ArticlePDF Available

Explicit Finite-Difference Scheme for the Numerical Solution of the Model Equation of Nonlinear Hereditary Oscillator with Variable-Order Fractional Derivatives

Authors:

Abstract and Figures

The paper deals with the model of variable-order nonlinear hereditary oscillator based on a numerical finite-difference scheme. Numerical experiments have been carried out to evaluate the stability and convergence of the difference scheme. It is argued that the approximation, stability and convergence are of the first order, while the scheme is stable and converges to the exact solution.
Content may be subject to copyright.
Archives of Control Sciences
Volume 26(LXII), 2016
No. 3, pages 429–435
Explicit finite-difference scheme for the numerical
solution of the model equation of nonlinear hereditary
oscillator with variable-order fractional derivatives
ROMAN I. PAROVIK
The paper deals with the model of variable-order nonlinear hereditary oscillator based on
a numerical finite-difference scheme. Numerical experiments have been carried out to evaluate
the stability and convergence of the difference scheme. It is argued that the approximation,
stability and convergence are of the first order, while the scheme is stable and converges to the
exact solution.
Key words: nonlinear hereditary oscillator, finite-difference scheme, Cauchy problem,
fractional derivatives, numerical experiment.
1. Introduction
The development of hereditary processes, i.e. processes with memory, has been re-
flected in a variety of applications in the last decade. V. V. Uchaikin [9] in his "Method
of Fractional Derivatives" devotes a whole chapter to such processes, including a de-
scription of hereditary oscillator proposed by Vito Volterra [10]. From the mathemat-
ical standpoint, hereditarity, or a memory effect of oscillator, can be demonstrated by
inserting integral operator with kernel, which is a memory function, into its model equa-
tions. If this kernel is represented by a power series form, the hereditary model equation
can be naturally transformed into differential equations with variable-order fractional
derivatives [4]. The theory of fractional calculus is quite well developed, and its main
provisions can be found in reference books [1, 8].
In this paper we consider the model of nonlinear hereditary oscillator with variable-
order derivatives. To do this, we construct an explicit finite-difference scheme for the
numerical solution of the corresponding Cauchy problem [2, 5], which will be explored
further.
The Author is with Physics and Mathematics Department, Vitus Bering Kamchatka State University,
Petropavlovsk-Kamchatsky, Russia. The Author is also with Laboratory of Physical Processes Modeling,
IKIR FEB RAS, Kamchatka Region, Paratunka, Russia. E-mail: romanparovik@gmail.com.
Received 02.05.2016.
10.1515/acsc-2016-0023
430 R. I. PAROVIK
2. Problem
Consider the following Cauchy problem.
β(t)
0tx(τ) + λ∂γ(t)
0tx(τ) + ωβ(t)sin(x(t)) = f(t),
x(0) = x0,˙x(0) = y(0),(1)
where
β(t)
0tx(τ) =
t
0
¨x(τ)dτ
Γ(2β(τ))(tτ)β(τ)1,γ(t)
0tx(τ) =
t
0
˙x(τ)dτ
Γ(1γ(τ))(tτ)γ(τ)
are the operators of variable-order fractional derivatives 1 <β(t)<2 and 0 <γ(t)<1,
Γ(x)is the Euler gamma function, λ,ω,x0and y0are the given parameters, f(t)is the
external stimulus, t[0,T]is the process time; the dots over the decision function x(t)
mean the classical integer-value derivatives.
Note that problem (1) when β=2 and γ=1 transforms into the problem for clas-
sical nonlinear oscillator with friction and external force. Note also that the fractional
parameters βand γrepresent any confined functions.
3. Solution method
The solution to the Cauchy problem (1) in the general case cannot be ob-tained in
an explicit form. Therefore, we will seek the solution to this problem using the theory
of finite-difference schemes [7]. Let us construct an explicit finite-difference scheme.
We divide the segment [0,T]into Nequal parts with a constant step τ. Then x(tj) = xj,
tj=jτis the grid solution approximating the solution x(t)of the differential Cauchy
problem (1). The operators of the fractional variable-order derivatives are approximated
as follows [3].
