Content uploaded by Jürgen Dengler
Author content
All content in this area was uploaded by Jürgen Dengler on Oct 31, 2016
Content may be subject to copyright.
Content uploaded by Jürgen Dengler
Author content
All content in this area was uploaded by Jürgen Dengler on Oct 31, 2016
Content may be subject to copyright.
Assessingplantdiversityandcompositioningrass‐
landsacrossspatialscales:thestandardisedEDGG
samplingmethodology
JürgenDengler*,1,2,SteffenBoch3,GoffredoFilibeck4,AlessandroChiarucci5,IwonaDembicz6,1,RiccardoGuarino7,
BenjaminHenneberg8,MonikaJanišová9,CorradoMarcenò10,AlirezaNaqinezhad11,NinaY.Polchaninova12,Kiril
Vassilev13&IdoiaBiurrun14
1)PlantEcology,BayreuthCenterofEcologyandEnvironmentalResearch
(BayCEER),UniversityofBayreuth,Universitätsstr.30,95447Bayreuth,GER‐
MANY;juergen.dengler@uni‐bayreuth.de
2)GermanCentreforIntegrativeBiodiversityResearch(iDiv)Halle‐Jena‐
Leipzig,DeutscherPlatz5e,04103Leipzig,GERMANY
3)InstituteofPlantSciences,UniversityofBern,Altenbergrain21,3013Bern,
SWITZERLAND;steffen.boch@ips.unibe.ch
4)DepartmentofAgriculturalandForestrySciences,UniversityofTuscia,
01100Viterbo,ITALY;filibeck@unitus.it
5)DepartmentofBiological,GeologicalandEnvironmentalSciences,Alma
MaterStudiorumUniversityofBologna,ViaIrnerio42,40126Bologna,ITALY;
alessandro.chiarucci@unibo.it
6)DepartmentofPlantEcologyandEnvironmentalConservation,Facultyof
Biology,BiologicalandChemicalResearchCentre,UniversityofWarsaw,ul.
ŻwirkiiWigury101,02‐089Warsaw,POLAND;iwodem@op.pl
7)Dept.STEBICEF−BotanicalUnit,UniversityofPalermo,viaArchirafi38,
90123Palermo,ITALY;guarinotro@hotmail.com
8)AnimalEcologyII,BayreuthCenterofEcologyandEnvironmentalResearch
(BayCEER),UniversityofBayreuth,Universitätsstr.30,95447Bayreuth,GER‐
MANY;ben_henneberg@web.de
9)InstituteofBotany,SlovakAcademyofSciences,Ďumbierska1,97400
Banská‐Bystrica,SLOVAKIA;monika.janisova@gmail.com
10)DepartmentofBotanyandZoology,FacultyofScience,MasarykUniver‐
sity,Kotlářská2,61137Brno,CZECHREPUBLIC;marcenocorrado@libero.it
11)DepartmentofBiology,FacultyofBasicSciences,UniversityofMazanda‐
ran,P.O.Box47416‐95447,Babolsar,Mazandaran,IRAN;
a.naqinezhad@umz.ac.ir
12)V.N.KarazinKharkivNationalUniversity,4SvobodySq.,61077Kharkiv,
UKRAINE;polchaninova_n@ukr.net
13)InstituteofBiodiversityandEcosystemResearch,BulgarianAcademyof
Sciences,23Acad.G.BonchevStr.,1113Sofia,BULGARIA;kiril5914@abv.bg
14)DepartmentofPlantBiologyandEcology,UniversityoftheBasqueCoun‐
tryUPV/EHU,PO.Box644,48080Bilbao,SPAIN;idoia.biurrun@ehu.es
*)Correspondingauthor
BulletinoftheEurasianGrasslandGroup32(2016):13‐30
Abstract:ThispaperpresentsthedetailsoftheEDGGsamplingmethodologyanditsunderlyingrationales.Themethodologyhasbeen
appliedduringEDGGResearchExpeditionsandEDGGFieldWorkshopssince2009,andhasbeensubsequentlyadoptedbyvarious
otherresearchers.ThecoreofthesamplingaretheEDGGBiodiversityPlots,whichare100‐m²squarescomprising,intwoopposite
corners,nested‐plotseriesof0.0001,0.001,0.01,0.1,1and10m²squareplots,inwhichallterricolousvascularplants,bryophytes
andlichensarerecordedusingtheshootpresencemethod.Inthe10‐m²plots,speciescoverisalsoestimatedasapercentageand
variousenvironmentalandstructuralparametersarerecorded.UsuallytheEDGGBiodiversityPlotsarecomplementedbythe
samplingofadditional10m²normalplotswiththesameparametersasthe10‐m²cornersofthefirst,allowingcoverageofagreater
environmentaldiversityandtheachievementofhigherstatisticalpowerinthesubsequentanalysesforthisimportantgrainsize.The
EDGGsamplingmethodologyhasbeenrefinedovertheyears,whileitscorehasturnedouttogeneratehigh‐quality,standardised
datainaneffectivemanner,whichfacilitatesamultitudeofanalyses.Inthispaperweprovidethecurrentversionsofourguidelines,
fieldformsanddataentryspreadsheets,asopen‐accessOnlineResourcestofacilitatetheeasyimplementationofthismethodology
byotherresearchers.Wealsodiscusspotentialfutureadditionsandmodificationstotheapproach,amongwhichthemostpromising
aretheuseofstratified‐randommethodstoapriorilocalisetheplotsandideastosampleinvertebratetaxaonthesameplotsand
grainsizes,suchasgrasshoppers(Orthoptera)andvegetation‐dwellingspiders(Araneae).Aswithanyothermethod,theEDGG
samplingmethodologyisnotidealforeverysinglepurpose,butwithitscontinuousimprovementsanditsflexibility,itisagoodmulti‐
purposeapproach.Aparticularlyadvantageouselement,lackinginmostothersamplingschemes,includingclassicalphytosociogical
sampling,isthemulti‐scaleandmulti‐taxonapproach,whichprovidesdatathatallowfordeeperunderstandingofthegeneralities
andidiosyncrasiesofbiodiversitypatternsandtheirunderlyingdriversacrossscalesandtaxa.
Keywords:biodiversity;bryophyte;EDGGBiodiversityPlot;invertebrate;lichen;methodology;multi‐taxonstudy;relevé;scale‐
dependence;speciesrichness;vegetation‐environmentrelationship;vegetationsampling.
Abbreviations:EDGG=EurasianDryGrasslandGroup;GIS=geographicinformationsystem;QA=qualityassessment;SAR=species‐
arearelationship..
ThisarticlecontainsOnlineResources,whichareavailablefromtheEDGGhomepage(http://www.edgg.org)aswellasfromthe
ResearchGateaccountofthefirstauthor(https://www.researchgate.net/profile/Juergen_Dengler).
Researchpaper
13 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Introduction
Understandingtheunequaldistributionofspeciesdiversity
isoneofthegreatestchallengesinecology.Standardized
samplingprotocolsfordiversityassessmentsaretherefore
essentialtoreflectdiversitypatternsacrossspatialscales
andtocomparethediversitiesofdifferentecosystems.
Palaearcticgrasslandsharbourahighdiversityofvarious
taxa(Allanetal.2014)andholdthemajorityofworldre‐
cordsinvascularplantspeciesrichnessforgrainsizes
smallerthan100m²(Wilsonetal.2012;Dengleretal.2014;
Chytrýetal.2015).Inaddition,bryophyteandlichendiver‐
sitycanalsobehighinthesehabitats(Dengler2005;Müller
etal.2014;Bochetal.2016;Dengleretal.2016).However,
therearealsoparticularlyspecies‐poorgrasslandtypesin
thePalaearctic(Dengler2005;Dengleretal.2016),making
Palaearcticgrasslandsasawholesuitableasamodelsystem
toanalysediversitypatternsandtheirunderlyingdrivers.
