ArticlePDF Available

Evidencias de expulsión de fluidos en el complejo Hespérides en el talud medio del golfo de Cádiz

Authors:

Abstract and Figures

Seabed morphology, sub-bottom characteristics and benthic communities of the Hespérides volcanic complex, located in the continental slope of the Gulf of Cadiz, have been analyzed. The aim of this study is to characterize the morphological features, the geological processes and near-bottom water masses for understanding the relationships between the occurrence of this fluid venting related edifice and their associated biota. Additionally, dominant benthic species associated with seepage, hard substrates or soft bottoms have also been observed in different areas of the complex. Mud breccia sediments and chemosymbiotic metazoans are mainly located at the summit indicating a higher seepage activity. Authigenic carbonates on the flanks and the base of the volcanic structure are related to a moderate seepage activity, being exhumed by bottom currents and colonized by hard substrate associated species. Adjacent depressions are linked to collapse processes as a result of the interplay of active fluid escape and bottom current effects. In general, major factors controlling these features and their associated biota are mud flow and fluid-escape-related processes, although other factors such as gravitational and deep water masses related processes are also involved.
Content may be subject to copyright.
IX Congreso Geológico de España Geo-Temas, 16 (1) ISSN 1576-5172
327
Evidencias de expulsión de fluidos en el complejo Hespérides en el talud medio
del Golfo de Cádiz
Evidence of fluid venting on the Hespérides complex at the middle slope of the Gulf of Cádiz
D. Palomino1, J.T. Vázquez1, N. López-González1, L.M. Fernández-Salas2, J.L. Rueda1, E. González-García3 y V.
Díaz-del-Río1
1 Instituto Español de Oceanografía. CO de Málaga, Puerto Pesquero s/n, 29640, Fuengirola (Málaga) desiree.palomino@gmail.com
2 Instituto Español de Oceanografía. CO de Cádiz, Muelle Pesquero s/n, 11006, Cádiz (Cádiz)
3 Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga (Málaga)
Resumen: En este trabajo se ha analizado la morfología del fondo, las características sub-superficiales y las
comunidades bentónicas en el complejo Hespérides, situado en el talud continental del Golfo de Cádiz, con el objetivo
de entender su relación con los procesos geológicos y oceanográficos, así como la influencia sobre los hábitats que se
generan. Se han detectado especies bentónicas asociadas a escapes de fluidos, a sustratos duros y blandos en diferentes
zonas del complejo. Los sedimentos de brecha fangosa y los organismos quimiosimbióticos se localizan en la cima de
los conos volcánicos asociados a una mayor actividad de emisión. Los carbonatos autigénicos en los flancos y la base
del edificio están relacionados con una actividad de expulsión de fluidos moderada, siendo desenterrados por las
corrientes de fondo y colonizados por especies de sustratos duros. Las depresiones en la base están formadas por
procesos de colapso, debido a escapes de fluidos activos bajo la influencia de las corrientes profundas. En general, los
principales factores que controlan la morfología y las comunidades bentónicas asociadas son los procesos relacionados
con escapes de fluidos, aunque no hay que despreciar el efecto de los procesos gravitacionales y la acción de las masas
de agua profunda.
Palabras clave: expulsión de fluidos, fauna quimiosimbionte, volcanes de fango, Golfo de Cádiz.
Abstract: Seabed morphology, sub-bottom characteristics and benthic communities of the Hespérides volcanic complex,
located in the continental slope of the Gulf of Cadiz, have been analyzed. The aim of this study is to characterize the
morphological features, the geological processes and near-bottom water masses for understanding the relationships
between the occurrence of this fluid venting related edifice and their associated biota. Additionally, dominant benthic
species associated with seepage, hard substrates or soft bottoms have also been observed in different areas of the
complex. Mud breccia sediments and chemosymbiotic metazoans are mainly located at the summit indicating a higher
seepage activity. Authigenic carbonates on the flanks and the base of the volcanic structure are related to a moderate
seepage activity, being exhumed by bottom currents and colonized by hard substrate associated species. Adjacent
depressions are linked to collapse processes as a result of the interplay of active fluid escape and bottom current
effects. In general, major factors controlling these features and their associated biota are mud flow and fluid-escape-
related processes, although other factors such as gravitational and deep water masses related processes are also
involved.
Key words: seepage, chemosymbiotic fauna, mud volcanoes, Gulf of Cadiz.
