluations made to the sugarcane borers, Diatraea spp., and their parasites in the Azucarera Río Turbio area. Since the introduction of Cotesia flavipes (former Apanteles flavipes CAM.) in 1987, it is noted a predominance of its parasitism in almost all the Production Units of the area, reaching 24.71% in september .1989. On the other hand, the amazonian fly Metagonistylum minense Townsend (Diptera: Tachinidae) decreased its effect to 4.71% in 1989. However, genefal parasitims was higher than that observed in previous years (32.35%) , thus demonstrating a complementary effect of both parasites. Data was analyzed bya program for processing information named FOXBASE (R) , which is very fast and practical.
Research
Full-text available
Resumen Se señala la presencia en Venezuela de la terrible plaga de las cítricas, conocida como "mosca prieta de los cítricos" (Homoptera: Aleyrodidae, Aleurocanthus woglumi Ashby), sus daños, las plantas hospederas y los procedimientos de combate, recomendándose por el momento, la aplicación de soluciones con aceites blancos y otros insecticidas. Se señala la distribución actual de la mosca prieta de los cítricos en Venezuela, así como la presencia del predator, la "vaquita negra" Delphastus (pusillus) Lec.? y los hongos entomógenos enemigos naturales del Aleurocanthus woglumi Ashby. Se indica una lista de parásitos exóticos, los cuales pudieran importar para combatir eficientemente al A. woglumi Ashby. Se sugiere se decrete de inmediato, la organización de una comisión dependiente del Ministerio de Agricultura y Cría, de las universidades nacionales y otros institutos relacionados a este vital problema que afecta la citricultura nacional. Esta comisión debería recomendar rápidamente la importación de parásitos de la mosca prieta de los cítricos del país que se estime más conveniente, para establecer la colonización de los mismos y erradicar esta funesta plaga. Con esta medida se evitará que el Aleurocanthus woglumi Ashby sea una amenaza en el mejor desarrollo de la citricultura venezolana.
Article
El trabajo comprende algunos aspectos relacionados con la biología y comportamiento de Diatraea Saccharalis F. (Lepidoptera: Pyralidae) criada en dieta King en condiciones controladas de humedad relativa, temperatura y fotoperíodo. Se observó que al aumentar la temperatura de 26,06 °C a 30,11 °C, disminuyó la duración del desarrollo, mientras que a 35,50 °C se produjo un retardo en el mismo. A 30,11 °C la duración del ciclo completo para esta especie fue de 38,25 días para el macho y 40,80 días para la hembra; los máximos valores de fecundidad y fertilidad se obtuvieron a 26,06 °C. Se detectó un número variable de instares larvales; no obstante predominaron larvas con seis instares. También se pudo utilizar el diámetro de la cápsula cefálica para la determinación del instar respectivo mediante la utilización de la Ley de Dyar. El tercero y cuarto capitulo comprenden un estudio morfológico de la estructura externa e interna del exoesqueleto de D. saccharalis F. así como una descripción comparativa de las fases de desarrollo de las cinco especies que atacan caña de azúcar que incluye además a D. busckella Dyar y Heinr., D. rosa Heinr., D. impersonatella Moeschl. y D.Centrella WLK. Los resultados permiten diferenciar las especies en sus diferentes fases de desarrollo. Sin embargo, sólo el adulto presenta caracteres infalibles para la identificación. La distribución actual de las especies más importantes en Venezuela es la siguiente: D. busckella Dyar y Heinr. en el Estado Lara (El Tocuyo y Carora), en el Estado Monagas (Punta de Mata), en el Estado Sucre (Cumanacoa), en el Estado Táchira (Ureña), en el Estado Trujillo (Motatán) y en el Estado Yaracuy (Agua Negra y Guama); D. Rosa Heinr. en el Estado Aragua (El Consejo), en el Estado Lara (Chorobobo, El Carabalí, El Mayal, EL Taque, Tarabana; Sarare y Duaca), en el Estado Monagas (Punta de Mata), en el Estado Portuguesa (Agua Negra y Sabana Dulce), en el Estado Sucre (Cumanacoa), en el Estado Táchira (Ureña) y en el Estado Yaracuy (Guama, Chivacoa, El Rodeo, Las Velas, Río Abajo, Sabana de Parra, Urachiche y Yaritagua).
