ArticlePDF Available

Abstract and Figures

This paper presents the details of the EDGG sampling methodology and its underlying rationales. The methodology has been applied during EDGG Research Expeditions and EDGG Field Workshops since 2009, and has been subsequently adopted by various other researchers. The core of the sampling are the EDGG Biodiversity Plots, which are 100‐m² squares comprising, in two opposite corners, nested‐plot series of 0.0001, 0.001, 0.01, 0.1, 1 and 10 m² square plots, in which all terricolous vascular plants, bryophytes and lichens are recorded using the shoot presence method. In the 10‐m² plots, species cover is also estimated as a percentage and various environmental and structural parameters are recorded. Usually the EDGG Biodiversity Plots are complemented by the sampling of additional 10 m² normal plots with the same parameters as the 10‐m² corners of the first, allowing coverage of a greater environmental diversity and the achievement of higher statistical power in the subsequent analyses for this important grain size. The EDGG sampling methodology has been refined over the years, while its core has turned out to generate high‐quality, standardised data in an effective manner, which facilitates a multitude of analyses. In this paper we provide the current versions of our guidelines, field forms and data entry spreadsheets, as open‐access Online Resources to facilitate the easy implementation of this methodology by other researchers. We also discuss potential future additions and modifications to the approach, among which the most promising are the use of stratified‐random methods to a priori localise the plots and ideas to sample invertebrate taxa on the same plots and grain sizes, such as grasshoppers (Orthoptera) and vegetation‐dwelling spiders (Araneae). As with any other method, the EDGG sampling methodology is not ideal for every single purpose, but with its continuous improvements and its flexibility, it is a good multipurpose approach. A particularly advantageous element, lacking in most other sampling schemes, including classical phytosociogical sampling, is the multi‐scale and multi‐taxon approach, which provides data that allow for deeper understanding of the generalities and idiosyncrasies of biodiversity patterns and their underlying drivers across scales and taxa.
Content may be subject to copyright.
Assessingplantdiversityandcompositioningrass
landsacrossspatialscales:thestandardisedEDGG
samplingmethodology
JürgenDengler*,1,2,SteffenBoch3,GoffredoFilibeck4,AlessandroChiarucci5,IwonaDembicz6,1,RiccardoGuarino7,
BenjaminHenneberg8,MonikaJanišová9,CorradoMarcenò10,AlirezaNaqinezhad11,NinaY.Polchaninova12,Kiril
Vassilev13&IdoiaBiurrun14
1)PlantEcology,BayreuthCenterofEcologyandEnvironmentalResearch
(BayCEER),UniversityofBayreuth,Universitätsstr.30,95447Bayreuth,GER
MANY;juergen.dengler@unibayreuth.de
2)GermanCentreforIntegrativeBiodiversityResearch(iDiv)HalleJena
Leipzig,DeutscherPlatz5e,04103Leipzig,GERMANY
3)InstituteofPlantSciences,UniversityofBern,Altenbergrain21,3013Bern,
SWITZERLAND;steffen.boch@ips.unibe.ch
4)DepartmentofAgriculturalandForestrySciences,UniversityofTuscia,
01100Viterbo,ITALY;filibeck@unitus.it
5)DepartmentofBiological,GeologicalandEnvironmentalSciences,Alma
MaterStudiorumUniversityofBologna,ViaIrnerio42,40126Bologna,ITALY;
alessandro.chiarucci@unibo.it
6)DepartmentofPlantEcologyandEnvironmentalConservation,Facultyof
Biology,BiologicalandChemicalResearchCentre,UniversityofWarsaw,ul.
ŻwirkiiWigury101,02089Warsaw,POLAND;iwodem@op.pl
7)Dept.STEBICEF−BotanicalUnit,UniversityofPalermo,viaArchira38,
90123Palermo,ITALY;guarinotro@hotmail.com
8)AnimalEcologyII,BayreuthCenterofEcologyandEnvironmentalResearch
(BayCEER),UniversityofBayreuth,Universitätsstr.30,95447Bayreuth,GER
MANY;ben_henneberg@web.de
9)InstituteofBotany,SlovakAcademyofSciences,Ďumbierska1,97400
BanskáBystrica,SLOVAKIA;monika.janisova@gmail.com
10)DepartmentofBotanyandZoology,FacultyofScience,MasarykUniver
sity,Kotlářská2,61137Brno,CZECHREPUBLIC;marcenocorrado@libero.it
11)DepartmentofBiology,FacultyofBasicSciences,UniversityofMazanda
ran,P.O.Box4741695447,Babolsar,Mazandaran,IRAN;
a.naqinezhad@umz.ac.ir
12)V.N.KarazinKharkivNationalUniversity,4SvobodySq.,61077Kharkiv,
UKRAINE;polchaninova_n@ukr.net
13)InstituteofBiodiversityandEcosystemResearch,BulgarianAcademyof
Sciences,23Acad.G.BonchevStr.,1113Sofia,BULGARIA;kiril5914@abv.bg
14)DepartmentofPlantBiologyandEcology,UniversityoftheBasqueCoun
tryUPV/EHU,PO.Box644,48080Bilbao,SPAIN;idoia.biurrun@ehu.es
*)Correspondingauthor
BulletinoftheEurasianGrasslandGroup32(2016):1330
Abstract:ThispaperpresentsthedetailsoftheEDGGsamplingmethodologyanditsunderlyingrationales.Themethodologyhasbeen
appliedduringEDGGResearchExpeditionsandEDGGFieldWorkshopssince2009,andhasbeensubsequentlyadoptedbyvarious
otherresearchers.ThecoreofthesamplingaretheEDGGBiodiversityPlots,whichare100squarescomprising,intwoopposite
corners,nestedplotseriesof0.0001,0.001,0.01,0.1,1and10squareplots,inwhichallterricolousvascularplants,bryophytes
andlichensarerecordedusingtheshootpresencemethod.Inthe10plots,speciescoverisalsoestimatedasapercentageand
variousenvironmentalandstructuralparametersarerecorded.UsuallytheEDGGBiodiversityPlotsarecomplementedbythe
samplingofadditional10normalplotswiththesameparametersasthe10cornersofthefirst,allowingcoverageofagreater
environmentaldiversityandtheachievementofhigherstatisticalpowerinthesubsequentanalysesforthisimportantgrainsize.The
EDGGsamplingmethodologyhasbeenrefinedovertheyears,whileitscorehasturnedouttogeneratehighquality,standardised
datainaneffectivemanner,whichfacilitatesamultitudeofanalyses.Inthispaperweprovidethecurrentversionsofourguidelines,
fieldformsanddataentryspreadsheets,asopenaccessOnlineResourcestofacilitatetheeasyimplementationofthismethodology
byotherresearchers.Wealsodiscusspotentialfutureadditionsandmodificationstotheapproach,amongwhichthemostpromising
aretheuseofstratifiedrandommethodstoapriorilocalisetheplotsandideastosampleinvertebratetaxaonthesameplotsand
grainsizes,suchasgrasshoppers(Orthoptera)andvegetationdwellingspiders(Araneae).Aswithanyothermethod,theEDGG
samplingmethodologyisnotidealforeverysinglepurpose,butwithitscontinuousimprovementsanditsflexibility,itisagoodmulti
purposeapproach.Aparticularlyadvantageouselement,lackinginmostothersamplingschemes,includingclassicalphytosociogical
sampling,isthemultiscaleandmultitaxonapproach,whichprovidesdatathatallowfordeeperunderstandingofthegeneralities
andidiosyncrasiesofbiodiversitypatternsandtheirunderlyingdriversacrossscalesandtaxa.