INTRODUCCIÓN
El Golfo de Cádiz presenta un gran número de
volcanes de fango, que son estructuras relacionadas con
la emisión de fluidos producidas por la migración
vertical de sedimentos fangosos cargados en gases que
son expulsados por sucesivas emisiones (Milkov,
2000). En estos edificios se desarrollan diferentes
hábitats que están condicionados por el tipo de sustrato,
las masas de agua profundas y los procesos geológicos
que se desarrollan a nivel regional y local. Numerosos
estudios han aportado información sobre los volcanes
de fango, la migración y emisión de fluidos en ellos, y
la fauna bentónica asociada a dichas emisiones en
diversas zonas del Golfo de Cádiz, incluido el
complejo Hespérides (Somoza et al., 2003; León et al.,
2010), aunque actualmente se están realizando estudios
de carácter multidisciplinar que permiten relacionar
todo este tipo de observaciones (Palomino et al., 2015).
En este sentido, el objetivo de este trabajo es el
estudio de la morfología del fondo, las características
sub-superficiales y la biota asociada del complejo
Hespérides, situado en el talud medio del Golfo de
Cádiz, para entender la relación de las características
de este edificio con los procesos geológicos recientes y
con las masas de agua, así como su influencia en el
desarrollo de hábitats.
IX Congreso Geológico de España Geo-Temas, 16 (1) ISSN 1576-5172
328
CARACTERÍSTICAS GEOLÓGICAS Y
OCEANOGRÁFICAS
El Golfo de Cádiz se sitúa en un contexto actual
compresivo, donde se desarrollan importantes
fenómenos de diapirismo y vulcanismo de fango. Estos
fenómenos están relacionados con el emplazamiento de
la Unidad Alóctona del Golfo de Cádiz (UAGC)
durante el Oligoceno Tardío y el Tortoniense superior,
y con el desarrollo de complejos extensionales
gravitacionales y zonas transpresivas desde el
Messiniense hasta el Cuaternario, que favorecieron el
ascenso de los materiales más plásticos de la UAGC en
forma de estructuras diapíricas íntimamente
relacionadas con la formación de volcanes de fango
(Fig. 1A). El área de estudio denominada Campo
Profundo de Expulsión de Fluidos (CPEF, Díaz del Río
et al., 2014) se localiza entre 680 y 1200 m de
profundidad, en un sector del talud medio del margen
español del Golfo de Cádiz caracterizado por depósitos
fangosos que son atravesados por canales erosivos de
dirección E-O y NE-SO (Fig. 1B).
La circulación oceanográfica en el Golfo de Cádiz
está controlada por el intercambio de masas de agua a
través del Estrecho de Gibraltar, con un flujo de agua
Atlántica de entrada (AIW) hacia el mar de Alborán y
un flujo de agua Mediterránea de salida (MOW) hacia
el Océano Atlántico. La MOW recorre el margen
ibérico hacia el noroeste y se divide en dos núcleos
principales. El área de estudio se encuentra bajo la
influencia de una desviación de la rama inferior de la
MOW que gira en una dirección NE-SO a su salida por
el Estrecho de Gibraltar (Fig. 1A). La velocidad de la
corriente de fondo en el complejo Hespérides, situado
en el extremo occidental, oscila entre 0,5 y 0,56 m/s
(Díaz del Río et al., 2014).
FIGURA 1. Localización de la zona de estudio. A) Principales dominios fisiográficos, elementos tectónicos y principales masas de agua en el Golfo
de Cádiz (rasgos tectónicos modificados de Medialdea et al., 2004; Zitellini et al., 2009; y masas de agua modificadas de Hernández-Molina et al.,
2014). B) Área de estudio localizada en un sector del talud medio denominada Campo Profundo de Expulsión de Fluidos (CPEF) donde se localiza el
complejo Hespérides.
MATERIAL Y MÉTODOS
Los datos geofísicos y muestras se obtuvieron en el
marco del proyecto LIFE+INDEMARES/CHICA en el
CPEF (Fig. 1). Los datos batimétricos y de
reflectividad fueron procesados con el programa Caris
Hips and Sips para crear modelos batimétricos a una
resolución de 15 m. Para el análisis morfológico se
utilizó el programa ArcGIS desktop, y además se
analizaron perfiles sísmicos de muy alta resolución
obtenidos con la sonda paramétrica TOPAS-PS18 que
se convirtieron e importaron en formato SEG-Y y han
sido interpretados mediante el programa IHS Kingdom.