Theacquisitionofknowledgeonthesetopicsisofgreatim‐
portanceinthedevelopmentofappropriateconservation
measuresandinordertomaintainthesehighlydiverseeco‐
systemsandtheecosystemfunctionstheyprovide(Soliveres
etal.2016).
Themajorityofstudiesanalysingtheeffectsofabiotic,biotic
andhistoricalfactorsonspeciesdiversityimplicitlyassume
thatthesefactorsareuniversal,andthusstudyingbiodiver‐
sitypatternsatonegrainsizeprovidesanswersforallgrain
sizes.Onthebasisofthenowadaysreadilyavailableand
relativelystandardisedcoarse‐graindata,mostsuchstudies,
andthusgeneralecologicalknowledge,arebasedoncoarse‐
grainanalyses.Thesetypicallyrelyondatacollectedatgrain
sizesofhundredsorthousandsofsquarekilometres,while
fine‐grainanalysesacrosslargespatialextentsarelargely
lacking(Becketal.2012).However,ithaslongbeenhy‐
pothesizedthattheprevailingdriversofbiodiversityvary
stronglybetweengrainsizes(Shmida&Wilson1985).This
assumptionhasindeedfoundstrongsupportinseveralre‐
centmeta‐analyses(Fieldetal.2009;Siefertetal.2012).
Studyingpatternsanddriversofbiodiversityatsmallgrain
sizesoverseveralordersofmagnitudecanbeparticularly
insightful,asatthislevel,(plant)individualsofdifferentspe‐
ciesinteractwitheachotherandtheirenvironment(see
examplesinReedetal.1993;Dupré&Diekmann2001;de
Belloetal.2007;Giladietal.2011;Turtureanuetal.2014).
However,suchstudiesarestillrareandmainlyrestrictedto
thelocal,orveryrarelytotheregionalscale.Oftencompari‐
sonsofstudies,orevenjointanalysesoftheircombined
data,areimpededbytheidiosyncrasiesoftheplotsizesand
samplingschemesused.Thesituationisevenworseforphy‐
tosociologicaldatathatareavailableinlargequantitiesand
aresuitableformanypurposes(Dengleretal.2011;Chytrý
etal.2016),asplotsizes(Chytrý&Otýpková2003),aswell
assamplingquality(Chytrý2001),varygreatly.Thus,such
phytosociologicallegacydataareacomplexsourceforstud‐
iesondiversitypatternsandtheirscaledependence.
Bearingthisinmind,standardisedmulti‐scalediversitysam‐
plingschemes,oftencombinedwiththesamplingofabiotic
factorsandsometimesalsonon‐planttaxa,havebeenpro‐
posed,amongthemtheWhittakerplots(Shmida1984),the
plotsoftheCarolinaVegetationSurvey(CSW;Peetetal.
1998)andtheBIOTASouthObservatories(Jürgensetal.
2012).Inspiredbythese,aswellasbysimilarattemptsby
colleagues(Hobohm1998;Dolnik2003),studentsofthefirst
authortestedtheseideasintheirtheses(Löbel2002;Boch
2005;Allers2007).Onthebasisofthesestudies,Dengler
(2009)thenproposedtheso‐calledflexiblemulti‐scaleap‐
proachforstandardisedrecordingofplantspeciesrichness
patterns,whichcanbeseenasamethodologicalframework
thatallowsmanydifferentimplementations,butwitha
commoncore.Startinginthesameyear,thissamplingap‐
proachgaverisetotheResearchExpeditionsoftheEuro‐
peanDryGrasslandGroup(EDGG;http://www.edgg.org;
Vrahnakisetal.2013),whichweremeanwhilerenamedas
FieldWorkshopsoftheEurasianDryGrasslandGroup(Venn
etal.2016).Hereweusetheterm“fieldpulse”toreferto
bothtypes,inspiredbytheCarolinaVegetationSurvey(Peet
etal.1998),“pulse”implyinganintensiveeventofrelatively
shortduration,butrepeatedovertime.Thefirsteventin
Transylvaniain2009(Dengleretal.2009;Dengleretal.
2012a;Turtureanuetal.2014)wasfollowedbyeightmore
internationallyattendedfieldpulsesconductedfromSpain
inthewesttoSiberiaintheeastandfromSicilyinthesouth
toPolandinthenorth(Vrahnakisetal.2013;Vennetal.
2016).Thesefieldpulsescreatedahugecommondatapool
forjointanalyses(Dengleretal.2016)andyieldedawhole
seriesofpapersondiversitypatterns(Turtureanuetal.
2014;Kuzemkoetal.2016;Polyakovaetal.2016),andalso
onspeciescompositionandsyntaxonomy(Dengleretal.
2012a;Pedashenkoetal.2013;Kuzemkoetal.2014).While
thesamplingapproachgenerallyturnedouttobeveryeffec‐
tiveforawiderangeofdifferentresearchquestions,the
jointfieldworkalsoledtonumeroussmallmodificationsand
additions.Moreover,participantsinthefieldpulsesadopted
thesamplingmethodsintheirownprojects(e.g.Baumann
etal.2016;Cancellierietal.2017;M.J.andcolleaguesin
Ukraine,unpublished)andevenresearchersnotrelatedto
theEDGGstartedtousethisapproach(e.g.Mardari&
Tănase2016;A.C.andcolleaguesinItaly,unpublished).
TheEDGGsamplingapproach,withtheEDGGBiodiversity
Plotsasitscoreelement,isthusevidentlyeffectiveandat‐
tractive.Todate,however,nocompletein‐depthandup‐to‐
datedescriptionofthisapproachhasbeenpublished.Ac‐
cordinglythispaperpresentsthecurrentversionofourap‐
proach,withthelatestmodifications,subsequenttothe9th
EDGGFieldWorkshop2016inSerbia,criticallyassessingits
prosandconsaswellaspotentialextensionsanddemon‐
stratingpotentialapplications.Webelievethatourproposal
andrationalescanalsocontributetoabetterstandardisa‐
tionofothersamplingapproaches,forexample,inphytoso‐
ciology(compareMucinaetal.2000).Tofacilitatetheadop‐
tionormodificationofourapproachinotherstudies,we
providethesamplingformsandspreadsheetsfordatahan‐
dlinginconjunctionwiththisarticle.
14 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
DescriptionoftheEDGGsamplingmethodology
anditsrationale
Thedescriptionofthemethodologyisalwaysindicatedin
bold‐italics,followedbythejustificationinnormalfont.The
outlinedmethodologyhasbeenappliedintheEDGGfield
pulsessince2009(Dengleretal.2009),unlessindicatedoth‐
erwise.Whereappropriate,themethodologicalexplanations
areconcludedwithpracticalhintsfortheirimplementation
initalics.
A.Locationandarrangementoftheplots
A.1Ineachstudysite,theEDGGBiodiversityPlots(100m²)
areselectedsubjectivelyinquasi‐homogenousstandsofad‐
hocrecognizabledifferentvegetationtypesregardingboth
siteconditionsandfloristiccomposition(Photos1−6).This
approachaimsatencompassingasmuchaspossiblethegeo‐
graphicandecologicalheterogeneitywithintheaprioride‐
fined“studyuniverse”(e.g.allwetgrasslandsofaregion).