Keywords:biodiversity;bryophyte;EDGGBiodiversityPlot;invertebrate;lichen;methodology;multitaxonstudy;relevé;scale
dependence;speciesrichness;vegetationenvironmentrelationship;vegetationsampling.
Abbreviations:EDGG=EurasianDryGrasslandGroup;GIS=geographicinformationsystem;QA=qualityassessment;SAR=species
arearelationship..
ThisarticlecontainsOnlineResources,whichareavailablefromtheEDGGhomepage(http://www.edgg.org)aswellasfromthe
ResearchGateaccountofthefirstauthor(https://www.researchgate.net/profile/Juergen_Dengler).
Researchpaper
13 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Introduction
Understandingtheunequaldistributionofspeciesdiversity
isoneofthegreatestchallengesinecology.Standardized
samplingprotocolsfordiversityassessmentsaretherefore
essentialtoreflectdiversitypatternsacrossspatialscales
andtocomparethediversitiesofdifferentecosystems.
Palaearcticgrasslandsharbourahighdiversityofvarious
taxa(Allanetal.2014)andholdthemajorityofworldre
cordsinvascularplantspeciesrichnessforgrainsizes
smallerthan100(Wilsonetal.2012;Dengleretal.2014;
Chytrýetal.2015).Inaddition,bryophyteandlichendiver
sitycanalsobehighinthesehabitats(Dengler2005;Müller
etal.2014;Bochetal.2016;Dengleretal.2016).However,
therearealsoparticularlyspeciespoorgrasslandtypesin
thePalaearctic(Dengler2005;Dengleretal.2016),making
Palaearcticgrasslandsasawholesuitableasamodelsystem
toanalysediversitypatternsandtheirunderlyingdrivers.
Theacquisitionofknowledgeonthesetopicsisofgreatim
portanceinthedevelopmentofappropriateconservation
measuresandinordertomaintainthesehighlydiverseeco
systemsandtheecosystemfunctionstheyprovide(Soliveres
etal.2016).
Themajorityofstudiesanalysingtheeffectsofabiotic,biotic
andhistoricalfactorsonspeciesdiversityimplicitlyassume
thatthesefactorsareuniversal,andthusstudyingbiodiver
sitypatternsatonegrainsizeprovidesanswersforallgrain
sizes.Onthebasisofthenowadaysreadilyavailableand
relativelystandardisedcoarsegraindata,mostsuchstudies,
andthusgeneralecologicalknowledge,arebasedoncoarse
grainanalyses.Thesetypicallyrelyondatacollectedatgrain
sizesofhundredsorthousandsofsquarekilometres,while
finegrainanalysesacrosslargespatialextentsarelargely
lacking(Becketal.2012).However,ithaslongbeenhy
pothesizedthattheprevailingdriversofbiodiversityvary
stronglybetweengrainsizes(Shmida&Wilson1985).This
assumptionhasindeedfoundstrongsupportinseveralre
centmetaanalyses(Fieldetal.2009;Siefertetal.2012).
Studyingpatternsanddriversofbiodiversityatsmallgrain
sizesoverseveralordersofmagnitudecanbeparticularly
insightful,asatthislevel,(plant)individualsofdifferentspe
ciesinteractwitheachotherandtheirenvironment(see
examplesinReedetal.1993;Dupré&Diekmann2001;de
Belloetal.2007;Giladietal.2011;Turtureanuetal.2014).
However,suchstudiesarestillrareandmainlyrestrictedto
thelocal,orveryrarelytotheregionalscale.Oftencompari
sonsofstudies,orevenjointanalysesoftheircombined
data,areimpededbytheidiosyncrasiesoftheplotsizesand
samplingschemesused.Thesituationisevenworseforphy
tosociologicaldatathatareavailableinlargequantitiesand
aresuitableformanypurposes(Dengleretal.2011;Chytrý
etal.2016),asplotsizes(Chytrý&Otýpková2003),aswell
assamplingquality(Chytrý2001),varygreatly.Thus,such
phytosociologicallegacydataareacomplexsourceforstud
iesondiversitypatternsandtheirscaledependence.
Bearingthisinmind,standardisedmultiscalediversitysam
plingschemes,oftencombinedwiththesamplingofabiotic
factorsandsometimesalsononplanttaxa,havebeenpro
posed,amongthemtheWhittakerplots(Shmida1984),the
plotsoftheCarolinaVegetationSurvey(CSW;Peetetal.
1998)andtheBIOTASouthObservatories(Jürgensetal.
2012).Inspiredbythese,aswellasbysimilarattemptsby
colleagues(Hobohm1998;Dolnik2003),studentsofthefirst
authortestedtheseideasintheirtheses(Löbel2002;Boch
2005;Allers2007).Onthebasisofthesestudies,Dengler
(2009)thenproposedthesocalledflexiblemultiscaleap
proachforstandardisedrecordingofplantspeciesrichness
patterns,whichcanbeseenasamethodologicalframework
thatallowsmanydifferentimplementations,butwitha
commoncore.Startinginthesameyear,thissamplingap
proachgaverisetotheResearchExpeditionsoftheEuro
peanDryGrasslandGroup(EDGG;http://www.edgg.org;
Vrahnakisetal.2013),whichweremeanwhilerenamedas
FieldWorkshopsoftheEurasianDryGrasslandGroup(Venn
etal.2016).Hereweusetheterm“fieldpulse”toreferto
bothtypes,inspiredbytheCarolinaVegetationSurvey(Peet
etal.1998),“pulse”implyinganintensiveeventofrelatively
shortduration,butrepeatedovertime.Thefirsteventin
Transylvaniain2009(Dengleretal.2009;Dengleretal.
2012a;Turtureanuetal.2014)wasfollowedbyeightmore
internationallyattendedfieldpulsesconductedfromSpain
inthewesttoSiberiaintheeastandfromSicilyinthesouth
toPolandinthenorth(Vrahnakisetal.2013;Vennetal.
2016).Thesefieldpulsescreatedahugecommondatapool
forjointanalyses(Dengleretal.2016)andyieldedawhole
seriesofpapersondiversitypatterns(Turtureanuetal.
2014;Kuzemkoetal.2016;Polyakovaetal.2016),andalso
onspeciescompositionandsyntaxonomy(Dengleretal.
2012a;Pedashenkoetal.2013;Kuzemkoetal.2014).While
thesamplingapproachgenerallyturnedouttobeveryeffec
tiveforawiderangeofdifferentresearchquestions,the
jointfieldworkalsoledtonumeroussmallmodificationsand
additions.Moreover,participantsinthefieldpulsesadopted
thesamplingmethodsintheirownprojects(e.g.Baumann
etal.2016;Cancellierietal.2017;M.J.andcolleaguesin
Ukraine,unpublished)andevenresearchersnotrelatedto
theEDGGstartedtousethisapproach(e.g.Mardari&
Tănase2016;A.C.andcolleaguesinItaly,unpublished).
TheEDGGsamplingapproach,withtheEDGGBiodiversity
Plotsasitscoreelement,isthusevidentlyeffectiveandat
tractive.Todate,however,nocompleteindepthandupto
datedescriptionofthisapproachhasbeenpublished.Ac
cordinglythispaperpresentsthecurrentversionofourap
proach,withthelatestmodifications,subsequenttothe9th
EDGGFieldWorkshop2016inSerbia,criticallyassessingits
prosandconsaswellaspotentialextensionsanddemon
stratingpotentialapplications.Webelievethatourproposal
andrationalescanalsocontributetoabetterstandardisa
tionofothersamplingapproaches,forexample,inphytoso
ciology(compareMucinaetal.2000).Tofacilitatetheadop
tionormodificationofourapproachinotherstudies,we
providethesamplingformsandspreadsheetsfordatahan
dlinginconjunctionwiththisarticle.
