Article

Molecular genetic assessment of Jatropha curcas L. Germplasm of diverse origin along with its wild Relatives for various early growth and Establishment related traits

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Jatropha curcas L. is promising crop with drought tolerance and potential crop for biodiesel. In present study, 33 accessions of Jatropha curcas L. were collected from different eco-climatic zones along with two wild relatives, J. foetida and J. gossypifolia, were screened for genetic diversity using RAPD and ISSR markers. Further the same has been evaluated for their ability for early field establishment on the basis of phenotypic parameter. Out of 25 RAPD and 14 ISSR primers, 16 RAPD and 6 ISSR primers gave reproducible amplification banding patterns with total 88 polymorphic bands across genotypes. The polymorphic information content was highest for the primer OPB 10 (0.43) followed by the primers OPH 7 (0.42). UPGMA cluster analysis of genetic similarity indices grouped all the accessions into four major groups. Jaccard’s coefficient of similarity varied from 0.42 to 0.97, indicating high level of genetic variation across genotypes under study. Significant phenotypic variation in terms of total chlorophyll content, growth and establishment across genotypes was also observed. Present study highlights collection, conservation and characterization of potential Jatropha genetic resources and their utilization as breeding materials for their growth and early establishment in field conditions.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... While twenty two RAPD markers were used to study genetic diversity and percent polymorphism of 20 cotton germplasm lines that can help in identification of novel parental lines for hybrid cotton development (Tidke et al., 2014). A total of 16 RAPD and six SSR markers were used to assess the genetic diversity within the Jatropha curcas lines of diverse origin along with two of its wild relatives and showed the effectiveness of these markers to differentiate the wild relatives from the cultivated lines of Jatropa (Reddi et al., 2016). Wang et al., (2016) IIA II I IIB Figure 2. Phylogenetic relationships between 12 Tinospora cordifolia collections generated using NTSYS-pc program based on DICE similarity coefficients computed from data matrix with 122 informative polymorphic DNA bands generated from 10 RAPD and 5 ISSR markers. ...
... The PCA technique was applied for physic nut by Singh et al. (2016) to distinguish parental accessions for plant improvement, Nietsche et al. (2015) to evaluate the variability in reproductive traits and by Tripathi et al. (2015) to study the genetic diversity of Indian accessions. Different methods of cluster analysis have also been widely used for the species aiming to study its genetic diversity (Noor Camellia et al., 2012;Silva Junqueira et al., 2016;Reddi et al., 2016). Due to the importance of physic nut genotypes characterization for domestication and the need to obtain superior genotypes for future use in breeding programs, the present study aimed to evaluate phenotypic diversity to select the most divergent and superior genotypes from a physic nut germplasm bank using multivariate analysis strategies. ...
... J. platyphylla is a tree 2-5 m tall, drought resistant, with peltate leaves 15-35 cm, large petioles, round seeds of 15 mm in diameter, weighing about 1.75 g, white flowers. 1 These inflorescences are very different from those of other species of Jatropha. Residents of the communities of Sinaloa have consumed J. platyphylla as roasted seeds or as preserve made of unripe fruits, due to its high nutritional value, since it contains about 23% protein. ...
... J. platyphylla is a tree 2-5 m tall, drought resistant, with peltate leaves 15-35 cm, large petioles, round seeds of 15 mm in diameter, weighing about 1.75 g, white flowers. 1 These inflorescences are very different from those of other species of Jatropha. Residents of the communities of Sinaloa have consumed J. platyphylla as roasted seeds or as preserve made of unripe fruits, due to its high nutritional value, since it contains about 23% protein. ...
Article
Full-text available
Jatropha is largely a semi-wild plant under domestication. There is wide variation in morphological and agro-nomic traits of Jatropha. There are several endeavours to improve the genetic quality of Jatropha. Various seed yield ranges have been reported for Jatropha, for example, 0.4 – 12 t ha-1. Proper identification and characterisation of the plant's germplasm is central in genetic improvement of the plant. This paper evaluates the utility of markers for determination of genetic diversity in Jatropha. Several marker techniques are available for genetic characterisation of Jatropha. These include morphological and DNA-based markers. DNA-based markers such as RAPD, AFLP, RFLP, SSR and ISSR have been applied in evaluation of genetic diversity in Jatropha. Each of these techniques has its own advantages and limitations that determine its applicability in plant genetic diversity studies. This paper recommends application of a combination of markers as a reliable approach for determination of intra-specific genetic diversity in Jatropha.