Las muestras de de sedimento superficial se obtuvieron
mediante box-corer, que sirvieron para caracterizar la
textura del sedimento y la epi- y endofauna. Los videos
e imágenes submarinas obtenidos con VOR (Vehículo
IX Congreso Geológico de España Geo-Temas, 16 (1) ISSN 1576-5172
329
de Observación Remolcado) se han utilizado para
identificar la epifauna y los hábitats que conforman.
RESULTADOS
El CPEF es un sector morfológicamente complejo
debido al efecto combinado de los procesos erosivos,
gravitacionales y sedimentarios de la zona. Se
caracteriza por un gran cuerpo sedimentario con forma
de abanico que es atravesado por surcos erosivos y
otras formas como campos de ondas de fango y arena,
deslizamientos y relieves relacionados con la expulsión
de fluidos como son los pockmarks, valles ciegos y
edificios volcánicos fangosos. En esta zona se localiza
el complejo diapiro/volcán Hespérides, constituido por
una elevación del fondo generada por diapirismo, que
además alberga varios conos volcánicos, donde se han
obtenido brecha fangosa que permite confirmar su
naturaleza como volcanes de fango. Las características
morfológicas del edificio se presentan en la Tabla I.
El complejo Hespérides se localiza en la parte NO
del CPEF, presentando 187 m de altura y una forma ca-
FIGURA 2. Complejo Hespérides. A) Interpretación morfológica
representada sobre un mapa de sombras con una resolución de
15x15 m. B) Ejemplo de perfil de muy alta resolución TOPAS con la
localización indicada en la Fig. 2a.
Variables morfológicas
Hespérides
Profundidad (max./min.) <m>
859/672
Longitud (max./min.) <km>
3,6/2,3
Altura <m>
187
Área <km2>
8,13
Pendiente <º>
0,5/30
TABLA I. Dimensiones y variables morfológicas medidos en el
complejo Hespérides.
si triangular, donde dos de sus lados tienen fuertes
pendientes, mientras que el tercero, al NE, termina de
forma más suave. Se diferencian dos conos volcánicos
principales situados al O del complejo que presentan
un perfil asimétrico (Fig. 2A y 2B). Los sedimentos se
caracterizan por contener brecha fangosa con clastos
polimícticos de tamaño arena-grava, donde se detectó
una alta abundancia de organismos quimiosimbióticos
como los poliquetos frenulados (Siboglinum sp.) y
poblaciones del bivalvo Solemya elarraichensis.
FIGURA 3. Endofauna del complejo Hespérides. A y B: poliquetos
frenulados (Siboglinum sp.) colonizando la brecha fangosa; C: vista
dorsal y lateral del bivalvo Solemya elarraichensis en las galerías
excavadas en sedimentos anóxicos y ricos en brecha fangosa; E:
Brissopsis sp.; F: Thyasira succisa; G: Yoldiella messanensis.
La parte central del complejo presenta una
reflectividad más elevada que el resto, obteniéndose
muestras de arena fangosa con fragmentos bioclásticos
y de enlosados y chimeneas carbonatadas colonizadas
por pequeños octocorales (ej. Swiftia, Acanthogorgia,
Anthomasthus) que han permitido interpretar varios
montículos y crestas de origen biogénico. Se han
observado cicatrices de deslizamientos al S y al O del
complejo, que está rodeado de varias depresiones,
destacando la situada al sur de forma ovalada y
caracterizada por un fondo plano con elevada pendiente
en los bordes, características típicas de las depresiones
producidas por colapso. En esta depresión, los
IX Congreso Geológico de España Geo-Temas, 16 (1) ISSN 1576-5172
330
sedimentos están constituidos por arena fangosa con
acumulaciones de carbonatos autigénicos donde se dan
diferentes especies de poliquetos (Notomastus,
Laonice), bivalvos (Thyasira, Yoldiella) y restos de
corales de aguas frías (principalmente Dendrophyllia
alternata). En las zonas adyacentes al complejo
Hespérides se ha observado un sedimento bastante
homogéneo formado por arena fangosa marrón
hemipelágica y una menor biodiversidad.