14 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
DescriptionoftheEDGGsamplingmethodology
anditsrationale
Thedescriptionofthemethodologyisalwaysindicatedin
bolditalics,followedbythejustificationinnormalfont.The
outlinedmethodologyhasbeenappliedintheEDGGfield
pulsessince2009(Dengleretal.2009),unlessindicatedoth
erwise.Whereappropriate,themethodologicalexplanations
areconcludedwithpracticalhintsfortheirimplementation
initalics.
A.Locationandarrangementoftheplots
A.1Ineachstudysite,theEDGGBiodiversityPlots(100m²)
areselectedsubjectivelyinquasihomogenousstandsofad
hocrecognizabledifferentvegetationtypesregardingboth
siteconditionsandfloristiccomposition(Photos16).This
approachaimsatencompassingasmuchaspossiblethegeo
graphicandecologicalheterogeneitywithintheaprioride
fined“studyuniverse”(e.g.allwetgrasslandsofaregion).
Unlikethepracticeofsomephytosociologists(seeGlavac
1996),theoccurrenceofdiagnosticspeciesorconcurrence
withrecognisedsyntaxaareexplicitlyexcludedasselection
criteria.Ourapproachontheonehandensuresthatecologi
calgradientsarerepresentativelycoveredwithalimited
samplesize,i.e.spatiallyraretypesarerelativelyover
represented,whichisimportantforanalysesofdiversity
environmentrelationships.Ontheotherhand,limitingthe
numberofbiodiversityplotspersiteavoidstheriskofover
samplingandpseudoreplication.Withtheimplicitphiloso
phyofrelatingthenumberofbiodiversityplotspersitetoits
ecologicalheterogeneity,ourapproachmimicsadhocthe
posthocheterogeneityconstrainedrandomresampling
(Lengyeletal.2011).
A.2Thestudyplotsizesare1cm²;10cm²,100cm²,1000
cm²,1m²,10and100(Fig.1).Usingplotsizesalways
differingbyoneorderofmagnitudeisalsothephilosophyof
otherwidespreadmultiscaleapproaches.Forexample,
Shmida(1984),Peetetal.(1998)andJürgensetal.(2012)
usethesamesetofplotsizes,excludingonlythesmallest
onesandadding1000m².Theseplotsizesalsoincludethree
ofthemostfrequentlyusedplotsizesinphytosociology,
namely1,10and100(Chytrý&Otýpková2003).Having
theplotsizesonageometricscaleisbeneficialformanyana
Photo1.EDGGBiodiversityPlotduringtheEDGGFieldWork
shopinSicily,Italy,2012(Photo:T.Becker).
Photo2.EDGGBiodiversityPlotduringtheEDGGResearch
ExpeditioninKhakassia,Russia,2013(Photo:J.Dengler).
Photo3.EDGGBiodiversityPlotduringtheEDGGField
WorkshopinNavarre,Spain,2014(Photo:J.Dengler).
Photo4.EDGGBiodiversityPlotduringtheEDGGField
WorkshopinSerbia,2016(Photo:J.Dengler).
15 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
lyticalpurposes,whilethetenfoldareaincreasefromone
plottothenextlargestoneislesssamplingintensiveand
avoidsunusualsizes(like256m²),whichoccurinarea
doublingapproaches(e.g.Chiaruccietal.2006).Wedidnot
include1000inourstandardprocedurebecausecomplete
samplingofsuchanareainspeciesrichPalaearcticgrass
landscanbeextremelytimeconsuming.Forexample,Dolnik
(2003),whoisaveryexperiencedfieldbotanist,neededupto
sevenhourstosamplenestedplotsofupto900(without
replicationofsubplots)innotparticularlyrichgrasslandtypes
oftheCuronianSpit(Russia).Incontrast,addingsmallergrain
sizescomparedtotheotherstandardsamplingschemes,re
quiresonlyminimalextraeffortbutishighlybeneficialfor
analysessuchasspeciesarearelationships(SARs).
Fig.1.Generalarrangementofa100EDGGBiodiversity
PlotandthetwoseriesofnestedsubplotsinitsNWandSE
corners.Toestablishthe100asaprecisesquare,firstthe
NESWdiagonalof14.14misdelimited(Drawing:I.Dem
bicz).
A.3Allplotshaveasquareshape.Somewidespreadmulti
scalerecordingschemesusedifferentplotshapesdepending
ongrainsize(e.g.Shmida1984;Stohlgren1995;Peetetal.
1998).However,sinceplotshapesignificantlyinfluencesspe
ciesrichness(Stohlgren2007;Bacaroetal.2015;Güleretal.
2016),constantshapeisimportantforcrossscalestudiesand
analysesofSARs.Amongallthepossibleshapes(squares,
rectangles,circles,hexagons,irregularforms),squaredplots
haveamultitudeofadvantages:(a)apartfromcirclesand
hexagons,theyarethemostcompactform,andthus,onav
erage,reflecttheleastpronouncedabioticgradientand
thereforetheclosestlinkbetweenenvironmentalconditions,
speciescompositionandrichness;(b)unlikecirclesandhexa
gons,squareplotscaneasilyandpreciselybedelimitedinthe
fieldwithlittleeffortand(c)smallsquarescanbeaggregated
tolargerones,whichisnotpossibleforcirclesorhexagons.
Whilecircles(e.g.Jonssonetal.1992;Olanoetal.1998;
Szwagrzyketal.2001)andhexagons(e.g.Jurasinski&
Beierkuhnlein2006)mightbebeneficialforveryspecificsam
plingpurposes,weconsiderthesquaretobethemostpracti
calshapeformultipurposephytodiversitysamplingap
proaches,alsoconsideringthatthegreatmajorityoflegacy
datahasalsobeenrecordedonplotsofthatshape.Inprac
tice,the100plotisestablishedfirstbymeasuringadiago
nal(14.14m),markingthetwocornersnottobeusedforthe
nestedplotseries,fixingafibreglassmeasuringtapeat0m
andat20matthesetwocornersandpullingitatthe10m
markuntilbothsidesarestraightlines(Fig.1).Accordingto
ourexperiences,wedonotrecommendmetalmeasuring
tapesastheyaretoostifftoallowprecisedelimitationofthe
squaresinthecorners.Alsothe10plots(3.16medge
length)arebestdelimitedusingfibreglassmeasuringtapes
andmetalpegs,whilefor1(1medgelength)and0.1
(0.32medgelength)itismoreconvenienttobenda2mfold
ingruleatarightangleandtolayitontheground.Forthe
threesmallestgrainsizes,0.01(0.1medgelength),0.001
(0.032medgelength)and0.0001(0.01medge
length),inmanycasesthebestwayisnottolayouttheinner
margins,butjustdirectlymeasurethepositionofplantsthat
16 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Photo5.EDGGBiodiversityPlotinanalpinesteppeof
Mt.Damavand,Iran,2016(Photo:A.Talebi).
Photo6.EDGGBiodiversityPlotduringanadvancedstudent
fieldcourseinNEBrandenburg,Germany,2016.Thestudent
groupinthebackgroundisdetermininggrasshoppersthat
justhavebeencollectedonthediagonalofthe100plot
(Photo:J.Dengler).
17
arepresumablyclosetothenonmarkedinnermarginsfrom
theoutermarginsthataremarkedwiththemeasuringtape
anyway.