Article
Full-text available
There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional–structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length:width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is ‘ideal’ in a given environment.
Article
Full-text available
In present study various species of Jatropha were evaluated for antidote nature induced by phospholipase A2 (PLA2) cobra venom. Although qualitative phytochemical analysis exhibited less variation across Jatropha species studied, substantial variability in terms of PLA2 inhibition by various solvent extracts across the species and between different parts of same plant was observed. Among all samples methanolic extracts of J. gossypifolia leaf showed highest inhibition of PLA2 toxicity while some aqueous extracts of J. foetida and all aqueous extracts of J. curcas, enhanced PLA2 activity. Present results highlight Jatropha not only as rich source of secondary compounds with antidote property for snake bite but also potent toxic agents as revealed with increased hemolysis by some aqueous extracts of J. curcas and J. foetida. Our findings suggest that methanolic leaf extract of J. gossypifolia contain potent small molecular antagonist(s) to the snake venom PLA2 which will be very useful to design adjuvant therapies in treatments of snake bites.
Article
Full-text available
Leaf phototropism might have significant effects on the light interception, dry matter production and yield of cucumber (Cucumis sativus L.). The objective of the present study was to model the phototropism of leaves in a greenhouse cucumber canopy. The dynamic structural model of cucumber using a parametric L-system was extended to mimic the leaf movement induced by gradients in the local light environment of each leaf. The red to far-red (R : FR) ratio is known to be a driving force in shade avoidance reactions of plants. In the model, R : FR ratios on the left and right leaf half of each individual leaf lamina were calculated and the change in tropism angle per phyllochron was based on the R : FR gradient across the leaf halves. The tropism angle of a leaf describes the deviation of the present leaf azimuth from the initial leaf orientation, which is predefined by the phyllotaxis of the plant. Even in its simple form, the model simulated photo-morphogenic canopy responses.
Article
Full-text available
Jatropha curcas L. attracts a lot of interest as a biofuel crop, triggering large investments and rapid expansion of cultivation areas, and yet, it should still be considered as a (semi-)wild, undomesticated plant. To use the full potential of Jatropha and to support further expansion and systematic selection, breeding and domestication are a prerequisite. This review reveals and identifies gaps in knowledge that still impede domestication of Jatropha. Prebreeding knowledge is limited. In particular, the regeneration ecology and the degree of genetic diversity among and within natural populations in and outside the center of origin are poorly studied. There is only a limited understanding of the Jatropha breeding system and the effect of inbreeding and outbreeding. This review presents all currently available and relevant information on the species distribution, site requirements, regeneration ecology, genetic diversity, advances in selection, development of varieties and hybridization. It also describes possible routes to a better Jatropha germplasm, gives recommendations for tackling current problems and provides guidance for future research. We also discuss the participatory domestication strategy of Jatropha integration in agroforestry.
Article
Full-text available
An evaluation was performed of the potential use of AFLP markers to reveal polymorphisms among Lolium perenne plants with different degrees of kinship. Radioactive and fluorescent detection techniques were applied. The use of a fluorescent detection approach contributed greatly to the speed and ease of conducting and interpreting the AFLP patterns. The great discriminative power of AFLP markers and their capacity to represent genetic relationships among ryegrass plants was shown. Despite the high polymorphic value of the AFLP markers, standard statistical tests could not differentiate between two gene pools derived from different breeding programmes. It proved also impossible to correlate fodder and turf phenotypes with AFLP distance data. A very important point revealed by our data is the high degree of genetic diversity within commercial ryegrass varieties. Our findings are relevant to any outcrossing crop with a breeding strategy based on the production of synthetic populations.