DISCUSIÓN Y CONCLUSIONES
La actividad relacionada con la expulsión de fluidos
se puede evaluar a través de distintos factores. En los
conos volcánicos del complejo Hespérides se ha
descrito bajo una fina capa de sedimentos
hemipelágicos la facies de brecha fangosa en la
columna sedimentaria que, junto con el olor a
sulfhídrico y la presencia de especies
quimiosimbióticas típicas de sedimentos cargados en
gas (Ej. Siboglinum, Solemya), evidencian emisiones
activas de fluidos. Las coladas de fango indican que,
durante la formación de los conos volcánicos, el
proceso de extrusión ha tenido lugar en varias fases. La
presencia de carbonatos autigénicos en los flancos y la
base estaría relacionada con emisiones moderadas de
fluidos, aunque la acción de las corrientes de fondo ha
podido desenterrarlos del sedimento donde se
formaron. Los carbonatos autigénicos proporcionan
además el sustrato adecuado para el desarrollo de
hábitats dominados por gorgonias (Ej. Acanthogorgia,
Swiftia), entre otros, que necesitan además de un
hidrodinamismo adecuado para su desarrollo. La
existencia de depresiones y canales en la base de estos
edificios está relacionada con procesos de ascenso y
expulsión de fluidos, así como con fenómenos de
colapso, de manera similar a lo observado en otras
zonas del campo profundo (García et al., 2009; León et
al., 2010), y podrían estar sometidas a la posterior
acción de las corrientes de agua profunda, como
evidencia la presencia de sustratos de textura más
gruesa y una megafauna (Flabellum) relacionada con
condiciones hidrodinámicas de mayor energía.
El análisis del conjunto de todos los tipos
morfológicos descritos, permite conjeturar que el
complejo Hespérides mantiene una actividad de
emisión en la actualidad, aunque las evidencias
faunísticas apuntan a que se trata de una actividad
moderada que podría ser más activa en la cima de los
conos volcánicos.
AGRADECIMIENTOS
Este trabajo es una contribución a los proyectos
LIFE+ INDEMARES/CHICA y ATLAS (EU Horizon
2020) y al grupo PAIDI de investigación RNM-328.
Las actividades de D. Palomino fueron financiadas por
el proyecto SUBVENT (CGL2012-39524-C02-01).
REFERENCIAS
Díaz del Río, V., Bruque, G., Fernández Salas, L.M. et
al. (2014): Volcanes de fango del golfo de Cádiz,
Proyecto LIFE+ INDEMARES, Ed. Fundación
Biodiversidad del Ministerio de Agricultura,
Alimentación y Medio Ambiente. Madrid (España),
128 p.
García, M., Hernández-Molina, F.J., Llave, et al.
(2009): Contourite erosive features caused by the
Mediterranean Outflow Water in the Gulf of Cadiz:
quaternary tectonic and oceanographic
implications. Marine Geology, 257(1/4): 24-40.
Hernández-Molina, F.J., Stow, D.A.V., Alvarez-
Zarikian, C.A., Acton, G., et al. (2014): Onset of
Mediterranean Outflow into the North Atlantic.
Science, 344(6189): 1244-1250.
León, R., Somoza, L., Medialdea, et al. (2010):
Pockmarks, collapses and blind valleys in the Gulf
of Cádiz. Geo-Marine Letters, 30 (3-4): 231-247.
Medialdea, T., Vegas, R., Somoza, L., et al. (2004):
Structure and evolution of the ‘‘Olistostrome’’
complex of the Gibraltar Arc in the Gulf of Cadiz
(eastern Central Atlantic): evidence from two long
seismic cross-sections. Marine Geology, 209: 173
198.
Milkov, A.V. (2000): Worldwide distribution of
submarine mud volcanoes and associated gas
hydrates. Marine Geology, 167: 29-42.
Palomino, D., López-González, N., Vázquez, J.T., et
al. (2015): Multidisciplinary study of mud
volcanoes and diapirs and their relationship to
seepages and bottom currents in the Gulf of Cadiz
continental slope (northeastern sector). Marine
Geology, doi:10.1016/j.margeo.2015.10.001
Somoza, L., Díaz-del-Río, V., León, R., et al. (2003):
Seabed morphology and hydrocarbon seepage in
the Gulf of Cadiz mud volcano area: acoustic
imagery, multibeam and ultra-high resolution
seismic data. Marine Geology, 195: 153176.