A.4Theplots<100arenestedandreplicatedtwicein
twooppositecornersofthe100plot(Photo6).Since
relativevariabilityofspeciesrichnessandofpracticallyany
otherrelevantparameterincreasestowardssmallerplot
sizes(seeDengler2006),itisimportanttoreplicatethegrain
sizesbelowthelargestones.Foranalysesofspeciesarea
relationships,itisbeneficialtousetheaveragevaluesofthe
replicates,whileusingjustoneplotpergrainsize(e.g.Löbel
2002;Dolnik2003)cansignificantlydistortresults(Dengler&
Boch2008).Whilethestandarderroroftheestimatesfor
grainsizerichnessvaluesdecreaseswiththenumberofrepli
cates,itturnedoutduringtheEDGGfieldpulsesthatusing
onlytworeplicatesisagoodcompromisebetweenprecision
andtimeefficiency.Practically,thetwosubseriesofnested
plotsareplacedintheNWandSEcornersofthe100plot.
A.5Theplotsarenormallyorientedalongthecardinaldirec
tions(deviationsarerecorded);GPScoordinatesarere
cordedindecimaldegrees(WGS84)fromtheNWandSE
cornerofthe100plot,usingtheaveragingfunctionto
achievethebestpossibleprecision(since2009),andthese
cornersarepermanentlymarkedwithburiedmagnets
(introducedafterfieldpulse2016).Thesemeasuresare
aimedatenablingfuturerevisitationwithpreciserelocation
ofthesameplots.Withthisminimaladditional“investment”
oftimeandmaterial,theEDGGBiodiversityPlotsbecome
realpermanentplots,makingthemthebestpossiblesolution
tostudyvegetationdynamicswithoutanydistortions(i.e.
pseudoturnover)throughinaccuraterelocation(seeChytrý
etal.2014).
A.6InadditiontotheEDGGBiodiversityPlots(100m²),
“normalplots”of10aresampledwiththesameparame
tersasthe10subplotsoftheBiodiversityPlots(seebe
low),butwithnonesting.Theseplotsaremuchlesstime
consumingthanEDGGBiodiversityPlotsandtheadditional
samplingof“normalplots”allowshigherreplicationandbet
tercoverageofenvironmentalgradientsforthismajorgrain
size.Sincethenormalplotsareineveryrespectidenticalto
the10subplotsfromthecornersoftheEDGGBiodiversity
Plots,theycanbecombinedinoneanalysis,whichimproves
thestatisticalpoweroftheanalysesat10(seeexamples
inTurtureanuetal.2014;Kuzemkoetal.2016;Polyakovaet
al.2016),andensuresthat,despitelimitedsamplingtime,
enoughplotsarerecordedformeaningfulvegetationclassifi
cation(Dengleretal.2012a;Pedashenkoetal.2013;
Kuzemkoetal.2014).
B.Speciesrecording
B.1Alllivingterricolous(i.e.soildwelling)vascularplants,
bryophytes,lichensandmacro“algae”arerecorded.Be
sidesvascularplants,wealsorecordallotherphoto
autotrophicterricoloustaxathataremacroscopicallyvisible,
meaningthatweaimatgeneratingacompletepictureofthe
vegetation.Bryophytesandlichenscancontributeverysub
stantiallytotheoverall“phytodiversity”(acknowledgingthat
lichenstaxonomicallyarenotplantsbutsymbiosesoffungi
withphotoautotrophicpartners)ofgrasslands(Dengler2005;
Mülleretal.2014;Bochetal.2016;Dengleretal.2016).
Moreover,multitaxonstudiesaregenerallyveryinsightful
(e.g.Zulkaetal.2014;Manningetal.2015)andthethree
maintaxonomicgroupsofvegetation:vascularplants,bryo
phytesandlichens,showquitecontrastingrelationshipsto
environmentaldrivers(Löbeletal.2006;Lenoiretal.2012;
Polyakovaetal.2016).Inpractice,deadmaterialofperennial
plantsisnotconsidered,whiledeadannualsfromthesame
yeararerecordedwhenpresent.Wedothisbecausewecon
siderthatarecordofaplantcommunityshouldreflectacom
pleteyear,notjustaseason(Dengler2003).Theoretically,a
bettersolutionwouldbetworecordingsperyearincommuni
tieswithapronouncedspringephemeroidaspectandcom
biningbothrelevésintoone(Dierschke1994),butthisisim
practicalforaonetimefieldpulse.
B.2Presencesabsencerecordingwiththeshootpresence
systemforallplotsizes.Therearetwocommonwaystore
cordplantspeciespresenceinplots,rootedpresence(similar
tobutnotidenticalwiththegridpointsystem)andshoot
presence(anypartsystem)(Williamson2003;Dengler2008).
Whileforlargergrainsizestheresultsofbothmethodsdiffer
onlynegligibly,therichnessrecordedwithrootedpresences
deviatesmoreandmorenegativelyfromshootpresenceval
ueswithdecreasingplotsizes,whichistheoreticallyobvious
(Williamson2003),buthasrecentlyalsobeendemonstrated
empiricallyforgrasslands(Güleretal.2016;Cancellierietal.
2017).Therefore,dataderivedfrombothmethodscannotbe
directlycompared.Wedecidedtouseshootpresencebe
cause(a)thismethodisadvantageouswhenanalysingSARs
asbothwaysofrecordingnecessarilyshowdeviationsfroma
powerlawatsmallspatialscales,butthesedistortionsare
muchstrongerandoccuratafarlargergrainsizeforrooted
presencethanforshootpresence(Williamson2003;Dengler
2008)and(b)shootpresence,i.e.assuminganindividualas
occupyinganareaandnotonlythepointwhereitpenetrates
thesoilsurface,betterreflectswhichspeciesareinteracting
inthestudiedplot.Inpractice,recordingshootpresenceis
challengingforthethreesmallestgrainsizesof1cm²,10cm²
and100cm².Hereitisimportantthattheobserverisvery
carefulnottodistorttheoriginalarrangementofthevegeta
tionwhenplacingthepegsinthecornersandestablishingthe
plots.Forthesesmallestplots,asingleobservershoulddothe
Bulletin of the Eurasian Dry Grassland Group 32 October 2016
recording.Theobservershouldalwayslookfromthesame
angleintotheplotandstartrecordingplantsfromthehigh
esttothelowestlayers,withoutrecordingadditionalplants
ofthehigherlayeraftertheyhavebeenbentawaytosample
plantsofthelowerlayers,noraftertheplotshavebeenaf
fectedbywind,etc.Ourexperiencesuggeststhatrepresenta
tiveresultscanbeachievedwiththeshootpresencemethod
ifoneobserverworksfastandthoroughly.
B.3Additionalpercentagecoverestimationsforthe10
plots.Traditionally,phytosociologistsrecordedplantper
formanceinaplotwiththecombinedcoverabundancescale
ofBraunBlanquet(1964)oroneofitsmanymodified/
refinedversions(e.g.Wilmanns1998).Thisapproachhas
multipleshortcomings,inparticularthecombinationoftwo
differentcriteria,coverandabundancewhich,inthestrict
sense,precludesmostmathematicalanalysesbutwhichis
oftenignored.Furthermore,mostnumericalapproachesdo
notcalculatewiththecoverabundancescale,butback
transformeachcoverabundanceclasstothemeanofits
range,introducingadoubleerroroftransformation:first
fromwhatisseeninthefieldtoanabstractcategoryand
thenbacktoarealcovervalue,whichinsomecasescanbe
quitedifferentfromtheoriginalvalue.Imagine,forexample,
acoverof5%,whichbelongstothetraditionalBraun
Blanquetcoverabundancecategory“2”,whichthenusually
isbacktransformedtoacovervalueof15%(because2
standsfor525%),meaningthatthisstepintroducedathree
folderror.Lastbutnotleast,theBraunBlanquetscaleand
almostallsimilarscalesaretoocoarseforrecordingspecies
richgrasslandsofhighevenness(wherealmostallspecies
areinthecategory2mor2a)orinverysparsevegetation
(wheremostspecieshavelessthan1%cover.However,itis
abigdifference,i.e.afactorof10,000,whetherthecoveris
0.0001%or1%,whichisnotreflectedintraditionalscales).