Article
Full-text available
A thorough and extensive wild germplasm exploration survey was undertaken and 32 high yielding candidate plus trees (CPTs) of Jatropha curcas from different locations from a latitudinal and longitudinal spread between 12°41′ and 22°′E longitude and 77° and 84°40′N latitude covering 11 locations in an area spread of 150,000km2 was collected for evaluating genetic association, and variability in seed and growth characters. Significant trait differences were observed in all the seed characters viz., seed morphology and oil content as were observed in growth characters viz., plant height, and female to male flower ratio and seed yield in the progeny trial. Broad sense heritability was high in general and exceeded 80% for all the seed traits studied. Female to male flower ratio showed near to 100% heritability followed by yield (83.61) and plant height (87.73). The path analysis revealed that female to male flower ratio had highest positive direct relationship with seed yield (0.789), followed by number of branches (0.612) and number of days from fruiting to maturity (0.431). Negative indirect effects were seen in number of days from flowering to fruiting which indirectly and negatively influenced yield through plant height and number of branches. Hierarchical clustering by Ward’s minimum variance cluster analysis showed phylogeographic patterns of genetic diversity. K-means clustering revealed that trees from different geographic regions were grouped together in a cluster and as were trees from the same geographical area placed in different clusters suggesting that geographical diversity did not go hand in hand with genetic diversity. In addition clustering identified promising accession with favourable traits for future establishment of elite seedling seed orchard and clonal seed orchard for varietal and hybridization programmes.
Article
Full-text available
Jatropha curcas L. has become an important source of oil production for biodiesel fuel. Most genetic studies of this plant have been conducted with Asian and African accessions, where low diversity was encountered. There are no studies of this kind focusing in the postulated region of origin. Therefore, five populations of J. curcas were studied in the state of Chiapas, Mexico, using amplified fragment length polymorphism (AFLP) markers. One hundred and fifty-two useful markers were obtained: overall polymorphism = 81.18% and overall Nei’s genetic diversity (He) = 0.192. The most diverse population was the Border population [He: 0.245, Shanon’s information index (I): 0.378]. A cluster analysis revealed the highest dissimilarity coefficient (0.893) yet to be reported among accessions. An analysis of molecular variance (AMOVA) revealed that the greatest variation is within populations (87.8%), followed by the variation among populations (7.88%). The PhiST value (0.121) indicated moderate differentiation between populations. However, a spatial AMOVA (SAMOVA) detected a stronger genetic structure of populations, with a PhiST value of 0.176. To understand the fine structure of populations, an analysis of data with Bayesian statistics was conducted with software Structure©. The number of genetic populations (K) was five, with mixed ancestry in most individuals (genetic migrants), except in the Soconusco, where there was a tiny fraction of fragments from other populations. In contrast, SAMOVA grouped populations in four units. To corroborate the above findings, we searched for possible genetic barriers, determining as the main barrier that separating the Border from the rest of the populations. The results are discussed based on the possible ancestry of populations.
Article
Full-text available
Background: There is a growing interest in Jatropha curcas L. (jatropha) as a biodiesel feedstock plant. Variations in its morphology and seed productivity have been well documented. However, there is the lack of systematic comparative evaluation of distinct collections under same climate and agronomic practices. With the several reports on low genetic diversity in jatropha collections, there is uncertainty on genetic contribution to jatropha morphology. Result: In this study, five populations of jatropha plants collected from China (CN), Indonesia (MD), Suriname (SU), Tanzania (AF) and India (TN) were planted in one farm under the same agronomic practices. Their agronomic traits (branching pattern, height, diameter of canopy, time to first flowering, dormancy, accumulated seed yield and oil content) were observed and tracked for two years. Significant variations were found for all the agronomic traits studied. Genetic diversity and epigenetic diversity were evaluated using florescence Amplified Fragment Length Polymorphism (fAFLP) and methylation sensitive florescence AFLP (MfAFLP) methods. Very low level of genetic diversity was detected (polymorphic band <0.1%) within and among populations. In contrast, intermediate but significant epigenetic diversity was detected (25.3% of bands were polymorphic) within and among populations. More than half of CCGG sites surveyed by MfAFLP were methylated with significant difference in inner cytosine and double cytosine methylation among populations. Principal coordinates analysis (PCoA) based on Nei's epigenetic distance showed Tanzania/India group distinct from China/Indonesia/Suriname group. Inheritance of epigenetic markers was assessed in one F1 hybrid population between two morphologically distinct parent plants and one selfed population. 30 out of 39 polymorphic markers (77%) were found heritable and followed Mendelian segregation. One epiallele was further confirmed by bisulphite sequencing of its corresponding genomic region. Conclusion: Our study confirmed climate and practice independent differences in agronomic performance among jatropha collections. Such agronomic trait variations, however, were matched by very low genetic diversity and medium level but significant epigenetic diversity. Significant difference in inner cytosine and double cytosine methylation at CCGG sites was also found among populations. Most epigenetic differential markers can be inherited as epialleles following Mendelian segregation. These results suggest possible involvement of epigenetics in jatropha development.