Unlikethepracticeofsomephytosociologists(seeGlavac
1996),theoccurrenceofdiagnosticspeciesorconcurrence
withrecognisedsyntaxaareexplicitlyexcludedasselection
criteria.Ourapproachontheonehandensuresthatecologi‐
calgradientsarerepresentativelycoveredwithalimited
samplesize,i.e.spatiallyraretypesarerelativelyover‐
represented,whichisimportantforanalysesofdiversity‐
environmentrelationships.Ontheotherhand,limitingthe
numberofbiodiversityplotspersiteavoidstheriskofover‐
samplingandpseudo‐replication.Withtheimplicitphiloso‐
phyofrelatingthenumberofbiodiversityplotspersitetoits
ecologicalheterogeneity,ourapproachmimicsadhocthe
post‐hocheterogeneity‐constrainedrandomresampling
(Lengyeletal.2011).
A.2Thestudy‐plotsizesare1cm²;10cm²,100cm²,1000
cm²,1m²,10m²and100m²(Fig.1).Usingplotsizesalways
differingbyoneorderofmagnitudeisalsothephilosophyof
otherwidespreadmulti‐scaleapproaches.Forexample,
Shmida(1984),Peetetal.(1998)andJürgensetal.(2012)
usethesamesetofplotsizes,excludingonlythesmallest
onesandadding1000m².Theseplotsizesalsoincludethree
ofthemostfrequentlyusedplotsizesinphytosociology,
namely1,10and100m²(Chytrý&Otýpková2003).Having
theplotsizesonageometricscaleisbeneficialformanyana‐
Photo1.EDGGBiodiversityPlotduringtheEDGGFieldWork‐
shopinSicily,Italy,2012(Photo:T.Becker).
Photo2.EDGGBiodiversityPlotduringtheEDGGResearch
ExpeditioninKhakassia,Russia,2013(Photo:J.Dengler).
Photo3.EDGGBiodiversityPlotduringtheEDGGField
WorkshopinNavarre,Spain,2014(Photo:J.Dengler).
Photo4.EDGGBiodiversityPlotduringtheEDGGField
WorkshopinSerbia,2016(Photo:J.Dengler).
15 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
lyticalpurposes,whilethetenfoldareaincreasefromone
plottothenextlargestoneislesssampling‐intensiveand
avoidsunusualsizes(like256m²),whichoccurinarea‐
doublingapproaches(e.g.Chiaruccietal.2006).Wedidnot
include1000m²inourstandardprocedurebecausecomplete
samplingofsuchanareainspecies‐richPalaearcticgrass‐
landscanbeextremelytime‐consuming.Forexample,Dolnik
(2003),whoisaveryexperiencedfieldbotanist,neededupto
sevenhourstosamplenestedplotsofupto900m²(without
replicationofsubplots)innotparticularlyrichgrasslandtypes
oftheCuronianSpit(Russia).Incontrast,addingsmallergrain
sizescomparedtotheotherstandardsamplingschemes,re‐
quiresonlyminimalextraeffortbutishighlybeneficialfor
analysessuchasspecies‐arearelationships(SARs).
Fig.1.Generalarrangementofa100‐m²EDGGBiodiversity
PlotandthetwoseriesofnestedsubplotsinitsNWandSE
corners.Toestablishthe100m²asaprecisesquare,firstthe
NE‐SWdiagonalof14.14misdelimited(Drawing:I.Dem‐
bicz).
A.3Allplotshaveasquareshape.Somewidespreadmulti‐
scalerecordingschemesusedifferentplotshapesdepending
ongrainsize(e.g.Shmida1984;Stohlgren1995;Peetetal.
1998).However,sinceplotshapesignificantlyinfluencesspe‐
ciesrichness(Stohlgren2007;Bacaroetal.2015;Güleretal.
2016),constantshapeisimportantforcross‐scalestudiesand
analysesofSARs.Amongallthepossibleshapes(squares,
rectangles,circles,hexagons,irregularforms),squaredplots
haveamultitudeofadvantages:(a)apartfromcirclesand
hexagons,theyarethemostcompactform,andthus,onav‐
erage,reflecttheleastpronouncedabioticgradientand
thereforetheclosestlinkbetweenenvironmentalconditions,
speciescompositionandrichness;(b)unlikecirclesandhexa‐
gons,squareplotscaneasilyandpreciselybedelimitedinthe
fieldwithlittleeffortand(c)smallsquarescanbeaggregated
tolargerones,whichisnotpossibleforcirclesorhexagons.
Whilecircles(e.g.Jonssonetal.1992;Olanoetal.1998;
Szwagrzyketal.2001)andhexagons(e.g.Jurasinski&
Beierkuhnlein2006)mightbebeneficialforveryspecificsam‐
plingpurposes,weconsiderthesquaretobethemostpracti‐
calshapeformulti‐purposephytodiversitysamplingap‐
proaches,alsoconsideringthatthegreatmajorityoflegacy
datahasalsobeenrecordedonplotsofthatshape.Inprac‐
tice,the100‐m²plotisestablishedfirstbymeasuringadiago‐
nal(14.14m),markingthetwocornersnottobeusedforthe
nested‐plotseries,fixingafibreglassmeasuringtapeat0m
andat20matthesetwocornersandpullingitatthe10‐m
markuntilbothsidesarestraightlines(Fig.1).Accordingto
ourexperiences,wedonotrecommendmetalmeasuring
tapesastheyaretoostifftoallowprecisedelimitationofthe
squaresinthecorners.Alsothe10‐m²plots(3.16medge
length)arebestdelimitedusingfibreglassmeasuringtapes
andmetalpegs,whilefor1m²(1medgelength)and0.1m²
(0.32medgelength)itismoreconvenienttobenda2‐mfold‐
ingruleatarightangleandtolayitontheground.Forthe
threesmallestgrainsizes,0.01m²(0.1medgelength),0.001
m²(0.032medgelength)and0.0001m²(0.01medge
length),inmanycasesthebestwayisnottolay‐outtheinner
margins,butjustdirectlymeasurethepositionofplantsthat
16 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Photo5.EDGGBiodiversityPlotinanalpinesteppeof
Mt.Damavand,Iran,2016(Photo:A.Talebi).
Photo6.EDGGBiodiversityPlotduringanadvancedstudent
fieldcourseinNEBrandenburg,Germany,2016.Thestudent
groupinthebackgroundisdetermininggrasshoppersthat
justhavebeencollectedonthediagonalofthe100‐m²plot
(Photo:J.Dengler).
17
arepresumablyclosetothenon‐markedinnermarginsfrom
theoutermarginsthataremarkedwiththemeasuringtape
anyway.
A.4Theplots<100m²arenestedandreplicatedtwicein
twooppositecornersofthe100‐m²plot(Photo6).Since
relativevariabilityofspeciesrichnessandofpracticallyany
otherrelevantparameterincreasestowardssmallerplot
sizes(seeDengler2006),itisimportanttoreplicatethegrain
sizesbelowthelargestones.Foranalysesofspecies‐area
relationships,itisbeneficialtousetheaveragevaluesofthe
replicates,whileusingjustoneplotpergrainsize(e.g.Löbel
2002;Dolnik2003)cansignificantlydistortresults(Dengler&
Boch2008).Whilethestandarderroroftheestimatesfor
grain‐sizerichnessvaluesdecreaseswiththenumberofrepli‐
cates,itturnedoutduringtheEDGGfieldpulsesthatusing
onlytworeplicatesisagoodcompromisebetweenprecision
andtimeefficiency.Practically,thetwosubseriesofnested
plotsareplacedintheNWandSEcornersofthe100m²plot.