Tofacilitaterealisticcoverestimates,we(a)use“estimation
aids”suchasthecalculationtowhichfullyfilledsquaretypi
calcoverpercentageswithina10plotwouldcorrespond
(Table1)and(b)adviseparticipantsthattheyshouldalways
doublecheckthatthecumulativecoverofspeciesofone
groupisatleastashighastheindependentlyestimated
coverofthatgroup.
C.Structuralandenvironmentalvariables(ineach
10plot)
C.1Coverofvegetationlayers:Coverofthetree(woody>5
m),shrub(woody0.55m),herb(woody<0.5mandherba
ceous)andcryptogamlayersareestimatedaspercentages
(since2009).Additionally,theherblayerissubdividedinto
thefunctionalgroupsphanerophytes,chamaephytes,grami
noids,legumeforbsandotherforbs,allowingforoverlap
betweenthese(adoptedafter2016).Thislaststepdoesnot
onlyprovidevaluabledatainitself,butalsoallowsforcross
checkingtheconsistencyofspeciescoverdata(seeB.3).
C.2Maximumheightoftree,shrubandherblayers.
C.3Measurementof“standardheight”ofthevegetation
(since2016;prototypeduringfieldpulse,improvedversion
afterwards;Photo7):Atfiverandompointsintheplot,a
circularplasticdiscwithacentralborehole(22.5cmdiame
ter,117g)isreleasedalongtheinvertedpenetrometer(see
below),thehandleofwhichisplacedontheground.The
heightwherethefallingdiscisstoppedbythevegetationis
measuredattheborehole.Thefivemeasurementsprovidea
reproduciblemeasureoftheheightatwhichthevegetation
becomesdense,aswellasofitsspatialvariability.
18 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Photo7.Usingapreliminaryversionofthediscforstan
dardisedassessmentofvegetationheightduringthe
EDGGFieldWorkshopinSerbia2016(Photo:I.Dembicz).
Table1.Areasofcompletelyfilledsquaresthatcorrespond
tocertainpercentagecovervaluesin10plots.
Percentage
cover value
Area in
m2
Area in
cm2
Edge length of
square in cm
5 0.5 5000 70.7
4 0.4 4000 63.2
3 0.3 3000 54.8
2 0.2 2000 44.7
1 0.1 1000 31.6
0.5 0.05 500 22.4
0.1 0.01 100 10.0
0.05 0.005 50 7.1
0.01 0.001 10 3.2
0.005 0.0005 5 2.2
0.001 0.0001 1 1.0
C.4Abovegroundbiomass(firstvariantsduringfieldpulse
2015;currentversionafterthefieldpulse2016;Photo8):
Withineach10plot,wecliptheabovegroundbiomass
withintworandomareasof20cm×20cmtothesoilsurface.
Wethenpoolbothsamples,i.e.atotalsurfaceof800cm²,
afterwhichwedryandweighthem.Samplingtwoseparate
areasallowsamuchbetterestimateofthemeanbiomassper
1withinthe10plotthanasingleplotwoulddo(asin
2015).Duetotherelativelysmalltotalsurface,theamountof
biomassisstillpracticable,evenduringlongerfieldpulses,i.e.
thematerialcanbetransportedandpredried.Whilein2015,
weseparatedthethreefractionsintolivingvascularplants,
livingnonvascularplantsandlitter,since2016wehavetaken
justonecombinedsampleforbiomasss.l.becausetheprevi
ousapproachwastootimeconsuming.Practically,thearea
tobesampledcanbedelimitedbyaspecificallymanufactured
steelframeormoreeasilybyaframecreatedbybendinga
foldingrulerfourtimes.Theinneredgeis19cm,butsinceitis
impossibletofixtheposition100%duringbiomasscutting,
thisisagoodapproximationoftheintendedsize.Dryingis
doneinanovenat65°Cuntiltheweightremainsconstant.
C.5Coveroflitteranddeadwood:Percentagecoverafter
virtuallyremovingallvegetation.Notethatthewidespread
approachofphytosociologiststoestimateonlythatpartof
thelitterthatisvisiblefromabove,i.e.notcoveredbyliving
vegetation,precludesusinglittercoverasapredictorofvege
tationattributes,becausethetwovariableswouldthennot
beindependentofeachother.
C.6Fractionsofabioticsoilsurface:Percentagecoverofthe
threetextureclasses:stonesandrocks(diameter>63mm),
gravel(263mm)andnesoil(<2mm)atthesoilsurface
aftervirtuallyremovingallvegetation,litteranddeadwood,
thus,summingupto100%cover.Notethatthewidespread
approachofphytosociologiststoestimateonlythatpartof
thesoilsurfacethatisvisiblefromabove,i.e.notcoveredby
livingordeadvegetation,precludesusingthesefractionsas
predictorsofvegetationattributesbecausetheywouldthen
notbeindependent.
C.7Slopeaspectandinclination:Practicallymeasuredby
placingthepenetrometer(seebelow)onthegroundalong
theslopeline.Aspectismeasuredindegreeswithacompass
and(mean)inclinationindegreeswithaninclinometer.
Nowadays,smartphoneappsareavailablethatdobothina
veryconvenientwaywhenplacingthesmartphoneonthe85
cmlongpenetrometer.
C.8Microrelief:Isdefinedasthemaximumdistancetothe
groundwhenplacingthepenetrometer(seebelow)tothe
groundinthemostruggedpartoftheplot,measuredper
pendiculartothedevice(since2014;Fig.2).Formerly,we
tookthismeasurementplumbvertical,butthisapproach
stronglyconfoundedmeasurementsofmicroreliefbyslope
inclination.
C.9Soildepth:Ismeasuredatfiverandompoints(toallow
calculationofmeanandstandarddeviation)usingoursoil
depthindicator(penetrometer;Photo9).Thisisasteelpole
of85cmlengthand1.0cmdiameter,pointedatoneendand
withahandleattheother.Itispushedintothegrounduntilit
hitsarockorthesoilbecomessodensethatitcannotbe
pushedfurther.Eachdepthmeasurementisnotedsepa
rately,evenifitis“0cm”(rockatthesurface)or“>80
cm”(noresistanceatanydepth).Itisobviousthatthismeas
urementshouldpreferablyalwaysbedonebythesameper
sonofaverageweightandstrength.The“odd”lengthofthe
penetrometerisbecausethiswasthelengthofourfirstde
vice.However,itturnedoutthatadeviceofthislengthstill
canbereasonablywellcarriedincheckedinluggageduring
airtravel,whilealengthof1mwouldalreadycauseprob
lems.
19 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Photo8.ClippingbiomassduringtheEDGGFieldWorkshop
inSerbia2016(Photo:J.Dengler).
Fig.2.Illustrationofhowtomeasurethemaximummicrore
lief(orangeline)inaplot(inourcasethe10plots)
(Drawing:I.Dembicz).