Zitellini, N., Gràcia, E., Matias, et al. (2009): The quest
for the Africa-Eurasia plate boundary west of the
Strait of Gibraltar. Earth and Planetary Science
Letters, 280(1-4): 13-50.
Article
Information gathered from multibeam echosounders and seismic profiles in the Gulf of Cadiz show several morphological reliefs having circular to sub-circular shape having been associated to mud volcanoes. The distribution of mud volcanoes in this area can be related to fluids escapes (gases and water), comprising mud and rock blocks from a pressurized deep unit through structural discontinuities of the upper crust. They are located in a complex tecto-sedimentary wedge named Accretionary Wedge of the Gulf of Cadiz formed by African-Eurasian convergence and the westward Rifean-Gibraltar-Betic Arc. They are most frequent in four sectors: the Moroccan, the Guadalquivir Diapiric Ridge, the TASYO and Deep South Portuguese fields. They differ in size, shape, and presence of the mud flows. Statistical analysis of the regional-scale distribution and shape of the mud volcanoes provides new information about present-day stress filed. The volcano strain indicators show a robust recent direction of two main regional maximum horizontal stress SH striking N132E and N149E to N160E, as well as a three secondary stress field with a N050E, N090E and N175E to N045E trends. The analysis of mud volcano alignments indicates two main trends, N125E and N150E, and two secondary orientations, N070E and N095E. These results are congruent with the stress field established from focal mechanisms, borehole breakouts and mesofault population data.
Article
Full-text available
Sediments cored along the southwestern Iberian margin during Integrated Ocean Drilling Program Expedition 339 provide constraints on Mediterranean Outflow Water (MOW) circulation patterns from the Pliocene epoch to the present day. After the Strait of Gibraltar opened (5.33 million years ago), a limited volume of MOW entered the Atlantic. Depositional hiatuses indicate erosion by bottom currents related to higher volumes of MOW circulating into the North Atlantic, beginning in the late Pliocene. The hiatuses coincide with regional tectonic events and changes in global thermohaline circulation (THC). This suggests that MOW influenced Atlantic Meridional Overturning Circulation (AMOC), THC, and climatic shifts by contributing a component of warm, saline water to northern latitudes while in turn being influenced by plate tectonics.
Article
Full-text available
The missing link in the plate boundary between Eurasia and Africa in the central Atlantic is presented and discussed. A set of almost linear and sub parallel dextral strike–slip faults, the SWIM1 Faults, that form a narrow band of deformation over a length of 600 km coincident with a small circle centred on the pole of rotation of Africa with respect to Eurasia, was mapped using a new swath bathymetry compilation available in the area offshore SW Portugal. These faults connect the Gloria Fault to the Rif–Tell Fault Zone, two segments of the plate boundary between Africa and Eurasia. The SWIM faults cut across the Gulf of Cadiz, in the Atlantic Ocean, where the 1755 Great Lisbon earthquake, M ~ 8.5–8.7, and tsunami were generated, providing a new insight on its source location.
Article
Full-text available
The seabed morphology, type of sediments, and dominant benthic species on eleven mud volcanoes and diapirs located on the northern sector of the Gulf of Cádiz continental slope have been studied. The morphological characteristics were grouped as: (i) fluid-escape-related features, (ii) bottom current features, (iii) mass movement features, (iv) tectonic features and (v) biogenic-related features. The dominant benthic species associated with fluid escape, hard substrates or soft bottoms, have also been mapped. A bottom current velocity analysis allowed, the morphological features to be correlated with the benthic habitats and the different sedimentary and oceanographic characteristics. The major factors controlling these features and the benthic habitats are mud flows and fluid-escape-related processes, as well as the interaction of deep water masses with the seafloor topography. Mud volcano eruptions give rise to mud flows and/or aqueous fluid seepage. These processes sustain chemosynthesis-based communities, closely associated with fluid seepage. Large depressions in the nearby area are influenced by collapse-related phenomena, where active fluid escape and the erosive effect of bottom currents have been identified. When the extrusion activity of the mud volcano is low and the seepage is diffuse, authigenic carbonates form within the edifice sediments. The bottom current sweeps the seafloor from the SE to the NW. When the velocity is moderate, sedimentary contourite processes take place on both sides of the edifices. At high velocities, the authigenic carbonates may be exhumed and colonised by species associated with hard substrates. Small carbonate mounds are found at the summits of some volcanoes and diapirs. Living corals have been found on the tops of the shallowest mud volcanoes, revealing different oceanographic conditions and strong bottom currents that favour the availability of nutrients and organic particles. The edifices affected by very high current velocities are located in the channels where erosive processes dominate.