A.5Theplotsarenormallyorientedalongthecardinaldirec‐
tions(deviationsarerecorded);GPScoordinatesarere‐
cordedindecimaldegrees(WGS84)fromtheNWandSE
cornerofthe100‐m²plot,usingtheaveragingfunctionto
achievethebest‐possibleprecision(since2009),andthese
cornersarepermanentlymarkedwithburiedmagnets
(introducedafterfieldpulse2016).Thesemeasuresare
aimedatenablingfuturere‐visitationwithprecisere‐location
ofthesameplots.Withthisminimaladditional“investment”
oftimeandmaterial,theEDGGBiodiversityPlotsbecome
realpermanentplots,makingthemthebestpossiblesolution
tostudyvegetationdynamicswithoutanydistortions(i.e.
pseudo‐turnover)throughinaccuratere‐location(seeChytrý
etal.2014).
A.6InadditiontotheEDGGBiodiversityPlots(100m²),
“normalplots”of10m²aresampledwiththesameparame‐
tersasthe10‐m²subplotsoftheBiodiversityPlots(seebe‐
low),butwithnonesting.Theseplotsaremuchlesstime‐
consumingthanEDGGBiodiversityPlotsandtheadditional
samplingof“normalplots”allowshigherreplicationandbet‐
tercoverageofenvironmentalgradientsforthismajorgrain
size.Sincethenormalplotsareineveryrespectidenticalto
the10‐m²subplotsfromthecornersoftheEDGGBiodiversity
Plots,theycanbecombinedinoneanalysis,whichimproves
thestatisticalpoweroftheanalysesat10m²(seeexamples
inTurtureanuetal.2014;Kuzemkoetal.2016;Polyakovaet
al.2016),andensuresthat,despitelimitedsamplingtime,
enoughplotsarerecordedformeaningfulvegetationclassifi‐
cation(Dengleretal.2012a;Pedashenkoetal.2013;
Kuzemkoetal.2014).
B.Speciesrecording
B.1Alllivingterricolous(i.e.soil‐dwelling)vascularplants,
bryophytes,lichensandmacro‐“algae”arerecorded.Be‐
sidesvascularplants,wealsorecordallotherphoto‐
autotrophicterricoloustaxathataremacroscopicallyvisible,
meaningthatweaimatgeneratingacompletepictureofthe
vegetation.Bryophytesandlichenscancontributeverysub‐
stantiallytotheoverall“phytodiversity”(acknowledgingthat
lichenstaxonomicallyarenotplantsbutsymbiosesoffungi
withphotoautotrophicpartners)ofgrasslands(Dengler2005;
Mülleretal.2014;Bochetal.2016;Dengleretal.2016).
Moreover,multi‐taxonstudiesaregenerallyveryinsightful
(e.g.Zulkaetal.2014;Manningetal.2015)andthethree
maintaxonomicgroupsofvegetation:vascularplants,bryo‐
phytesandlichens,showquitecontrastingrelationshipsto
environmentaldrivers(Löbeletal.2006;Lenoiretal.2012;
Polyakovaetal.2016).Inpractice,deadmaterialofperennial
plantsisnotconsidered,whiledeadannualsfromthesame
yeararerecordedwhenpresent.Wedothisbecausewecon‐
siderthatarecordofaplantcommunityshouldreflectacom‐
pleteyear,notjustaseason(Dengler2003).Theoretically,a
bettersolutionwouldbetworecordingsperyearincommuni‐
tieswithapronouncedspring‐ephemeroidaspectandcom‐
biningbothrelevésintoone(Dierschke1994),butthisisim‐
practicalforaone‐timefieldpulse.
B.2Presences‐absencerecordingwiththeshoot‐presence
systemforallplotsizes.Therearetwocommonwaystore‐
cordplantspeciespresenceinplots,rootedpresence(similar
tobutnotidenticalwiththegrid‐pointsystem)andshoot
presence(any‐partsystem)(Williamson2003;Dengler2008).
Whileforlargergrainsizestheresultsofbothmethodsdiffer
onlynegligibly,therichnessrecordedwithrootedpresences
deviatesmoreandmorenegativelyfromshootpresenceval‐
ueswithdecreasingplotsizes,whichistheoreticallyobvious
(Williamson2003),buthasrecentlyalsobeendemonstrated
empiricallyforgrasslands(Güleretal.2016;Cancellierietal.
2017).Therefore,dataderivedfrombothmethodscannotbe
directlycompared.Wedecidedtouseshootpresencebe‐
cause(a)thismethodisadvantageouswhenanalysingSARs
asbothwaysofrecordingnecessarilyshowdeviationsfroma
powerlawatsmallspatialscales,butthesedistortionsare
muchstrongerandoccuratafarlargergrainsizeforrooted
presencethanforshootpresence(Williamson2003;Dengler
2008)and(b)shootpresence,i.e.assuminganindividualas
occupyinganareaandnotonlythepointwhereitpenetrates
thesoilsurface,betterreflectswhichspeciesareinteracting
inthestudiedplot.Inpractice,recordingshootpresenceis
challengingforthethreesmallestgrainsizesof1cm²,10cm²
and100cm².Hereitisimportantthattheobserverisvery
carefulnottodistorttheoriginalarrangementofthevegeta‐
tionwhenplacingthepegsinthecornersandestablishingthe
plots.Forthesesmallestplots,asingleobservershoulddothe
Bulletin of the Eurasian Dry Grassland Group 32 October 2016
recording.Theobservershouldalwayslookfromthesame
angleintotheplotandstartrecordingplantsfromthehigh‐
esttothelowestlayers,withoutrecordingadditionalplants
ofthehigherlayeraftertheyhavebeenbentawaytosample
plantsofthelowerlayers,noraftertheplotshavebeenaf‐
fectedbywind,etc.Ourexperiencesuggeststhatrepresenta‐
tiveresultscanbeachievedwiththeshootpresencemethod
ifoneobserverworksfastandthoroughly.
B.3Additionalpercentagecoverestimationsforthe10‐m²
plots.Traditionally,phytosociologistsrecordedplantper‐
formanceinaplotwiththecombinedcover‐abundancescale
ofBraun‐Blanquet(1964)oroneofitsmanymodified/
refinedversions(e.g.Wilmanns1998).Thisapproachhas
multipleshortcomings,inparticularthecombinationoftwo
differentcriteria,coverandabundancewhich,inthestrict
sense,precludesmostmathematicalanalysesbutwhichis
oftenignored.Furthermore,mostnumericalapproachesdo
notcalculatewiththecover‐abundancescale,butback‐
transformeachcover‐abundanceclasstothemeanofits
range,introducingadouble‐erroroftransformation:first
fromwhatisseeninthefieldtoanabstractcategoryand
thenbacktoarealcovervalue,whichinsomecasescanbe
quitedifferentfromtheoriginalvalue.Imagine,forexample,
acoverof5%,whichbelongstothetraditionalBraun‐
Blanquetcover‐abundancecategory“2”,whichthenusually
isback‐transformedtoacovervalueof15%(because2
standsfor5−25%),meaningthatthisstepintroducedathree
‐folderror.Lastbutnotleast,theBraun‐Blanquetscaleand
almostallsimilarscalesaretoocoarseforrecordingspecies‐
richgrasslandsofhighevenness(wherealmostallspecies
areinthecategory2mor2a)orinverysparsevegetation
(wheremostspecieshavelessthan1%cover.However,itis
abigdifference,i.e.afactorof10,000,whetherthecoveris
0.0001%or1%,whichisnotreflectedintraditionalscales).
Tofacilitaterealisticcoverestimates,we(a)use“estimation
aids”suchasthecalculationtowhichfullyfilledsquaretypi‐
calcoverpercentageswithina10‐m²plotwouldcorrespond
(Table1)and(b)adviseparticipantsthattheyshouldalways
double‐checkthatthecumulativecoverofspeciesofone
groupisatleastashighastheindependentlyestimated
coverofthatgroup.