C.10Soilsamples:Amixedsoilsampleoftheuppermost10
cmofthemineralsoilistakenfromfiverandomlocations
withinthe10plot(Photo10).Thissampleisairdried
duringthefieldpulse(Photo11)andafterwardsdriedat65°
C.Fromthissample,wedetermineasaminimumthefollow
ingparameters:(a)skeletoncontent(i.e.massfractionof
particles>2mm),(b)textureclass(mostlyestimatedwitha
fingertest−seeSchlichngetal.1995;AdhocAGBoden
2005sometimesmeasured,whichistimeconsumingand
costly);(c)pH(inasuspensionof10gdrysoilin25gaqua
dest.);(d1)humuscontent(aslossatignitionat430°Cuntil
constancy)or,ifresourcesallow,(d2)CandNcontents
(withaC/Nanalyser),includingcorrectionforCfromcar
bonates.
C.11Landuse:Isproblematictoassessduringaoneoff
visit.Wetrytocategorizeeachplotbasedontraces,suchas
faeces,grazingmarks,presence/absenceofpastureweeds,
intopasture(i.e.livestockgrazed),meadow(i.e.mown)or
unusedinrecentyears(abandonedseminaturalgrassland
ornaturalgrassland)(e.g.Turtureanuetal.2014).Addition
ally,weuseburningtracestodecidewhethertheplotwas
burnedduringthecurrentyearornot.Anymoreprecise
informationonlanduse,themanagementregimes,their
timingandduration(e.g.livestocktype,numberofanimals,
combinationofmowing,grazingandfertilization,peculiari
tiesingrasslandhistory,etc.)thatisavailableisrecorded.
Unfortunately,ourexperienceisthatduringaoneoffvisit
suchdatacanhardlybegatheredconsistently,sothatin
noneofthefieldpulsessofarwereweabletousemore
detailedlanduseparametersforanalyses.
D.Datamanagement
Tofacilitateandstandardisedatacollectionandmanage
ment,theEDGGprovidesandregularlyupdatesaseriesof
documents,i.e.instructions,templatesforprintedforms
andspreadsheets,thecurrentlyuptodateversionsof
whichaccompanythisarticle.Allthesedocumentsareopen
accessandcanbemodifiedaccordingtopersonalneeds.
OnlineResource1containsadetailedlistofequipment
neededforsamplinglikethatdoneduringEDGGfieldpulses,
dependingonthedurationandnumberofparticipants
(Photo12).OnlineResource2providesdetailedpractical
instructionsonhowtoimplementtheEDGGsamplinginthe
field,whileOnlineResource3describesthedatahandling
andrecordingafterthefieldwork.OnlineResources4and5
arethecurrenttemplatesforbiodiversityplotsandfornor
malplots.OnlineResources6and7,finally,arespread
sheets(*.xlsxformat)fortheefficientdataentryofspecies
dataandheaderdata,respectively.Theyincludesomeem
beddedfunctionsthatfacilitateworkandprovidesomesim
pledatachecks(fillinginthespecieslistfor100plots
automaticallybasedonthetwocorners,checksofconsis
tencyofcovervalues,calculationofmeanandstandardde
viationforparameterswithmultiplemeasurements,de
scriptivestatisticsforparametersacrossallplotstocheckfor
outliers/entryerrors).Fromthesetwospreadsheets,the
relevantdatasetsforthemultipleanalyses,beitinRorany
otherstatisticalsoftware,canbederivedwithafewclicks.
ThedataoftheEDGGfieldpulsesandsomerelatedsam
plingschemesarestoredinacommondatabase,registered
intheGlobalIndexofVegetationPlotDatabases(GIVD;
Dengleretal.2011)asEU00003(Dengleretal.2012b).
Thesedataareavailableforcommondataanalysesbythe
contributorsandtheirpartners.Moreover,thefieldpulse
dataofthe10plotsarecontributedtoexistingnational
orregionalpartnerdatabasesoftheEuropeanVegetation
Archive(EVA;Chytrýetal.2016)andtheglobalcounterpart
“sPlot”(Purschkeetal.2015)sothattheyareavailablefor
continentalorglobalanalyses.
E.Possibleextensionsofthemethodology
E.1Otherspatialscales:Themostmeaningfuladditional
scalewouldbe1000(31.62m×31.62m)sincethisisa
commongrainsizeinmanybiodiversitysamplingschemes
worldwide,albeitmostlyrealisedas50m×20m(e.g.
20 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Photo9.Applyingthepenetrometertodeterminetheac
cessiblesoildepthduringtheEDGGFieldWorkshopinNa
varre,Spain,2014(Photo:J.Dengler).
Shmida1984;Peetetal.1998;Jürgensetal.2012).Thereare
severalwaystoarrangenestedplotswithin1000inaway
thatiscompatiblewiththeEDGGBiodiversityPlots:(a)place
oneEDGGBiodiversityPlotinthecentreofthe1000plot;
(b)placetwoEDGGBiodiversityPlotsintwooppositecor
ners;(c)placesinglenestedseriesof0.0001100intwo
cornersor(d)thevariantshowninDengler(2009:Fig.1).
Oneshouldbeawarethatadding1000drasticallyin
creasesthetimeneededforsampling(comparethetimesfor
asinglenestedplotseriesupto900asreportedbyDolnik
2003).Therefore,oneshouldonlyoptforthisadditionwhen
thereareadequateresourcesavailabletosamplethe1000
ascomprehensivelyasthe100m².Mostconvenientlythis
canbedoneinrelativelyspeciespoorvegetationwithlow
covervalues,e.g.insomeopenherbaceousvegetationof
SouthernAfrica(Jürgensetal.2012)orintransitionsfrom
steppestosemidesertsinIran(whereagroupincludingA.N.
iscurrentlydoingthis).Samplingsmallergrainsizesthan1
cm²,i.e.1mm²and10mm²,isalsopossible,butrequiresa
specialdevice(Dengleretal.2004).Finally,itcanmakesense
to“insert”additionalplotsizeswithfullsampling(including
covervaluesandenvironmentaldata),suchas16or25
m²,ifthisisanationalstandardforsamplingherbaceous
vegetationforphytosociologicalpurposes.Inthiscase,how
ever,thisadditionalplotsizeshouldnotbeusedinSAR
analyses,toavoidbias.
E.2Higherreplicationatsmallerscales:Sincethecoefficient
ofvariationofspeciesrichnessstronglyincreaseswithde
creasingplotsize(Dengler2008andreferencestherein),
increasinglymorereplicateswouldbenecessaryforsmaller
plotstoestimatemeanspeciesrichnesswiththesamepreci
sion.Thus,theoriginalapproachofDengler(2009)proposed
thattowardseachsmallerscalewithinthe100m2plots,and
downto0.01m2,thenumberofsubplotreplicatesisdou
bled.Duetotimeconstraintsandbecauseitishardlypossi
bletoarrangesuchanincreasingreplicationthatisboth
nestedandunbiasedwithrespecttothe100area(i.e.
doesnothavehighersamplingintensityinsomeregionsthan
inothers),thisapproachwasneveradoptedduringtheEDGG
fieldpulses.However,Dengleretal.(2004)andBoch(2005;
seeDengler&Boch2008)usedfourandfiveseriesofnested
plots(0.000110m²)withinthe100plot.RecentlyCan
cellierietal.(2017)adoptedtheideaofDengler(2009:Fig.
2),althoughwithalimitednestedseriescomposedofonly
threespatialscales.