β(t)
0tx(τ) =
j1
k=0
τβk
Γ(3βk)[(k+1)2βjk2βj](xjk+12xjk+xjk1)+O(τ2),
γ(t)
0tx(τ) =
j1
k=0
τγk
Γ(2γk)[(k+1)1γjk1γj](xjk+1xjk)+O(τ).
(2)
Substituting relation (2) into equation (1), after some transformations, we come to
the following explicit finite-difference scheme.
EXPLICIT FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION
OF THE MODEL EQUATION OF NONLINEAR HEREDITARY OSCILLATOR
WITH VARIABLE-ORDER FRACTIONAL DERIVATIVES 431
x1=τy0+x0,j=0,
xj+1=AjxjBxj1B
j1
k=1
τβk
Γ(3βk)pj
k(xjk+12xjk+xjk1)
C
j1
k=1
τγk
Γ(2γk)qj
k(xjk+1xjk)µsin(xj) + ξfj,
A=2A0+B0
A0+B0,B=A0
A0+B0,C=λ
A0+B0,
µ=ωβj
A0+B0,ξ=1
A0+B0,A0=τβ0
Γ(3β0),B0=λτγ0
Γ(2γ0),
pj
k= (k+1)2βjk2βj,qj
k= (k+1)1γjk1γj,j=1,...,N1.
(3)
Note that scheme (3) has in its internal points the second order of approximation
from the formulas (2); however, due to the approximation in the boundary points, the
order is reduced to unity. This can be eliminated by approximating the values in the
boundary points in a special way, for example, inserting a dummy node [6]. For the
purposes of this paper we do not need to improve scheme (3). We just investigate its
stability and convergence by means of a numerical experiment.
Consider the following example. It can be shown that the Cauchy problem with
homogeneous initial conditions
β(t)
0tx(τ) + λ∂γ(t)
0tx(τ) = f(t)
f(t) = ωβ(t)sin(t2)+2
t
0
dτ
Γ(3β(τ))(tτ)β(τ)1+2
t
0
τdτ
Γ(2γ(τ))(tτ)γ(τ),
x(0) = ˙x(0) = 0,
(4)
has an exact solution x(t) = t2. A.A. Samarskii [7] provides definitions of stability on
the right side of the equation and with initial data. The essence of these definitions can
be summarized as follows. The scheme is stable if a small perturbation introduced to the
right side or the initial data leads to a small change in the solution within the accuracy
of a constant.
432 R. I. PAROVIK
Let us carry out a numerical experiment. To do this we choose the following val-
ues of the control parameters of the Cauchy problem (4): N=1000, λ=1, ω=2,
β(t) = 20.006cos(3πt),γ(t) = 10.003cos(3πt),ε=104. We find the perturbed
and the unperturbed solutions to problem (4) according to scheme (3) and calculate their
maximum absolute value error. The results of the experiment are shown in Tabs 1 and 2.
Table 24: Stability with respect to the right side.
NMaximum error
10 1.05*105
50 1.2*105
250 1.3*105
500 1.3*105
1000 1.2*105
2000 1.2*105
2500 1.3*105
From Tab. 1 we can conclude that for the chosen values of the control parameters
and perturbation ε, explicit finite-difference scheme (3) is stable with respect to the right
side, since the maximum error does not exceed perturbation ε.
Table 25: Stability with respect to the initial data.
NMaximum error
10 1.633*104
50 1.634*104
250 1.633*104
500 1.633*104
1000 1.632*104
2000 1.636*104
2500 1.635*104
From Tab. 2 it can be concluded that the maximum error values do not practically
change with increasing the number of computational grid points Nand are commensu-
rate with perturbation ε. Therefore, in this case scheme (3) is stable with respect to the
initial data. Let us demonstrate the convergence of scheme (3) for the Cauchy problem
through a numerical experiment.