C.Structuralandenvironmentalvariables(ineach
10‐m²plot)
C.1Coverofvegetationlayers:Coverofthetree(woody>5
m),shrub(woody0.5−5m),herb(woody<0.5mandherba‐
ceous)andcryptogamlayersareestimatedaspercentages
(since2009).Additionally,theherblayerissubdividedinto
thefunctionalgroupsphanerophytes,chamaephytes,grami‐
noids,legumeforbsandotherforbs,allowingforoverlap
betweenthese(adoptedafter2016).Thislaststepdoesnot
onlyprovidevaluabledatainitself,butalsoallowsforcross‐
checkingtheconsistencyofspeciescoverdata(seeB.3).
C.2Maximumheightoftree,shrubandherblayers.
C.3Measurementof“standardheight”ofthevegetation
(since2016;prototypeduringfieldpulse,improvedversion
afterwards;Photo7):Atfiverandompointsintheplot,a
circularplasticdiscwithacentralborehole(22.5cmdiame‐
ter,117g)isreleasedalongtheinvertedpenetrometer(see
below),thehandleofwhichisplacedontheground.The
heightwherethefallingdiscisstoppedbythevegetationis
measuredattheborehole.Thefivemeasurementsprovidea
reproduciblemeasureoftheheightatwhichthevegetation
becomesdense,aswellasofitsspatialvariability.
18 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Photo7.Usingapreliminaryversionofthediscforstan‐
dardisedassessmentofvegetationheightduringthe
EDGGFieldWorkshopinSerbia2016(Photo:I.Dembicz).
Table1.Areasofcompletelyfilledsquaresthatcorrespond
tocertainpercentagecovervaluesin10‐m²plots.
Percentage
cover value
Area in
m2
Area in
cm2
Edge length of
square in cm
5 0.5 5000 70.7
4 0.4 4000 63.2
3 0.3 3000 54.8
2 0.2 2000 44.7
1 0.1 1000 31.6
0.5 0.05 500 22.4
0.1 0.01 100 10.0
0.05 0.005 50 7.1
0.01 0.001 10 3.2
0.005 0.0005 5 2.2
0.001 0.0001 1 1.0
C.4Abovegroundbiomass(firstvariantsduringfieldpulse
2015;currentversionafterthefieldpulse2016;Photo8):
Withineach10‐m²plot,wecliptheabovegroundbiomass
withintworandomareasof20cm×20cmtothesoilsurface.
Wethenpoolbothsamples,i.e.atotalsurfaceof800cm²,
afterwhichwedryandweighthem.Samplingtwoseparate
areasallowsamuchbetterestimateofthemeanbiomassper
1m²withinthe10m²plotthanasingleplotwoulddo(asin
2015).Duetotherelativelysmalltotalsurface,theamountof
biomassisstillpracticable,evenduringlongerfieldpulses,i.e.
thematerialcanbetransportedandpre‐dried.Whilein2015,
weseparatedthethreefractionsintolivingvascularplants,
livingnon‐vascularplantsandlitter,since2016wehavetaken
justonecombinedsampleforbiomasss.l.becausetheprevi‐
ousapproachwastootime‐consuming.Practically,thearea
tobesampledcanbedelimitedbyaspecificallymanufactured
steelframeormoreeasilybyaframecreatedbybendinga
foldingrulerfourtimes.Theinneredgeis19cm,butsinceitis
impossibletofixtheposition100%duringbiomasscutting,
thisisagoodapproximationoftheintendedsize.Dryingis
doneinanovenat65°Cuntiltheweightremainsconstant.
C.5Coveroflitteranddeadwood:Percentagecoverafter
virtuallyremovingallvegetation.Notethatthewidespread
approachofphytosociologiststoestimateonlythatpartof
thelitterthatisvisiblefromabove,i.e.notcoveredbyliving
vegetation,precludesusinglittercoverasapredictorofvege‐
tationattributes,becausethetwovariableswouldthennot
beindependentofeachother.
C.6Fractionsofabioticsoilsurface:Percentagecoverofthe
threetextureclasses:stonesandrocks(diameter>63mm),
gravel(2−63mm)andfinesoil(<2mm)atthesoilsurface
aftervirtuallyremovingallvegetation,litteranddeadwood,
thus,summingupto100%cover.Notethatthewidespread
approachofphytosociologiststoestimateonlythatpartof
thesoilsurfacethatisvisiblefromabove,i.e.notcoveredby
livingordeadvegetation,precludesusingthesefractionsas
predictorsofvegetationattributesbecausetheywouldthen
notbeindependent.
C.7Slopeaspectandinclination:Practicallymeasuredby
placingthepenetrometer(seebelow)onthegroundalong
theslopeline.Aspectismeasuredindegreeswithacompass
and(mean)inclinationindegreeswithaninclinometer.
Nowadays,smartphoneappsareavailablethatdobothina
veryconvenientwaywhenplacingthesmartphoneonthe85
cmlongpenetrometer.
C.8Microrelief:Isdefinedasthemaximumdistancetothe
groundwhenplacingthepenetrometer(seebelow)tothe
groundinthemostruggedpartoftheplot,measuredper‐
pendiculartothedevice(since2014;Fig.2).Formerly,we
tookthismeasurementplumb‐vertical,butthisapproach
stronglyconfoundedmeasurementsofmicroreliefbyslope
inclination.
C.9Soildepth:Ismeasuredatfiverandompoints(toallow
calculationofmeanandstandarddeviation)usingoursoil
depthindicator(penetrometer;Photo9).Thisisasteelpole
of85cmlengthand1.0cmdiameter,pointedatoneendand
withahandleattheother.Itispushedintothegrounduntilit
hitsarockorthesoilbecomessodensethatitcannotbe
pushedfurther.Eachdepthmeasurementisnotedsepa‐
rately,evenifitis“0cm”(rockatthesurface)or“>80
cm”(noresistanceatanydepth).Itisobviousthatthismeas‐
urementshouldpreferablyalwaysbedonebythesameper‐
sonofaverageweightandstrength.The“odd”lengthofthe
penetrometerisbecausethiswasthelengthofourfirstde‐
vice.However,itturnedoutthatadeviceofthislengthstill
canbereasonablywellcarriedinchecked‐inluggageduring
airtravel,whilealengthof1mwouldalreadycauseprob‐
lems.
19 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Photo8.ClippingbiomassduringtheEDGGFieldWorkshop
inSerbia2016(Photo:J.Dengler).
Fig.2.Illustrationofhowtomeasurethemaximummicrore‐
lief(orangeline)inaplot(inourcasethe10m²plots)
(Drawing:I.Dembicz).
C.10Soilsamples:Amixedsoilsampleoftheuppermost10
cmofthemineralsoilistakenfromfiverandomlocations
withinthe10‐m²plot(Photo10).Thissampleisair‐dried
duringthefieldpulse(Photo11)andafterwardsdriedat65°
C.Fromthissample,wedetermineasaminimumthefollow‐
ingparameters:(a)skeletoncontent(i.e.massfractionof
particles>2mm),(b)textureclass(mostlyestimatedwitha
fingertest−seeSchlichngetal.1995;Ad‐hoc‐AGBoden
2005–sometimesmeasured,whichistime‐consumingand
costly);(c)pH(inasuspensionof10gdrysoilin25gaqua
dest.);(d1)humuscontent(aslossatignitionat430°Cuntil
constancy)or,ifresourcesallow,(d2)CandNcontents
(withaC/Nanalyser),includingcorrectionforCfromcar‐
bonates.