E.3Stratifiedrandomsampling:StepA.1oftheEDGGsam
plingmethodologyisaimedatapproximatingadatasetsimi
lartoonegainedwithstratifiedrandomsampling,butwhen
suchanaprioristratificationisnotfeasibleduetotimecon
straintsorlackofsuitableinformationlayersforuseina
GeographicInformationSystem(GIS).Basically,thesampling
approachofDengler(2009)isapplicableinsubjectivelyde
limitedhabitattypes,withstratifiedrandomsampling(oran
21 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Photo10.TakingasoilsampleduringtheEDGGField
WorkshopinKhakassia,Russia,2013(Photo:J.Dengler).
Photo11.Dryingandsortingofsoilsamplesduringthe
EDGGFieldWorkshopinNavarre,Spain,2014(Photo:J.
Dengler).
Photo12.EquipmentneededfortheEDGGsamplingmethod
ology,spreadtobepackedbythedifferentteamsduringthe
EDGGFieldWorkshopinSerbia,2016(Photo:C.Marcenò).
approximationofit)orwithfullyrandomsampling(forthe
prosandconsofthesesamplingapproaches,seeWildi1986).
OnlyfuIlyrandomsamplingallowscalculationoftruespatial
meansofattributes,suchasspeciesrichness(e.g.Dengler&
Allers2006;seealsothegridbasedrandomapproachbyCan
cellierietal.2017,whichwasinspiredbyChiaruccietal.
2012),butthisusuallyleadstoastrongunderrepresentation
ofrarehabitattypes(Diekmannetal.2007).Stratified
randomsamplingtheoreticallyallowsonetogetadataset
thatismorebalancedwithregardtoenvironmentalgradients
(thanfullyrandomsamplingwould)andeventoapproximate
spatialmeans(whentakingthefractionalextentofthestrata
intoaccount),whileavoidingthepotentialbiasesofsubjec
tivelylocatingtheplots.However,stratifiedrandomsampling
requiresthatthemainenvironmentalgradientsarerather
clearaprioriandavailableasGISlayersforthestudyregion,
whichisnotusuallythecaseforEDGGfieldpulses,oneof
whosemainaimsistostudyundersampledregions.Ifthe
prerequisitesaremet,werecommendconsideringastratified
randomapproach(andaimtoimplementitintheField
Workshop2017inCentralItaly;seeFilibecketal.2016).This
approachmeansthatrandomcoordinateswithineachlevel
ofoneorseveralcrossedmainenvironmentalfactorsare
generatedwithinaGISandthensampledinthefield.Forex
ample,onecouldstratifytheregionbyelevationandbedrock
typeorbylandusetypeandslopeposition.Itisselfevident
thatoneneedstodecideforone,twooramaximumofthree
gradients,eachsubdividedintoasmallnumberofcategories,
becauseotherwisethenumberofplotsnecessarywouldsoon
becomeunrealistic.Oneshouldhoweverbeawareofthe
potentialproblemsofastratifiedrandomapproach,even
whentheseprerequisitesaremet.Ontheonehand,thea
prioriassumptionaboutthemaingradient(s)mightturnout
tobewrongandthenthesamplingwouldnotbeoptimal.For
example,Baumannetal.(2016)usedEDGGBiodiversityPlots
withelevationalstratification,onlytofindoutthattheeleva
tionalgradientintheircasewasofsubordinateimportance
forthespeciesrichnesspatterns.Ontheotherhand,strati
fiedrandomsamplingsignificantlyincreasesthetimeneeded
tofindandreachtheplotsinthefield,whichinsomecases
mighteventurnouttobeimpossibleduetoinaccessibility.
E.4Betterassessmentofbetadiversity:Throughthemulti
scalesampling,theEDGGBiodiversityPlotsprovidea
straightforwardtooltoassessbetadiversityatthesmallest
scales(i.e.within100m²).AsPolyakovaetal.(2016)demon
strate,thezvaluesofthepowerlawSARsareameasureof
standardised,multiplicativebetadiversity,whichallowscom
parisonsofwithinplotspeciesturnoverbetweenEDGGBiodi
versityPlotsofdifferentecologicalconditionsorregions(see
alsoDengler&Boch2008;Turtureanuetal.2014).Assessing
betadiversityacrosslargerspatialextentsthan100m²,for
exampleacross1km²or1000km²inacomparablemanner,
isnotstraightforwardwiththeEDGGsamplingmethodology
becausebetadiversityvaluesarelargelydeterminedbythe
spatial(andecological)extentofthestudyuniverse(Chiarucci
etal.2009).Theapproachofconstrainedrarefactionoffersa
waytomakedatafromstudyregionsofdifferentspatialex
tentcomparable(Chiaruccietal.2009).However,eventhis
wouldnotaccountforpotentiallydifferentecological/
syntaxonomicaldelimitationsofthe“studyuniverse”indif
ferentfieldpulses(if,forexample,inoneonlyFestuco
Brometeaweresampledandinanotheralltypesofsemi
naturalgrasslands).Therefore,iftheassessmentoflandscape
scalebetadiversityisamajoraimofastudy,oneshouldcon
sidertheappropriateplacementoftheEDGGBiodiversity
Plots.Oneshoulddecideonthelandscapescaleofinterest,
e.g.200km²(acirclewitharadiusof7.98km),inwhichthe
plotsshouldbelocatedrandomly.InthisrespectE.4canwell
becombinedwithE.3.Ifalessformal,adhocsolutionisre
quired,onecouldthinkofplacingasetoffive(oranother
fixednumber)EDGGBiodiversityPlotswithinthesurveype
rimeterhaphazardly,withtheonlyrestrictionthateachof
theseshouldrepresentadifferentgrasslandtypeor,ifonly
onetypeisconsidered,comefromadifferentgrassland
patch.
E.5Nonterricoloustaxaofthevegetation:Alsosaxicolous
(speciesgrowingonrocks),lignicolous(speciesgrowingon
deadwood)andepiphytictaxa(speciesgrowingonthebark
orevergreenleavesofotherplants)belongtotheoverall
phytodiversity.Therefore,werecommendtosamplealso
thesetaxa.Particularly,saxicolousbryophytesandlichenscan
contributesignificantlytotheoverallrichnessinrockygrass
lands(e.g.Boch2005;Bochetal.2016).Unfortunately,such
samplingrequiresspecificequipment(e.g.aknifetocollect
lignicolousandepiphyticspeciesaswellasahammeranda
chiseltocollectsamplesofsaxicolouslichensthatcannotbe
identifiedinthefield)andspecialexpertiseintheidentifica
tionofthesespecies.Fornonexperiencedobserversaiming
atsamplingnonvascularplants,onepossibilitymightbethe
samplingofsocalledmacrocryptogams,whichareeasily
discernibleinthefield(e.g.excludingcrustoselichensand
verysmallbryophytes).Theirrichnesscanbeusedasanindi
catorfortheoverallrichnessofcryptogams(Bergaminietal.
2005).
E.6Animaltaxa:Giventhehighpotentialvalueofmulti
taxonstudiestounderstandpatternsanddriversofbiodiver
sity(e.g.Allanetal.2014;Zulkaetal.2014;Manningetal.
2015;Soliveresetal.2016),itishighlydesirabletoalsosam
pleanimaltaxa,forwhichsamplingatthegivenspatialscales
makessenseandcanbeperformedduringasinglevisit.In
anycase,itmustbedecidedwhichofthegrainsizescanbe
sampledmeaningfully,giventhatanimals,unlikeplants,are
ontheonehandmobileandontheotherhandnotalways
discernibleeveniftheyarepresent(i.e.recordsusuallyrepre
sentactivity,notpresence).Incontrasttoplants,typically
onlyoneorperhapstwoofthestandardgrainsizescanbe
sampledandmatchedwiththephytodiversitydata.Vegeta
tionstructureand,insomecases,plantspeciescomposition
andrichness,haveastronginfluenceonspeciescomposition,
richness,activitiesandabundancesofmanyaboveand
belowgroundinvertebratetaxa(Lawton1983;Borges&
Brown2001;Birkhoferetal.2011;Simonsetal.2014).For
example,spidersaspredatorsareinfluencedindirectlyby
22 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
changesinmicroclimaticconditions,preyabundance,sites
forbuildingwebs,shelteringand/oroviposition(Gunnarsson
1990;Halajetal.1998;McNett&Rypstra2000).Therefore,
collaborationofbotanistsandzoologistsinbiodiversityas
sessmentsishighlydesirable.