EXPLICIT FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION
OF THE MODEL EQUATION OF NONLINEAR HEREDITARY OSCILLATOR
WITH VARIABLE-ORDER FRACTIONAL DERIVATIVES 433
We choose the following values of the control parameters: N=1000, λ=100, ω=2,
t(0,1)and β(t) = 1.80.001cos(3πt),γ(t) = 0.80.002cos(3πt).We need to find
the maximum absolute value error between the numerical and exact solutions depending
on step as well as calculate the experimental convergence order of the numerical solution
to the exact one. The results of the experiment are shown in Tab. 3.
Table 26: The convergence of scheme (3) to the exact solution.
NτMaximum error α
10 0.1 0.1172 0.93
20 0.05 0.0573 0.954
40 0.025 0.0219 1.035
80 0.0125 0.00075 1.11
From Tab. 3 it can be concluded that when reducing step τof the computational grid,
the maximum error decreases, while the values of the experimental convergence order
α=ln(maximum error)/ln(step)are close to unity. Therefore, we can infer that scheme
(3) converges to the exact solution with the first order (Fig.1).
4. Conclusion
We have studied the model of variable-order nonlinear hereditary oscillator based
on a numerical finite-difference scheme. The stability and convergence of the difference
scheme have been evaluated by numerical experiments. The results have shown that the
approximation, stability and convergence are of the first order, while the scheme is stable
and converges to the exact solution. Certainly, if necessary, scheme (3) can be improved
through proper approximation of the initial conditions. Also, using the double counting
method we can increase its accuracy. The next step in studying the hereditary nonlinear
model of an oscillating system will be the construction and analysis of phase trajectories,
as it was carried out in [3] for linear hereditary oscillators.
References
[1] A. M. NAK HUSHEV: Fractional calculus and its applications. Fizmatlit, Moscow.
2003.
[2] R.I. PAROVIK: Finite-difference schemes for fractal oscillator with variable frac-
tional orders. Bulletin of Kamchatka Regional Association "Educational Scientific
434 R. I. PAROVIK
Figure 1: The convergence of scheme (3) to the exact solution.
Center" (KRAUNC), Physical and Mathematical Sciences,2(11), (2015), 88-95.
DOI: 10.18454/2079-6641-2015-11-2-88-95.
[3] R.I. PAROVIK: Mathematical modeling of hereditary linear oscillators. Vitus
Bering Kamchatka State University, Petropavlovsk-Kamchatsky. 2015.
[4] R.I. PAROVIK: Mathematical modeling of the hereditary oscillator. Computer Re-
search and Modeling,7(5), (2015), 1001-1021.
[5] R.I. PAROVIK: On the numerical solution of fractal oscillator equation with time-
dependant fractional variable derivative. Bulletin of Kamchatka Regional Associa-
tion "Educational Scientific Center" (KRAUNC), Physical and Mathematical Sci-
ences,1(8), (2014), 60-65. DOI: 10.18454/2079-6641-2014-8-1-60-65.
[6] I.B. PETROV and A.I. LOBA NOV: Lectures on computational mathematics. BI-
NOM, Moscow. 2006.
[7] A.A. SAMARSKII: The theory of difference schemes. Nauka, Mos-cow. 1977.
EXPLICIT FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION
OF THE MODEL EQUATION OF NONLINEAR HEREDITARY OSCILLATOR
WITH VARIABLE-ORDER FRACTIONAL DERIVATIVES 435
[8] S.G. SAMKO, A.A. KILBA S and O.I. MARICHEV: Integrals and derivatives of
fractional order and some of their applications. Nauka i Tekhnika, Minsk. 1987.
[9] V.V. UCHAIKIN: Method of fractional derivatives. Artishok, Ulya-novsk. 2008.
[10] V. VOLTERRA: Theory of functionals and of integral and integro-differential equa-
tions. Nauka, Moscow. 1982.
... Due to the nonlinearity of the Cauchy problem (11), we will seek its solution using the numerical method of finite difference schemes [40][41][42][43]. Consider a uniform mesh. ...