Article
Full-text available
Herein we describe a suite of fluid escape depression features, including pockmarks and collapse structures, discovered in the Gulf of Cádiz (Spain) during several recent cruises. We also establish an evolutionary model for these depressions and discuss the generation of bottom undercurrent furrows from fluid-flow structures, considering the oceanographic and tectonic framework and gas expulsion mechanisms. We describe for the first time blind valleys, which we define as giant, elongated (3 to 10km long), collapsed and complex fault-strike features comprising mega-collapses and mega-pockmarks, generated in gas-venting areas and not associated to the collapse of mud-volcano complexes. We detected the blind valleys above diapiric structures. The collapse processes associated to blind valleys result from fluid escape through migration pathways which, in turn, are created by distension due to diapiric activity or to later tectonic reactivation of these diapirs. The evolution of these blind valleys, and their present-day morphology as furrows, derives from progressive fluid migration as well as from interaction of Mediterranean Outflow Water with the seafloor. FigureMature stage of blind valley formation: collapse of seafloor, blind valley generation and channelling of bottom currents
Article
Extensive mud volcanism, mud diapirism and carbonate chimneys related to hydrocarbon-rich fluid venting are observed throughout the Spanish–Portuguese margin of the Gulf of Cádiz. All the mud volcanoes and diapirs addressed in this paper lie in the region of olistostrome/accretionary complex units which were emplaced in the Late Miocene in response to NW-directed convergence between the African and Eurasian plates. The study area was investigated by multibeam echo-sounder, high and ultra-high resolution seismic profiling, dredging and coring. The structures observed on multibeam bathymetry, at water depths between 500 and 1300 m, are dominated by elongate mud ridges, mud cones, mud volcanoes and crater-like collapse structures ranging in relief from 50 to 300 m and size from 0.8 to 2 km in diameter. The main morphotectonic features, named the Guadalquivir Diapiric Ridge (GDR) and the Cádiz Diapiric Ridge (CDR), are longitudinally shaped diapirs which trend NE–SW and consist of lower–middle Miocene plastic marly clays. The GDR field and the TASYO field, which consist of mud volcanoes and extensive fluid venting related to diapiric ridge development, are described in this paper. The GDR field is characterised by numerous, single, sub-circular mud volcanoes and mud cones. The single mud volcanoes are cone-shaped features with relatively gentle slopes of 3°–6°, consisting of several generations of mud breccia deposition with indications of gas-saturation, degassing structures and the presence of H2S. The mud cones have asymmetric profiles with steep slopes of up to 25° and contain large surficial deposits of hydrocarbon-derived carbonate chimneys and slabs. The TASYO field is characterised by an extensive concentration of small, sub-circular depressions, oval and multi-cone mud volcanoes and large sediment slides. Mud volcanoes in this area are characterised by moderate slopes (8°–12°), have bathymetric relief ranging from 100 to 190 m and consist of sulphide-rich mud breccia, calcite chimneys, carbonate crusts and chemosynthetic fauna (Pogonophora tube worms). We propose that all these hydrocarbon seepage structures are related to lateral compressional stress generated at the front of the olistostromic/accretionary wedge. This stress results in the uplifting and squeezing plastic marly clay deposits. Additionally, the compressional stress at the toe of the olistostrome forms overpressurised compartments which provide avenues for hydrocarbon-enriched fluids to migrate.