DuringtheFieldWorkshopinNavarre,Spain,vegetation
dwellingspiders(Araneae)weresampledbyN.Y.P.onthe
100plotswithstandardsamplingmethods,suchassweep
nettingandhandcollecting(Duffey1974;Photo13).Asthe
biodiversityplotsarerelativelysmallforsweepnetting,one
sampleof15sweepswastakeninsideagivenplotandthree
samplesadjacenttoit.Usingrepeatedsweepsatthesame
plotisineffectiveforspiders,astheyfallonthegroundand
donotascendintothevegetationagainimmediately.Some
biodiversityplotscouldnotbesampledbecauseofanex
tremelylowsward.Spiderdiversitydatahavenotbeenana
lysedyet,butthissamplinghasledtothedescriptionofa
newspiderspecies(Kastryginaetal.2016).Whereitispossi
ble(butthisisevidentlynotthecaseduringEDGGfieldpulses
withonlyonevisitpersite),werecommendtostartinearly
springwithpitfalltrapping,usingatleastfivetrapspereach
EDGGBiodiversityPlot.Thetrapexpositionmayvaryfrom5–
10daysmonthlytoamonth.Spidersarerecommendedtobe
collectedduringthewholevegetationperiodbecauseofthe
differentseasonalactivitiesandmaturationtimes.Ifthereis
noopportunitytoconductsuchlongtermstudies,itispossi
bletolimitthemtospringandearlysummer.Sweepnetting
iseffectivefromlatespringuntilmidsummer.Thesuction
methodusingaTullgrenfunneliseffectiveforplotswithlow
vegetationinthesameperiod.Ingeneral,itispreferableto
addoneautumnalsample.Quadratsamples(handcollecting
in25cm×25cmplotsonthegroundand/orlitterlayer)can
reveallessmobilegrounddwellingspecies.Thismethodcan
beparticularlywellcombinedwiththevegetationdata,as
onecantakeasmanysamplesasrequiredinsideavegetation
plot.Toestimatethecompletespidercommunityinagiven
EDGGBiodiversityPlot,onewouldneedtocombineallthe
abovedescribedmethods.
Recently,studentsofthefirstauthor,includingB.H.,sampled
grasshoppers(Orthoptera)inEDGGBiodiversityPlots(Photo
14).Giventherelativelylownumberofspecies,Orthoptera
areeasiertoidentifythanmanyotherinsecttaxa.Phyto
phagousOrthopteraareusuallypolyphagous,meaningthey
arenotlimitedtojustonefamilyoffoodplantsbutrather
consumeawiderangeofplantspeciesacrossdifferentplant
families.Therefore,itcanbeassumedthattheoccurrenceof
certainspeciesofOrthopterawillnotdependontheoccur
renceofcertainplantspecies,butwillratherfollowfactors
likethemicroclimate,vegetationstructure(Gardineretal.
2002),plantcoverorlanduse.ThesamplingofOrthoptera
shouldtakeplaceduringwarmsunnydaysinlatesummer
(August−September)toensuredeteconofmostlyimagines
(whichareeasiertodeterminethanjuveniles).Daysofsam
plingshouldnotfollowadayofintenserainfall.Weusedthe
sweepnettingmethodbecauseitisthemostrapidmethodin
thefieldanddoesnotrequireexpensiveequipment.The
mostcommonlyusednetsizeis38cmdiameter(Bomar
2001;Gardineretal.2005).Withineach100m2EDGGBiodi
versityPlot,firsttheNESWdiagonal(i.e.theonethroughthe
cornerswithout10vegetationplots)wassweptbyad
vancingonestepforwardaftereachsweep.Bydoingso,the
sweepingofthediagonalwascompletedafterabout15con
secutivesweeps.Inaddition,thewhole100m2plotwassam
pledagainthreetimesbywalkingaroundandsweeping
withintheplotforaboutfivesecondseachtimetoensure
thatthewholeplotareawassampled.Aftereachsweepthe
Orthopteracaughtinthenetweretransferredintoplastic
boxesforsubsequentidentificationandcounting.Whilethe
describedmethodgenerallyworkedwell,itbecomesprob
lematicinvegetationplotswithtallervegetation(>50cm
plantheight),asthecatchingefficiencymaybeimpededby
vegetationstructure(Gardineretal.2005).
IntheSwissBiodiversityMonitoring,apartfromvascular
plantsandbryophytes,alsolandsnails(Gastropoda)are
sampledonthesame10plots(KoordinationsstelleBDM
2014).Otherinvertebrategroupsthatarepotentiallysuitable
Photo14.Samplinggrasshoppersona100EDGGBiodi
versityPlotduringanadvancedstudentfieldcourseinNE
Brandenburg,Germany,2016(Photo:J.Dengler).
23 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Photo13.Samplingvegetationdwellingspidersona100
EDGGBiodiversityPlotduringtheEDGGFieldWorkshopin
Navarre,Spain,2014(Photo:J.Dengler).
forinclusionintheEDGGBiodiversityPlotsincludeleafhop
pers(Auchenorrhyncha)(e.g.Primietal.inpress).
E.7Moreandbetterstandardisedenvironmentaldata:
Clearly,thegreatertheamountofstandardisedabioticdata
thatareassociatedwiththerecordedbiodiversitydata,the
moreanalyticalopportunitiestheyoffer.TheEDGGsampling
methodologyrequiresparametersandmeasurementmeth
odsthatgeneratereliabledataduringasinglevisitusinglim
itedtimeandresources.Amongsoilparameters,goodcandi
datesthatwerecollectedduringsomefieldpulsesbutnot
fixedasstandardyetareelectricalconductivity(EC),whichis
particularlyrelevantwhensamplinginaridareasorsaline
habitats,andH‐ andSvalue,fromwhichcationexchange
capacity(CEC)andbasesaturation(BS)canbederived.Ifthe
EDGGBiodiversityPlotsaredistributedwithinarelatively
narrowregionandrevisitingallofthemwithinoneorafew
daysofconstantdryweatherisfeasible,alsosoilwater
content(volumetricorgravimetric)wouldbeavaluablepa
rameter.
E.8Qualityassessment:Therearerelativelymanystudies
(seereviewbyMorrison2016)thatmeasuredtheimpactof
observerrelateddiscrepanciesinvegetationsamplingand
warnagainsttheresultingbiasesinspeciesrichness,cover
estimates,andvisualestimatesofothervegetationfeatures.
However,thisissueisstillsurprisinglydisregardedorover
lookedinthevastmajorityofpublishedresearchesbasedon
analysisofplotbaseddataacrossspatialandenvironmental
gradients.Nevertheless,moststudiesonobserverrelated
errorfoundmeanvaluesofpseudoturnover(i.e.ofthedif
ferenceinspeciescompositionbetweentwoobservers,or
teamsofobservers,surveyingthesameplot)rangingfrom
10%to30%(Morrison2016).Inastudywithfinescaleplots
intemperateEuropeangrasslands,Klimeš