... Due to the nonlinearity of the Cauchy problem 31, we will seek its solution using the numerical method of finite difference schemes [40][41][42][43]. Consider a uniform mesh. ...
... Proof. Let us introduce the notation: e k+1 = U k+1 − W k+1 , then the Equation (39) can be written in the form: e k+1 = Me k − F e,k , when F e,k -determined according to (41). Then the estimate: ...
Article
Full-text available
The article discusses different schemes for the numerical solution of the fractional Riccati equation with variable coefficients and variable memory, where the fractional derivative is understood in the sense of Gerasimov-Caputo. For a nonlinear fractional equation, in the general case, theorems of approximation, stability, and convergence of a nonlocal implicit finite difference scheme (IFDS) are proved. For IFDS, it is shown that the scheme converges with the order corresponding to the estimate for approximating the Gerasimov-Caputo fractional operator. The IFDS scheme is solved by the modified Newton’s method (MNM), for which it is shown that the method is locally stable and converges with the first order of accuracy. In the case of the fractional Riccati equation, approximation, stability, and convergence theorems are proved for a nonlocal explicit finite difference scheme (EFDS). It is shown that EFDS conditionally converges with the first order of accuracy. On specific test examples, the computational accuracy of numerical methods was estimated according to Runge’s rule and compared with the exact solution. It is shown that the order of computational accuracy of numerical methods tends to the theoretical order of accuracy with increasing nodes of the computational grid.
... Based on (9), the ENFDS approximation is of the first order. According to the relation (17) for Example 1, the order of the ABM method. ...
... In this case, derivatives of fractional variable orders appear in the model equation of the Cauchy problem (3). Some aspects of the numerical analysis of such a generalized Cauchy problem (3) were considered by the author in the work [17]. ...
Conference Paper
Full-text available
The paper presents a numerical analysis of the class of mathematical models of linear fractional oscillators, which is the Cauchy problem for a differential equation with derivatives of fractional orders in the sense of Gerasimov-Caputo. A method based on an explicit nonlocal finite-difference scheme (ENFDS) and the Adams-Bashfort-Moulton (ABM) method are considered as tools for numerical analysis. An analysis of the errors of the methods is carried out, it is shown that the ABM method is more accurate and converges faster to an exact solution than the ENFDS method.
... В качестве численного метода возьмем нелокальную явную конечноразностную схему первого порядка точности. Схема является условно устойчивой, а более детальное исследование этого вопроса можно посмотреть в статье [13]. На равномерной сетке с числом узлов N и шагом дискретизации τ = T/N введем следующую схему (x k , α k , β k , z k -сеточные функции): ...
Article
В статье проводится исследование процесса временного распространения нервного импульса в клеточной мембране. Для этой цели была предложена новая математическая модель, основанная на дробном осцилляторе ФитцХью-Нагумо с функцией интенсивности раздражителя. Особенность дробного осциллятора является, то, что модельное уравнение содержит производные дробных переменных порядков типа Герасимова-Капуто. Предложенная математическая модель представляет собой задачу Коши. В силу нелинейности модельного уравнения решение задачи Коши искалось с помощью численного метода нелокальной явной конечно-разностной схемы первого порядка точности. Численный метод был реализован на языке Maple 2022. С помощью численного алгоритма была проведена визуализация результатов моделирования, построены осциллограммы и фазовые траектории при различных значениях параметров модели. Показано, что решение новой математической модели может обладать релаксационными колебаниям. Кроме того, приведен пример, в котором предельный цикл является устойчивым. Также показано, что предложенный дробный осциллятор ФитцХью-Нагумо с функцией интенсивности раздражителя обладает богатой динамикой: различные регулярные и хаотические режимы. The article studies the process of temporary propagation of a nerve impulse in a cell membrane. For this purpose, a new mathematical model based on the fractional FitzHugh-Nagumo oscillator with a stimulus intensity function was proposed. A feature of the fractional oscillator is that the model equation contains derivatives of fractional variables of the Gerasimov-Caputo type. The proposed mathematical model is a Cauchy problem. Due to the nonlinearity of the model equation, the solution to the Cauchy problem was sought using a numerical method of a nonlocal explicit finite-difference scheme of the first order of accuracy. The numerical method was implemented in the Maple 2022 language. Using a numerical algorithm, the simulation results were visualized, oscillograms and phase trajectories were constructed for various values of the model parameters. It is shown that the solution to the new mathematical model can have relaxation oscillations. In addition, an example is given in which the limit cycle is stable. It is also shown that the proposed FitzHugh-Nagumo fractional oscillator with stimulus intensity function has rich dynamics: various regular and chaotic modes.