C.11Land‐use:Isproblematictoassessduringaone‐off
visit.Wetrytocategorizeeachplotbasedontraces,suchas
faeces,grazingmarks,presence/absenceofpastureweeds,
intopasture(i.e.livestockgrazed),meadow(i.e.mown)or
un‐usedinrecentyears(abandonedsemi‐naturalgrassland
ornaturalgrassland)(e.g.Turtureanuetal.2014).Addition‐
ally,weuseburningtracestodecidewhethertheplotwas
burnedduringthecurrentyearornot.Anymoreprecise
informationonland‐use,themanagementregimes,their
timingandduration(e.g.livestocktype,numberofanimals,
combinationofmowing,grazingandfertilization,peculiari‐
tiesingrasslandhistory,etc.)thatisavailableisrecorded.
Unfortunately,ourexperienceisthatduringaone‐offvisit
suchdatacanhardlybegatheredconsistently,sothatin
noneofthefieldpulsessofarwereweabletousemore
detailedland‐useparametersforanalyses.
D.Datamanagement
Tofacilitateandstandardisedatacollectionandmanage‐
ment,theEDGGprovidesandregularlyupdatesaseriesof
documents,i.e.instructions,templatesforprintedforms
andspreadsheets,thecurrentlyup‐to‐dateversionsof
whichaccompanythisarticle.Allthesedocumentsareopen
accessandcanbemodifiedaccordingtopersonalneeds.
OnlineResource1containsadetailedlistofequipment
neededforsamplinglikethatdoneduringEDGGfieldpulses,
dependingonthedurationandnumberofparticipants
(Photo12).OnlineResource2providesdetailedpractical
instructionsonhowtoimplementtheEDGGsamplinginthe
field,whileOnlineResource3describesthedatahandling
andrecordingafterthefieldwork.OnlineResources4and5
arethecurrenttemplatesforbiodiversityplotsandfornor‐
malplots.OnlineResources6and7,finally,arespread‐
sheets(*.xlsxformat)fortheefficientdataentryofspecies
dataandheaderdata,respectively.Theyincludesomeem‐
beddedfunctionsthatfacilitateworkandprovidesomesim‐
pledatachecks(fillinginthespecieslistfor100‐m²plots
automaticallybasedonthetwocorners,checksofconsis‐
tencyofcovervalues,calculationofmeanandstandardde‐
viationforparameterswithmultiplemeasurements,de‐
scriptivestatisticsforparametersacrossallplotstocheckfor
outliers/entryerrors).Fromthesetwospreadsheets,the
relevantdatasetsforthemultipleanalyses,beitinRorany
otherstatisticalsoftware,canbederivedwithafewclicks.
ThedataoftheEDGGfieldpulsesandsomerelatedsam‐
plingschemesarestoredinacommondatabase,registered
intheGlobalIndexofVegetation‐PlotDatabases(GIVD;
Dengleretal.2011)asEU‐00‐003(Dengleretal.2012b).
Thesedataareavailableforcommondataanalysesbythe
contributorsandtheirpartners.Moreover,thefieldpulse
dataofthe10‐m²plotsarecontributedtoexistingnational
orregionalpartnerdatabasesoftheEuropeanVegetation
Archive(EVA;Chytrýetal.2016)andtheglobalcounterpart
“sPlot”(Purschkeetal.2015)sothattheyareavailablefor
continentalorglobalanalyses.
E.Possibleextensionsofthemethodology
E.1Otherspatialscales:Themostmeaningfuladditional
scalewouldbe1000m²(31.62m×31.62m)sincethisisa
commongrainsizeinmanybiodiversitysamplingschemes
worldwide,albeitmostlyrealisedas50m×20m(e.g.
20 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Photo9.Applyingthepenetrometertodeterminetheac‐
cessiblesoildepthduringtheEDGGFieldWorkshopinNa‐
varre,Spain,2014(Photo:J.Dengler).
Shmida1984;Peetetal.1998;Jürgensetal.2012).Thereare
severalwaystoarrangenestedplotswithin1000m²inaway
thatiscompatiblewiththeEDGGBiodiversityPlots:(a)place
oneEDGGBiodiversityPlotinthecentreofthe1000m²plot;
(b)placetwoEDGGBiodiversityPlotsintwooppositecor‐
ners;(c)placesinglenestedseriesof0.0001−100m²intwo
cornersor(d)thevariantshowninDengler(2009:Fig.1).
Oneshouldbeawarethatadding1000m²drasticallyin‐
creasesthetimeneededforsampling(comparethetimesfor
asinglenested‐plotseriesupto900m²asreportedbyDolnik
2003).Therefore,oneshouldonlyoptforthisadditionwhen
thereareadequateresourcesavailabletosamplethe1000
m²ascomprehensivelyasthe100m².Mostconvenientlythis
canbedoneinrelativelyspeciespoorvegetationwithlow
covervalues,e.g.insomeopenherbaceousvegetationof
SouthernAfrica(Jürgensetal.2012)orintransitionsfrom
steppestosemi‐desertsinIran(whereagroupincludingA.N.
iscurrentlydoingthis).Samplingsmallergrainsizesthan1
cm²,i.e.1mm²and10mm²,isalsopossible,butrequiresa
specialdevice(Dengleretal.2004).Finally,itcanmakesense
to“insert”additionalplotsizeswithfullsampling(including
covervaluesandenvironmentaldata),suchas16m²or25
m²,ifthisisanationalstandardforsamplingherbaceous
vegetationforphytosociologicalpurposes.Inthiscase,how‐
ever,thisadditionalplotsizeshouldnotbeusedinSAR
analyses,toavoidbias.
E.2Higherreplicationatsmallerscales:Sincethecoefficient
ofvariationofspeciesrichnessstronglyincreaseswithde‐
creasingplotsize(Dengler2008andreferencestherein),
increasinglymorereplicateswouldbenecessaryforsmaller
plotstoestimatemeanspeciesrichnesswiththesamepreci‐
sion.Thus,theoriginalapproachofDengler(2009)proposed
thattowardseachsmallerscalewithinthe100‐m2plots,and
downto0.01m2,thenumberofsub‐plotreplicatesisdou‐
bled.Duetotimeconstraintsandbecauseitishardlypossi‐
bletoarrangesuchanincreasingreplicationthatisboth
nestedandunbiasedwithrespecttothe100‐m²area(i.e.
doesnothavehighersamplingintensityinsomeregionsthan
inothers),thisapproachwasneveradoptedduringtheEDGG
fieldpulses.However,Dengleretal.(2004)andBoch(2005;
seeDengler&Boch2008)usedfourandfiveseriesofnested
plots(0.0001−10m²)withinthe100‐m²plot.RecentlyCan‐
cellierietal.(2017)adoptedtheideaofDengler(2009:Fig.
2),althoughwithalimitednestedseriescomposedofonly
threespatialscales.
E.3Stratified‐randomsampling:StepA.1oftheEDGGsam‐
plingmethodologyisaimedatapproximatingadatasetsimi‐
lartoonegainedwithstratifiedrandomsampling,butwhen
suchanaprioristratificationisnotfeasibleduetotimecon‐
straintsorlackofsuitableinformationlayersforuseina
GeographicInformationSystem(GIS).Basically,thesampling
approachofDengler(2009)isapplicableinsubjectivelyde‐
limitedhabitattypes,withstratifiedrandomsampling(oran
21 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Photo10.TakingasoilsampleduringtheEDGGField
WorkshopinKhakassia,Russia,2013(Photo:J.Dengler).