Article
Full-text available
The grain yield of cereals has almost doubled this century as a result of genetic manipulation by plant breeding. Surprisingly, there has been no change in the rate of photosynthesis per unit leaf area to accompany these increases. However, total photosynthesis has increased as a result of an increase in leaf area, daily duration of photosynthesis or leaf area duration. There remain substantial opportunities to continue to improve total photosynthesis and crop yield genetically using conventional breeding practices. Selectable traits are discussed here in the context of increasing total above-ground biomass under favourable conditions. Opportunities exist to alter crop duration and the timing of crop development to match it better to radiation, temperature and vapour pressure during crop growth, and to increase the rate of development of early leaf area to achieve rapid canopy closure. The importance of these traits will depend on the environment in which the crop is grown. Increases in crop photosynthesis through breeding are also likely to come via indirect means. Selection for a high and sustained stomatal conductance during the period of stem elongation is one way. Increasing assimilate allocation to the reproductive primordia so as to establish a large potential sink should also indirectly increase total crop photosynthesis. Evidence in the major grain crops suggests that by anthesis the capacity for photosynthesis is high and that photosynthesis is not limiting during grain filling. To use this surplus capacity it is suggested that carbon and nitrogen partitioning to the reproductive meristem be increased so as to establish a high potential grain number and the potential for a large grain size. It is then expected that additional photosynthesis will follow, either by a longer daily duration of photosynthesis or by an extended leaf area duration.
Article
RiCENT studies on a number of characters of soybeans have been directed toward estimation of heritability, that is, the fraction of variance in phenotypic expression that arises from genetic effects. However, the different methods employed do not necessarily estimate the same thing. For example, variance and regression methods of estimating heritability of F2 plant differences estimate the same thing only if all gene effects are additive. The nature of the selection units (plant, plot, mean of several plots, etc.) and sampling errors also influence greatly the magnitude of heritability estimates. Therefore, any meaningful comparison of the estimates obtained in different situations must include a careful evaluation of the methods and materials employed
Article
Jatropha curcas L. (Euphorbiaceae) is an oil bearing species with multiple uses and considerable potential as a biodiesel crop. The present communication deals with the method of selecting plus phenotypes of J. curcas for exploiting genetic variability for further improvement. Candidate plus tree selection is the first and most important stage in any tree improvement programme. The selection of candidate plus plants (CPPs) is based upon various important attributes associated with the species and their relative ranking. Relative preference between various traits and scoring for each trait has been worked out by using the method of paired comparisons for the selection of CPP in J. curcas L. The most important ones are seed and oil yields.
Article
Mahalanobis' D-square (D2) statistics was applied to assess diversity in the 9 genotypes collected of semi-arid region of India (7 genotypes from Gujarat and Rajasthan for normal toxic and two from Orissa csmcri's plantation of non toxic nature. These genotypes were grouped into five. Cluster I and III had two genotypes, cluster II had three genotypes and cluster VI and V contributed as solitary germplasms. The genotypes in cluster II had the maximum divergence which was closely followed by cluster III. The maximum and minimum divergence was revealed between clusters I with cluster V and cluster I and cluster V with cluster IV, respectively. In general, cluster III and IV exhibited high and low mean values, respectively for most of the characters. It has been suggested that for varietal improvement, hybridization among the genotypes of divergent clusters should be done in order to obtain better results in terms of variability and diversity.
Article
The present study investigates the potential use of a hand-held portable SPAD chlorophyll meter for rapid assessment of specific leaf area (SLA) and specific leaf nitrogen (SLN), which are surrogate measures of transpiration efficiency (TE) in peanut (Arachis hypogaea L.). The effects of sampling (leaf position, time of sampling and leaf water status) and climatic factors (solar radiation and vapour pressure deficit, VPD) on SLA and SPAD chlorophyll meter reading (SCMR) were studied in a range of peanut genotypes grown under field and greenhouse conditions. The correlation between SLA and SCMR was significant (r=−0.77, P < 0.01) for the second leaf from the apex but the correlation declined for leaves sampled from lower nodal positions. The diurnal fluctuation in SLA ranged from −20 % to +10 %, whereas SCMR was relatively unaffected by these diurnal changes. Solar radiation and VPD during the sampling period had a significant influence on the relationship between SLA and SCMR, largely through their effects on SLA. However, standardization of SLA for these environmental factors significantly improved the relationship between SLA and SCMR from −0.50 to −0.80 (P < 0.01), suggesting that, when protocols for leaf sampling and SLA measurements are followed, SCMR can be a surrogate measure of SLA. There were significant relationships between SLN and SCMR (r=0.84, P < 0.01) and SLN and SLA (r=−0.81, P < 0.01). These significant interrelationships amongst SLA, SLN and SCMR suggested that SCMR could be used as a reliable and rapid measure to identify genotypes with low SLA or high SLN (and hence high TE) in peanut.