... In recent years, variable-order fractional differential equations dependent on time t or spatial variables x have been successfully applied to describe variable memory [19,35], hereditary properties [36,37], and nonlocality of a system [38,39]. Using variable-order fractional derivatives, various phenomena of science and technology have been modeled, such as diffusion-convection processes [22,40], geographical data processing [41], anomalous diffusion [25,[42][43][44], viscoelastic mechanics processes [45,46], infiltrations [47,48], economic processes [49], medical processes [50,51], and many other processes [4,[52][53][54][55]. ...
Article
Full-text available
This paper presents a study of the application of the finite element method for solving a fractional differential filtration problem in heterogeneous fractured porous media with variable orders of fractional derivatives. A numerical method for the initial-boundary value problem was constructed, and a theoretical study of the stability and convergence of the method was carried out using the method of a priori estimates. The results were confirmed through a comparative analysis of the empirical and theoretical orders of convergence based on computational experiments. Furthermore, we analyzed the effect of variable-order functions of fractional derivatives on the process of fluid flow in a heterogeneous medium, presenting new practical results in the field of modeling the fluid flow in complex media. This work is an important contribution to the numerical modeling of filtration in porous media with variable orders of fractional derivatives and may be useful for specialists in the field of hydrogeology, the oil and gas industry, and other related fields.
... Аппроксимацию дробной производной (2) проведем согласно работам [13,14] в виде ...
Article
Full-text available
The computer program «NSFDRE» (short for Numeric Solution of a Fractional-Differential Riccati Equation) in C ++ has been developed. It allows obtaining a numerical solution of the Cauchy problem for the Riccati differential equation with a derivative of a variable fractional order. The numerical algorithm implemented in the program is based on approximating the derivative of a variable order by finite differences and solving the corresponding algebraic nonlinear system of equations. In the program, the user can select some functional dependencies for the variable fractional order and, depending on this, construct the distribution curves of the numerical solution, the phase trajectory, and also observe the error of the method at each step of the calculation.
... , N − 1, где τ = T /N шаг дискретизации, и обозначим через u(t n ) = u n сеточную функция решения. Аппроксимацию дробной производной (4) проведем согласно [8,14] в следующем виде: ...
Article
Full-text available
Рассматривается дифференциальное уравнение Риккати с дробной производной переменного порядка. Введение производной дробного переменного порядка в исходное уравнение определяет свойство среды — эффект памяти, или эредитарность, который заключается в зависимости текущего состояния динамической системы от предыдущих ее состояний. Разработана компьютерная программа NSFDRE (сокращение от Numerical Solution of a Fractional-Differential Riccati Equation) на языке С++, которая позволяет получить численное решение задачи Коши для дифференциального уравнения Риккати с производной переменного дробного порядка. Численный алгоритм, реализованный в программе, основан на аппроксимации производной переменного порядка конечными разностями и решении соответствующей алгебраической нелинейной системы уравнений. Были получены новые режимы распределений, которые зависят от конкретного вида переменного порядка дробной производной. Показано, что некоторые кривые распределений характерны для других эредитарных динамических систем.
... Due to the nonlinearity of the Cauchy problem (4), we will seek its solution using the numerical method of finite-difference schemes [31][32][33]. Consider a uniform mesh. ...