Photo11.Dryingandsortingofsoilsamplesduringthe
EDGGFieldWorkshopinNavarre,Spain,2014(Photo:J.
Dengler).
Photo12.EquipmentneededfortheEDGGsamplingmethod‐
ology,spreadtobepackedbythedifferentteamsduringthe
EDGGFieldWorkshopinSerbia,2016(Photo:C.Marcenò).
approximationofit)orwithfullyrandomsampling(forthe
prosandconsofthesesamplingapproaches,seeWildi1986).
OnlyfuIlyrandomsamplingallowscalculationoftruespatial
meansofattributes,suchasspeciesrichness(e.g.Dengler&
Allers2006;seealsothegrid‐basedrandomapproachbyCan‐
cellierietal.2017,whichwasinspiredbyChiaruccietal.
2012),butthisusuallyleadstoastrongunderrepresentation
ofrarehabitattypes(Diekmannetal.2007).Stratified‐
randomsamplingtheoreticallyallowsonetogetadataset
thatismorebalancedwithregardtoenvironmentalgradients
(thanfullyrandomsamplingwould)andeventoapproximate
spatialmeans(whentakingthefractionalextentofthestrata
intoaccount),whileavoidingthepotentialbiasesofsubjec‐
tivelylocatingtheplots.However,stratified‐randomsampling
requiresthatthemainenvironmentalgradientsarerather
clearaprioriandavailableasGISlayersforthestudyregion,
whichisnotusuallythecaseforEDGGfieldpulses,oneof
whosemainaimsistostudyundersampledregions.Ifthe
prerequisitesaremet,werecommendconsideringastratified
‐randomapproach(andaimtoimplementitintheField
Workshop2017inCentralItaly;seeFilibecketal.2016).This
approachmeansthatrandomcoordinateswithineachlevel
ofoneorseveralcrossedmainenvironmentalfactorsare
generatedwithinaGISandthensampledinthefield.Forex‐
ample,onecouldstratifytheregionbyelevationandbedrock
typeorbyland‐usetypeandslopeposition.Itisself‐evident
thatoneneedstodecideforone,twooramaximumofthree
gradients,eachsubdividedintoasmallnumberofcategories,
becauseotherwisethenumberofplotsnecessarywouldsoon
becomeunrealistic.Oneshouldhoweverbeawareofthe
potentialproblemsofastratified‐randomapproach,even
whentheseprerequisitesaremet.Ontheonehand,thea
prioriassumptionaboutthemaingradient(s)mightturnout
tobewrongandthenthesamplingwouldnotbeoptimal.For
example,Baumannetal.(2016)usedEDGGBiodiversityPlots
withelevationalstratification,onlytofindoutthattheeleva‐
tionalgradientintheircasewasofsubordinateimportance
forthespeciesrichnesspatterns.Ontheotherhand,strati‐
fied‐randomsamplingsignificantlyincreasesthetimeneeded
tofindandreachtheplotsinthefield,whichinsomecases
mighteventurnouttobeimpossibleduetoinaccessibility.
E.4Betterassessmentofbetadiversity:Throughthemulti‐
scalesampling,theEDGGBiodiversityPlotsprovidea
straightforwardtooltoassessbetadiversityatthesmallest
scales(i.e.within100m²).AsPolyakovaetal.(2016)demon‐
strate,thez‐valuesofthepower‐lawSARsareameasureof
standardised,multiplicativebetadiversity,whichallowscom‐
parisonsofwithin‐plotspeciesturnoverbetweenEDGGBiodi‐
versityPlotsofdifferentecologicalconditionsorregions(see
alsoDengler&Boch2008;Turtureanuetal.2014).Assessing
betadiversityacrosslargerspatialextentsthan100m²,for
exampleacross1km²or1000km²inacomparablemanner,
isnotstraightforwardwiththeEDGGsamplingmethodology
becausebetadiversityvaluesarelargelydeterminedbythe
spatial(andecological)extentofthestudyuniverse(Chiarucci
etal.2009).Theapproachofconstrained‐rarefactionoffersa
waytomakedatafromstudyregionsofdifferentspatialex‐
tentcomparable(Chiaruccietal.2009).However,eventhis
wouldnotaccountforpotentiallydifferentecological/
syntaxonomicaldelimitationsofthe“studyuniverse”indif‐
ferentfieldpulses(if,forexample,inoneonlyFestuco‐
Brometeaweresampledandinanotheralltypesofsemi‐
naturalgrasslands).Therefore,iftheassessmentoflandscape
‐scalebetadiversityisamajoraimofastudy,oneshouldcon‐
sidertheappropriateplacementoftheEDGGBiodiversity
Plots.Oneshoulddecideonthelandscapescaleofinterest,
e.g.200km²(acirclewitharadiusof7.98km),inwhichthe
plotsshouldbelocatedrandomly.InthisrespectE.4canwell
becombinedwithE.3.Ifalessformal,adhocsolutionisre‐
quired,onecouldthinkofplacingasetoffive(oranother
fixednumber)EDGGBiodiversityPlotswithinthesurveype‐
rimeterhaphazardly,withtheonlyrestrictionthateachof
theseshouldrepresentadifferentgrasslandtypeor,ifonly
onetypeisconsidered,comefromadifferentgrassland
patch.
E.5Non‐terricoloustaxaofthevegetation:Alsosaxicolous
(speciesgrowingonrocks),lignicolous(speciesgrowingon
deadwood)andepiphytictaxa(speciesgrowingonthebark
orevergreenleavesofotherplants)belongtotheoverall
phytodiversity.Therefore,werecommendtosamplealso
thesetaxa.Particularly,saxicolousbryophytesandlichenscan
contributesignificantlytotheoverallrichnessinrockygrass‐
lands(e.g.Boch2005;Bochetal.2016).Unfortunately,such
samplingrequiresspecificequipment(e.g.aknifetocollect
lignicolousandepiphyticspeciesaswellasahammeranda
chiseltocollectsamplesofsaxicolouslichensthatcannotbe
identifiedinthefield)andspecialexpertiseintheidentifica‐
tionofthesespecies.Fornon‐experiencedobserversaiming
atsamplingnon‐vascularplants,onepossibilitymightbethe
samplingofsocalledmacro‐cryptogams,whichareeasily
discernibleinthefield(e.g.excludingcrustoselichensand
verysmallbryophytes).Theirrichnesscanbeusedasanindi‐
catorfortheoverallrichnessofcryptogams(Bergaminietal.
2005).
E.6Animaltaxa:Giventhehighpotentialvalueofmulti‐
taxonstudiestounderstandpatternsanddriversofbiodiver‐
sity(e.g.Allanetal.2014;Zulkaetal.2014;Manningetal.
2015;Soliveresetal.2016),itishighlydesirabletoalsosam‐
pleanimaltaxa,forwhichsamplingatthegivenspatialscales
makessenseandcanbeperformedduringasinglevisit.In
anycase,itmustbedecidedwhichofthegrainsizescanbe
sampledmeaningfully,giventhatanimals,unlikeplants,are
ontheonehandmobileandontheotherhandnotalways
discernibleeveniftheyarepresent(i.e.recordsusuallyrepre‐
sentactivity,notpresence).Incontrasttoplants,typically
onlyoneorperhapstwoofthestandardgrainsizescanbe
sampledandmatchedwiththephytodiversitydata.Vegeta‐
tionstructureand,insomecases,plantspeciescomposition
andrichness,haveastronginfluenceonspeciescomposition,
richness,activitiesandabundancesofmanyaboveand
belowgroundinvertebratetaxa(Lawton1983;Borges&
Brown2001;Birkhoferetal.2011;Simonsetal.2014).For
example,spidersaspredatorsareinfluencedindirectlyby
22 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
changesinmicroclimaticconditions,preyabundance,sites
forbuildingwebs,shelteringand/oroviposition(Gunnarsson
1990;Halajetal.1998;McNett&Rypstra2000).Therefore,
collaborationofbotanistsandzoologistsinbiodiversityas‐
sessmentsishighlydesirable.