Article
Jatropha curcas L. (physic nut) has drawn attention in recent years as a source of seed oil that can provide an economically viable substitute for diesel. Very little work on provenance trials and genetic resources of J. curcas L. has been reported so far. Though J. curcas grows widely in India and several collections of the plant are also maintained, pedigree and provenance records are not always available. This article reports our studies on the diversity amongst the accessions of J. curcas L., both amongst already held collections as well as from a few locations in the wild. Two single-primer amplification reaction (SPAR) methods were used for this purpose. The accessions from the North East were most distant from all other accessions in UPGMA analysis. The NBRI, Bhubaneshwar and Lalkuan accessions were more related to each other. The UPGMA tree clearly shows well-separated accession groups: NBRI, Bhubaneshwar, North East, Lalkuan and Outgroup. The study suggests that this relatively recently introduced plant species shows adequate genetic diversity in India and that the SPAR methods are useful for a rapid assessment of the same. The methods provide important tools for analyzing the diversity within the available collections to shortlist the parental lines for adaptability trials and further improvement of Jatropha plants.
Article
Bio-diesel has become more attractive recently because of its environmental benefits and it is derived from renewable resources, bio degradable and non-toxic in nature. Several bio-diesel production methods have been developed, among which transesterification using alkali catalyst gives high level of conversion of triglycerides to their corresponding methyl ester in short reaction time. The process of transesterification is affected by the reaction condition, molar ratio of alcohol to oil, type of alcohol, type and amount of catalysts, reaction time and temperature, purity of reactants free fatty acids and water content of oils or fats. In this work, an attempt has been made on review of bio-diesel production, methods of analyzing, bio-diesel standard, resources available, process developed performance in internal combustion engines, teardown analysis of bio-diesel B20 operated vehicle, recommendation for development of bio-fuels, environmental considerations, economic aspects and advantages. The technical tools and process for monitoring the transesterification reaction like TLC, GC, HPLC, GPC, 1H NMR and NIR have also been summarized in this paper.
Article
The present review aims to study the prospects and opportunities of introducing vegetable oils and their derivatives as fuel in diesel engines. In our country the ratio of diesel to gasoline fuel is 7:1, depicting a highly skewed situation. Thus, it is necessary to replace fossil diesel fuel by alternative fuels. Vegetable oils present a very promising scenario of functioning as alternative fuels to fossil diesel fuel. The properties of these oils can be compared favorably with the characteristics required for internal combustion engine fuels. Fuel-related properties are reviewed and compared with those of conventional diesel fuel. Peak pressure development, heat release rate analysis, and vibration analysis of the engine are discussed in relation with the use of bio-diesel and conventional diesel fuel. Optimization of alkali-catalyzed transesterification of Pungamia pinnata oil for the production of bio-diesel is discussed. Use of bio-diesel in a conventional diesel engine results in substantial reduction in unburned hydrocarbon (UBHC), carbon monoxide (CO), particulate matters (PM) emission and oxide of nitrogen. The suitability of injection timing for diesel engine operation with vegetable oils and its blends, environmental considerations are discussed. Teardown analysis of bio-diesel B20-operated vehicle are also discussed.
Article
We examined the effects of artificially altering leaf angle of the tropical tree species Acacia crassicarpa (A. Cunn. ex Benth., Fabaceae) on light interception, leaf temperature and photosynthesis in the wet and dry seasons of tropical Australia. Reducing leaf angle from the natural near-vertical angle (90 degrees ) to 67.5, 45, 22.5 and 0 degrees greatly increased light interception and leaf temperature, and decreased photosynthetic activity. Compared with the 90 degrees phyllodes, net photosynthetic rates in the horizontal phyllodes decreased by 18 and 42% by the second day of leaf angle change in the wet and dry seasons, respectively. The corresponding values for Day 7 were 46 and 66%. Leaf angle reduction also altered the diurnal pattern of photosynthesis (from two peaks to one peak) and reduced daily CO2 fixation by 23-50% by Day 2 and by 50-75% by Day 7 in the dry season. In contrast, the xanthophyll cycle pool size in the phyllodes increased with leaf angle reduction. Thus, there are at least five major advantages to maintaining high leaf angle orientation in tropical tree species. First, it reduces excessive light interception. Second, it lowers leaf temperature. Third, it protects the photosynthetic apparatus against photodamage by excessive light. Fourth, it minimizes xanthophyll cycle activity and reduces the cost for xanthophyll biosynthesis. Finally, it enhances photosynthetic activity and helps to sustain high plant productivity.