Article
CONTROL BIOLOGICO DEL COGOLLERO DEL MAIZ Spodoptera frugiperda Smith CONTROL BIOLOGICO DEL COGOLLERO DEL MAIZ Spodoptera frugiperda Smith. CON BACULOVIRUS Yanellys Zinahid Romero Ramírez RESUMEN El gusano cogollero del maíz, Spodoptera frugiperda es la principal plaga del cultivo de maíz en Venezuela. Una de las alternativas de control es la aplicación de Baculovirus. En el presente estudio se muestra la e valuación a nivel de laboratorio y campo de dos Baculovirus: Virus de la Poliedrosis Nuclear de Spodoptera littoralis (VPNS1) proveniente de una Formulación comercial, y el Virus de la Poliedrosis Nuclear de Spodoptera frugiperda de origen nativo. Empleando la técnica de reproducción In Vivo, se hicieron pruebas de patogenicidad en larvas de II, III y IV instar, se evaluaron diferentes concentraciones de cada Baculovirus (desde 10<sup>2</sup> hasta 10<sup>6</sup> CIP/ml) para determinar por medio del análisis de regresión Probit, la Concentración Letal Media (CL<sub>50</sub>) y el Tiempo Letal Medio (TL<sub>50</sub>) en larvas del III instar. Utilizando la técnica histológica se determinaron los tejidos de larvas infectadas y a través de micrografía al microscopio electrónico de transmisión se determinó la morfología de los cuerpos de inclusión y de los viriones. Para evaluar la efectividad biocontroladora de cada Baculovirus en el cultivo de maíz, se estructuró un diseño en bloques al azar (3t x 5r) con parcelas de 72 m<sup>2</sup>, De cada Baculovirus se preparó un (1) litro de solución que contenían (10<sup>11 </sup>poliedros) y se aplicó en las parcelas empleándose dosis equivalentes a 1 lt/ha. Los Baculovirus mostraron ser patogénicos a las larvas de S. frugiperda siendo el II y III instar los más susceptibles. Los cuerpos de .inclusión de ambos Baculovirus fueron morfológicamente similares, presentando forma irregular con tendencia esférica, con diámetro entre 1,6 y 2,4 um. Internamente y distribuidos en forma aleatoria se observaron los viriones en forma de vara, con un tamaño promedio de 315 nm x 60 nm. La CL<sub>50</sub> y el TL<sub>50</sub> fue de 2.63 x 10<sup>3</sup> CIP/ml y 6,29 días para VPNSf y de 2,65 x 10<sup>4</sup> CIP/ml y 7,23 días para VPNS1, respectivamente. A nivel de campo, la aplicación de Baculovirus logró bajar , significativamente la infestación por cogollero en relación a las parcelas testigo, encontrándose una mayor actividad viral en las parcelas tratadas con VPNSf que las tratadas con VPNS1.
Article
Adult emergence pattern, longevity, egg parasitism, and sex ratio of Telenomus remus (Hymenoptera: Scelionidae) in relation to the fall army worm Laboratory studies were conducted to gain new understanding on the biology of the parasitoid Telenomus remus Nixon. Spodoptera frugiperda (J. E. Smith) eggs served as the host. Both the parasitoid and the host were mass reared under laboratory conditions. When newly mated female parasitoids were confined to several host egg densities used to determine the adult emergence patterns, those 1-day old produced the most offspring (22.5-71.8%). Counts started on day 1 had accumulated by fourth day an adult emergence of 70 to 100%. Adult longevity of T. remus at densities of 50 host eggs reached 21 days, while at densities of 200 or 250 host eggs, adults only lived 10-11 days. Mated adult female parasitoids, 1-4 days old, confined to egg samples (0-24 hour old) resulted in an average egg-parasitism of 63.6 to 75.3%. When confined to different egg samples (24-48 or 48-60 hour old) the average parasitism was only 2.6 to 6.9. Sex ratios of parasitoid progeny increased from 1:5.8 to 1:2.8 (male:female) as the age of host eggs increased from 0-24 to 48-60 hours of age. Additional key words: Parasitoid, egg parasitism, Spodoptera frugiperda
Metarhizium anisopliae (Metsch) Sorok: pasado, presente y futuro en Venezuela
  • C Zambrano
  • C Aguero
  • B Linares
  • N Molina
Zambrano, C.; Aguero, C.; Linares, B.; Molina, N. (1993) Metarhizium anisopliae (Metsch) Sorok: pasado, presente y futuro en Venezuela. Programa de Manejo Integrado de Plagas de la Caña de Azúcar (PICANTA), VII Reunión Técnica [Report, 7th Technical Meeting, Programme for Integrated Control of Sugarcane Pests], Acarigua, Venezuela, 22-23 April 1993, 29 pp.