Article
Reflection profiles characterize the structure and the upper Mesozoic to Cenozoic deposits of the Gulf of Cadiz region. Two long ENE–WSW multichannel seismic lines (ca. 400–500 km long) are analyzed to study the evolution of the area from the continental shelf to the Horseshoe and Seine abyssal plains. The huge allochthonous deposits emplaced in this region (the socalled ‘‘Olistostrome’’ of the Gulf of Cadiz) are described in terms of three different domains on the basis of the seismic architecture, the main tectonic features and the nature of the basement, oceanic or continental. The eastern domain extends along the continental shelf and upper and middle slope and corresponds to the offshore extension of the Betic–Rifean external front. It is characterized by salt and shale nappes later affected by extensional collapses. The central domain develops along the lower slope between the Betic–Rifean front and the abyssal plains and is characterized by a change in dip of the allochthonous basal surface and the basement. The allochthonous masses were emplaced by a combined gravitational and tectonic mechanism. The northern boundary of this domain is marked by the occurrence of an outstanding WNW–ESE-trending thrust fault with a strike-slip component, termed here as the Gorringe–Horseshoe fault. The westernmost domain corresponds to the abyssal plains, where the distal emplacement of the allochthonous body takes place; it is characterized by thrust faults affecting both the sedimentary cover and the oceanic basement. The allochthonous masses show a less chaotic character and the thickness decreases notably. These domains represent different evolutionary steps in the mechanisms of emplacement of the allochthonous units. The eastern domain of the allochthonous units was emplaced as part of the pre-Messinian orogenic wedge related to the collision that gave rise to the Betic–Rifean Belt, whereas the allochthonous wedge of the central and western domains were emplaced later as a consequence of the NE–SW late Miocene compression that continues in present times.
Article
Contourite depositional systems have been the focus of much recent research, but still relatively little is known about contourite erosive features and their associated processes. Based on multibeam bathymetry, side-scan imagery and different resolution seismic records, a detailed description and classification of the major erosive submarine valley features of the Contourite Depositional System of the Gulf of Cadiz middle slope is presented for the first time. Four types of erosive features have been differentiated, including contourite moats, contourite channels, marginal valleys and large isolated furrows, and interpreted in terms of their tectonic and oceanographic implications during the Quaternary. The study of the distribution and characteristics of erosive features is essential to better understand the present and past interaction of the Mediterranean Outflow Water (MOW) with the middle slope seafloor, and allows us to propose a new and more precise scheme for the MOW circulation patterns. This scheme includes a main along-slope circulation responsible for the excavation of the contourite moat and channels, and a secondary down-slope circulation responsible for the erosion of marginal valleys and isolated furrows. Three evolutionary stages have been observed in the development of the erosive system during the Quaternary, that can be related to changes in the distribution and splitting of the MOW as a consequence of the segmentation of the NE–SW diapiric ridges by neotectonic effects: 1) Early Pleistocene to Mid-Pleistocene: linear diapiric ridges; 2) Mid-Pleistocene to Late Pleistocene: diapiric reactivation and 3) Late Pleistocene to Holocene: main recent phase of diapiric ridges segmentation and rotation. This study provides important regional clues for establishing the evolution of the erosive features in relation with neotectonic effects, and represents a good example of the potential of erosive features as evidences for the reconstruction of the paleoceanography and recent tectonic changes.
Article
The list of known and inferred submarine mud volcanoes is presented in this paper. They occur worldwide on shelves, continental and insular slopes and in the abyssal parts of inland seas. Submarine mud volcanoes are distributed on the Earth more extensively than their subaerial analogs. The estimated total number of known and inferred deep-water mud volcanoes is 103–105. There are two key reasons for the formation of submarine mud volcanoes—high sedimentation rate and lateral tectonic compression. Submarine mud volcanoes form by two basic mechanisms: (1) formation on the top of a seafloor-piercing shale diapir; (2) formation due to the rise of fluidized sediments along faults. Fluid migration is critical to the formation of a mud volcano. Gas hydrates are often associated with deep-water mud volcanoes and have many common features from one accumulation to another. Gas hydrates form by conventional low-temperature hydrothermal process around the central part of a mud volcano and by metasomatic processes at its periphery. A preliminary global estimate of methane accumulated in gas hydrates associated with mud volcanoes is about 1010–1012 m3 at standard temperature and pressure.
  • F J Hernández-Molina
  • D A V Stow
  • C A Alvarezzarikian
  • G Acton
Hernández-Molina, F.J., Stow, D.A.V., AlvarezZarikian, C.A., Acton, G., et al. (2014): Onset of Mediterranean Outflow into the North Atlantic. Science, 344(6189): 1244-1250.
Multidisciplinary study of mud volcanoes and diapirs and their relationship to seepages and bottom currents in the Gulf of Cadiz continental slope (northeastern sector)
  • D Palomino
  • N López-González
  • J T Vázquez
Palomino, D., López-González, N., Vázquez, J.T., et al. (2015): Multidisciplinary study of mud volcanoes and diapirs and their relationship to seepages and bottom currents in the Gulf of Cadiz continental slope (northeastern sector). Marine Geology, doi:10.1016/j.margeo.2015.10.001