Article
Monsi and Saeki (1953) published the first mathematical model of canopy photosynthesis that was based on the light attenuation within a canopy and a light response of leaf photosynthesis. This paper reviews the evolution and development of their theory. Monsi and Saeki showed that under full light conditions, canopy photosynthesis is maximized at a high leaf area index (LAI, total leaf area per unit ground area) with vertically inclined leaves, while under low light conditions, it is at a low LAI with horizontal leaves. They suggested that actual plants develop a stand structure to maximize canopy photosynthesis. Combination of the Monsi-Saeki model with the cost-benefit hypothesis in resource use led to a new canopy photosynthesis model, where leaf nitrogen distribution and associated photosynthetic capacity were taken into account. The gradient of leaf nitrogen in a canopy was shown to be a direct response to the gradient of light. This response enables plants to use light and nitrogen efficiently, two resources whose supply is limited in the natural environment. The canopy photosynthesis model stimulated studies to scale-up from chloroplast biochemistry to canopy carbon gain and to analyse the resource-use strategy of species and individuals growing at different light and nitrogen availabilities. Canopy photosynthesis models are useful to analyse the size structure of populations in plant communities and to predict the structure and function of future terrestrial ecosystems.
Article
Castor and Jatropha belong to the Euphorbiaceae family. This review highlights the role of biotechnological tools in the genetic improvement of castor and jatropha. Castor is monotypic and breeding programmes have mostly relied on the variability available in the primary gene pool. The major constraints limiting profitable cultivation are: vulnerability to insect pests and diseases, and the press cake is toxic which restrict its use as cattle feed. Conventional breeding techniques have limited scope in improvement of resistance to biotic stresses and in quality improvement owing to low genetic variability for these traits. Genetic diversity was assessed using protein based markers while use of molecular markers is at infancy. In vitro studies in castor have been successful in shoot proliferation from meristematic explants, but not callus-mediated regeneration. Genetic transformation experiments have been initiated for development of insect resistant and ricin-free transgenics with very low transformation frequency. In tropical and subtropical countries jatropha is viewed as a potential biofuel crop. The limitations in available germplasm include; lack of knowledge of the genetic base, poor yields, low genetic diversity and vulnerability to a wide array of insects and diseases. Great scope exists for genetic improvement through conventional methods, induced mutations, interspecific hybridization and genetic transformation. Reliable and highly efficient tissue culture protocols for direct and callus-mediated shoot regeneration and somatic embryogenesis are established for jatropha which indicates potential for widening the genetic base through biotechnological tools. Assessment of genetic diversity using molecular markers disclosed low interaccessional variability in local Jatropha curcas germplasm. The current status and future prospects of in vitro regeneration, genetic transformation and the role of molecular tools in the genetic enhancement of the two-oilseed crops are discussed.
Numerical Taxonomy and Multivariate Analysis System, Version 2.2. Exeter Software
  • Fj Rohlf
  • Ntsys-Pc
Rohlf FJ NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.2. Exeter Software. Setauket, New York; 2000
Quantitative inheritance in grass Proceedings of 6 th International Grass land Congress
  • Gw Burton
Burton GW. Quantitative inheritance in grass. Proceedings of 6 th International Grass land Congress; 1952 Aug 17-23; Pennsylvania State College; 1952
Lush JL Intra-sire correlation and regression of offspring on dams as a method of estimating heritability of characters
Lush JL Intra-sire correlation and regression of offspring on dams as a method of estimating heritability of characters. Proceedings of American Society of Animal Production; 33, 293– 301; 1940 Iowa Agricultural Experiment Station, Ames, Iowa; 1940
Genetic diversity in the Jatropha genus and its potential application. CAB Reviews
  • W Xu
  • S Mulpuri
  • A Liu
Xu W, Mulpuri S and Liu A. Genetic diversity in the Jatropha genus and its potential application. CAB Reviews. 2012 Sep 7; No. 059