DuringtheFieldWorkshopinNavarre,Spain,vegetation‐
dwellingspiders(Araneae)weresampledbyN.Y.P.onthe
100‐m²plotswithstandardsamplingmethods,suchassweep
‐nettingandhandcollecting(Duffey1974;Photo13).Asthe
biodiversityplotsarerelativelysmallforsweep‐netting,one
sampleof15sweepswastakeninsideagivenplotandthree
samplesadjacenttoit.Usingrepeatedsweepsatthesame
plotisineffectiveforspiders,astheyfallonthegroundand
donotascendintothevegetationagainimmediately.Some
biodiversityplotscouldnotbesampledbecauseofanex‐
tremelylowsward.Spiderdiversitydatahavenotbeenana‐
lysedyet,butthissamplinghasledtothedescriptionofa
newspiderspecies(Kastryginaetal.2016).Whereitispossi‐
ble(butthisisevidentlynotthecaseduringEDGGfieldpulses
withonlyonevisitpersite),werecommendtostartinearly
springwithpitfalltrapping,usingatleastfivetrapspereach
EDGGBiodiversityPlot.Thetrapexpositionmayvaryfrom5–
10daysmonthlytoamonth.Spidersarerecommendedtobe
collectedduringthewholevegetationperiodbecauseofthe
differentseasonalactivitiesandmaturationtimes.Ifthereis
noopportunitytoconductsuchlong‐termstudies,itispossi‐
bletolimitthemtospringandearlysummer.Sweep‐netting
iseffectivefromlatespringuntilmid‐summer.Thesuction
methodusingaTullgrenfunneliseffectiveforplotswithlow
vegetationinthesameperiod.Ingeneral,itispreferableto
addoneautumnalsample.Quadratsamples(hand‐collecting
in25cm×25cmplotsonthegroundand/orlitterlayer)can
reveallessmobileground‐dwellingspecies.Thismethodcan
beparticularlywellcombinedwiththevegetationdata,as
onecantakeasmanysamplesasrequiredinsideavegetation
plot.Toestimatethecompletespidercommunityinagiven
EDGGBiodiversityPlot,onewouldneedtocombineallthe
above‐describedmethods.
Recently,studentsofthefirstauthor,includingB.H.,sampled
grasshoppers(Orthoptera)inEDGGBiodiversityPlots(Photo
14).Giventherelativelylownumberofspecies,Orthoptera
areeasiertoidentifythanmanyotherinsecttaxa.Phyto‐
phagousOrthopteraareusuallypolyphagous,meaningthey
arenotlimitedtojustonefamilyoffoodplantsbutrather
consumeawiderangeofplantspeciesacrossdifferentplant
families.Therefore,itcanbeassumedthattheoccurrenceof
certainspeciesofOrthopterawillnotdependontheoccur‐
renceofcertainplantspecies,butwillratherfollowfactors
likethemicroclimate,vegetationstructure(Gardineretal.
2002),plant‐coverorland‐use.ThesamplingofOrthoptera
shouldtakeplaceduringwarmsunnydaysinlatesummer
(August−September)toensuredeteconofmostlyimagines
(whichareeasiertodeterminethanjuveniles).Daysofsam‐
plingshouldnotfollowadayofintenserainfall.Weusedthe
sweep‐nettingmethodbecauseitisthemostrapidmethodin
thefieldanddoesnotrequireexpensiveequipment.The
mostcommonlyusednetsizeis38cmdiameter(Bomar
2001;Gardineretal.2005).Withineach100‐m2EDGGBiodi‐
versityPlot,firsttheNE‐SWdiagonal(i.e.theonethroughthe
cornerswithout10‐m²vegetationplots)wassweptbyad‐
vancingonestepforwardaftereachsweep.Bydoingso,the
sweepingofthediagonalwascompletedafterabout15con‐
secutivesweeps.Inaddition,thewhole100‐m2plotwassam‐
pledagainthreetimesbywalkingaroundandsweeping
withintheplotforaboutfivesecondseachtimetoensure
thatthewholeplotareawassampled.Aftereachsweepthe
Orthopteracaughtinthenetweretransferredintoplastic
boxesforsubsequentidentificationandcounting.Whilethe
describedmethodgenerallyworkedwell,itbecomesprob‐
lematicinvegetationplotswithtallervegetation(>50cm
plantheight),asthecatchingefficiencymaybeimpededby
vegetationstructure(Gardineretal.2005).
IntheSwissBiodiversityMonitoring,apartfromvascular
plantsandbryophytes,alsolandsnails(Gastropoda)are
sampledonthesame10m²plots(KoordinationsstelleBDM
2014).Otherinvertebrategroupsthatarepotentiallysuitable
Photo14.Samplinggrasshoppersona100‐m²EDGGBiodi‐
versityPlotduringanadvancedstudentfieldcourseinNE
Brandenburg,Germany,2016(Photo:J.Dengler).
23 Bulletin of the Eurasian Dry Grassland Group 32 October 2016
Photo13.Samplingvegetation‐dwellingspidersona100‐m²
EDGGBiodiversityPlotduringtheEDGGFieldWorkshopin
Navarre,Spain,2014(Photo:J.Dengler).
forinclusionintheEDGGBiodiversityPlotsincludeleafhop‐
pers(Auchenorrhyncha)(e.g.Primietal.inpress).
E.7Moreandbetterstandardisedenvironmentaldata:
Clearly,thegreatertheamountofstandardisedabioticdata
thatareassociatedwiththerecordedbiodiversitydata,the
moreanalyticalopportunitiestheyoffer.TheEDGGsampling
methodologyrequiresparametersandmeasurementmeth‐
odsthatgeneratereliabledataduringasinglevisitusinglim‐
itedtimeandresources.Amongsoilparameters,goodcandi‐
datesthatwerecollectedduringsomefieldpulsesbutnot
fixedasstandardyetareelectricalconductivity(EC),whichis
particularlyrelevantwhensamplinginaridareasorsaline
habitats,andH‐ andS‐value,fromwhichcationexchange
capacity(CEC)andbasesaturation(BS)canbederived.Ifthe
EDGGBiodiversityPlotsaredistributedwithinarelatively
narrowregionandrevisitingallofthemwithinoneorafew
daysofconstantdryweatherisfeasible,alsosoilwater‐
content(volumetricorgravimetric)wouldbeavaluablepa‐
rameter.
E.8Qualityassessment:Therearerelativelymanystudies
(seereviewbyMorrison2016)thatmeasuredtheimpactof
observer‐relateddiscrepanciesinvegetationsamplingand
warnagainsttheresultingbiasesinspeciesrichness,cover
estimates,andvisualestimatesofothervegetationfeatures.
However,thisissueisstillsurprisinglydisregardedorover‐
lookedinthevastmajorityofpublishedresearchesbasedon
analysisofplot‐baseddataacrossspatialandenvironmental
gradients.Nevertheless,moststudiesonobserver‐related
errorfoundmeanvaluesofpseudo‐turnover(i.e.ofthedif‐
ferenceinspeciescompositionbetweentwoobservers,or
teamsofobservers,surveyingthesameplot)rangingfrom
10%to30%(Morrison2016).Inastudywithfine‐scaleplots
intemperateEuropeangrasslands,Klimeš