Article
Full-text available
The article proposes a nonlocal explicit finite-difference scheme for the numerical solution of a nonlinear, ordinary differential equation with a derivative of a fractional variable order of the Gerasimov–Caputo type. The questions of approximation, convergence, and stability of this scheme are studied. It is shown that the nonlocal finite-difference scheme is conditionally stable and converges to the first order. Using the fractional Riccati equation as an example, the computational accuracy of the numerical method is analyzed. It is shown that with an increase in the nodes of the computational grid, the order of computational accuracy tends to unity, i.e., to the theoretical value of the order of accuracy.
... The equation (16) describes nonlinear free oscillations with memory. (16) and (17) in general, the nite-dierence scheme (11) can be written as: Using the scheme (18) and the computer program (Parovik, 2016), we construct the calculated curves oscillograms (Fig. 1). From g. 1. it can be seen that the oscillations have a fading character. ...
Presentation
Full-text available
Recently, hereditary oscillatory systems (oscillators) are of more interest. Hereditary oscillators have a memory effect, a property of the environment in which the current state of a dynamic system depends on a nite number of previous states. Memory effects are characteristic of viscoelastic media or media with fractal properties.
Article
Full-text available
The Cauchy problem for the Riccati equation with non-constant coefficients and taking into account variable power memory is proposed. Power memory is defined by the operator of a fractional derivative of a variable order generalizing the Gerasimov-Caputo derivative. In work with the help of numerical methods: the Newton method and the explicit finite-difference scheme, the solution of the proposed Cauchy problem is found, and also their calculation accuracy is determined using the Runge rule. It is shown that both methods can be used to solve the proposed Cauchy problem, but Newton’s method converges faster. Further in this work, the calculated curves and phase trajectories were constructed for a different choice of the fractional order function of the differentiation operator. It is assumed that the proposed model can be used in describing economic cyclical processes.
Book
Full-text available
Complex methods and results of studies of physical processes and their interactions in the system of near space and geospheres under conditions of increased variability of solar, cyclonic and seismic activity are presented. The results of long-term observations are summed up. Methods of system analysis have been developed. Models of nonlinear and relaxation oscillations are created taking into account hereditary and fractal effects. Particular attention is paid to anomalous and catastrophic phenomena. Various aspects of the problem of climate change are discussed. Separate sections are devoted to forecasts of magnetic storms and electromagnetic, acoustic and ionospheric precursors of earthquakes. Various types of perturbations in such a system are considered.
Book
Full-text available
Монография посвящена вопросам математического моделирования эредитарных линейных колебательных систем, которые учитывают эффекты «памяти». Разработаны математические модели эредитарных линейных осцилляторов на основе формализма дробного интегро-дифференцирования, построены численные алгоритмы их решения с помощью конечно-разностных схем. На основе этих решений исследованы фазовые траектории линейных эредитарных осцилляторов. Данная монография может быть полезна студентам, магистрам, аспирантам и научным сотрудникам, которые изучают математические методы моделирования эредитарных процессов в средах с фрактальной структурой.
Article
Full-text available
We propose a model of a fractal oscillator with variable fractional order. Received and investigated by numerical solution of the model. The phase trajectory
Article
Full-text available
The paper deals with the explicit finite difference schemes for the fractional oscillator. The questions of approximation, stability and convergence of these schemes.
LOBANOV: Lectures on computational mathematics
  • I B Petrov
I.B. PETROV and A.I. LOBANOV: Lectures on computational mathematics. BI- NOM, Moscow. 2006.
  • Center
Center" (KRAUNC), Physical and Mathematical Sciences, 2(11), (2015), 88-95. DOI: 10.18454/2079-6641-2015-11-2-88-95.
On the numerical solution of fractal oscillator equation with timedependant fractional variable derivative
  • R I Parovik
R.I. PAROVIK: On the numerical solution of fractal oscillator equation with timedependant fractional variable derivative. Bulletin of Kamchatka Regional Association "Educational Scientific Center" (KRAUNC), Physical and Mathematical Sciences, 1(8), (2014), 60-65. DOI: 10.18454/2079-6641-2014-8-1-60-65.