Conference Paper

Estimating the Spanish Energy Demand Using Variable Neighborhood Search

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The increasing of the energy demand in every country has lead experts to find strategies for estimating the energy demand of a given country for the next year. The energy demand prediction in the last years has become a hard problem, since there are several factors (like economic crisis, industrial globalization, or population variation) that are not easy to control. For this reason, it is interesting to propose new strategies for efficiently perform this estimation. In this paper we propose a metaheuristic algorithm based on the Variable Neighborhood Search framework which is able to perform an accurate prediction of the energy demand for a given year. The algorithm is supported in a previously proposed exponential model for estimating the energy, and its input is conformed with a set of macroeconomic variables gathered during the last years. Experimental results show the excellent performance of the algorithm when compared with both previous approaches and the actual values.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Variable neighbourhood search (VNS) and all its variants have been successfully proved in hard combinatorial optimization problems. However, there are only few works concerning parallel VNS algorithms, compared with the amount of works devoted to sequential VNS design. In this paper, we propose different parallel designs for the VNS schema. We illustrate the performance of these general strategies by parallelizing a new VNS variant called variable formulation search (VFS). Specifically, we propose six different variants which differ in the VNS stages to be parallelized as well as in the communication mechanisms among processes. We group these variants into three different templates. The first one is oriented to parallelize the whole VNS method. The second one parallelizes the shake and the local search procedures. Finally, the third one explores in parallel the set of predefined neighbourhoods. We test the resulting designs on the cutwidth minimization problem (CMP). Experimental results show that the parallel implementation of the VFS outperforms previous methods in the state of the art for the CMP. This fact is also confirmed by non-parametric statistical tests.
Article
Full-text available
Energy consumption in China is continuously increasing. Accordingly, the present paper aims to develop a hybrid procedure for energy demand forecasting in China with higher precision. The mechanism of the affecting factors of China’s energy demand is investigated via path-coefficient analysis. The main affecting factors include gross domestic product, population, economic structure, urbanization rate, and energy structure. These factors are the inputs of the model with three forms: linear, exponential, and quadratic. To obtain better parameters, an improved hybrid algorithm called PSO-GA (particle swarm optimization-genetic algorithm) is proposed. This proposed algorithm differs from previous hybrids in the two ways. First, the GA and PSO approaches produce a hybrid hierarchy. Second, two information transfers are accomplished in the process. Results of this study show that China’s energy demand will be 4.70 billion tons coal equivalent in 2015. Furthermore, the proposed forecast method shows its superiority compared with single optimization methods, such as GA, PSO or ant colony optimization, and multiple linear regressions.
Article
Full-text available
This study deals with the modeling of the energy consumption in Turkey in order to forecast future projections based on socio-economic and demographic variables (gross domestic product-GDP, population, import and export amounts, and employment) using artificial neural network (ANN) and regression analyses. For this purpose, four diverse models including different indicators were used in the analyses. As the result of the analyses, this research proposes Model 2 as a suitable ANN model (having four independent variables being GDP, population, the amount of import and export) to efficiently estimate the energy consumption for Turkey. The proposed model predicted the energy consumption better than the regression models and the other three ANN models. Thus, the future energy consumption of Turkey is calculated by means of this model under different scenarios. The predicted forecast results by ANN were compared with the official forecasts. Finally, it was concluded that all the scenarios that were analyzed gave lower estimates of the energy consumption than the MENR projections and these scenarios also showed that the future energy consumption of Turkey would vary between 117.0 and 175.4Â Mtoe in 2014.
Article
Full-text available
The problem of finding a global optimum of an unconstrained multimodal function has been the subject of intensive study in recent years, giving rise to valuable advances in solution methods. We examine this problem within the framework of adaptive memory programming (AMP), focusing particularly on AMP strategies that derive from an integration of Scatter Search and Tabu Search. Computational comparisons involving 16 leading methods for multimodal function optimization, performed on a testbed of 64 problems widely used to calibrate the performance of such methods, disclose that our new Scatter Tabu Search (STS) procedure is competitive with the state-of-the-art methods in terms of the average optimality gap achieved.
Conference Paper
Embedded systems have become an essential part of our lives, thanks to their evo-lution in the recent years, but the main drawback is their power consumption. This paper is focused on improving the memory allocation of embedded systems to reduce their power consumption. We propose a parallel variable neighborhood search algorithm for the dynamic memory allocation problem, and compare it with the state of the art. Computational results and statistical tests applied show that the proposed algorithm produces significantly better outcomes than the previous algorithm in shorter computing time.
Article
Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector is reinvestigated, the results indicate significant improvement.
Article
Energy demand projection is fundamental to rational energy planning formulation. The present study investigates the direct and indirect effects of five factors, namely GDP, population, proportion of industrial, proportion of urban population and coal percentage of total energy consumption on China’s energy demand, implementing a path-coefficient analysis. On this basis, a hybrid algorithm, Particle Swarm Optimization and Genetic Algorithm optimal Energy Demand Estimating (PSO–GA EDE) model, is proposed for China. The coefficients of the three forms of the model (linear, exponential and quadratic model) are optimized by proposed PSO–GA. To obtain a combinational prediction of three forms, a departure coefficient method is applied to get the combinational weights. The results show that the China’s energy demand will be 4.48 billion tce in 2015. Furthermore; the proposed method forecast shows its superiority compared with other single optimization method such as GA, PSO or ACO and multiple linear regressions.
Article
To improve estimation efficiency for future projections, the present study has proposed a hybrid algorithm, Particle Swarm Optimization and Genetic Algorithm optimal Energy Demand Estimating (PSO–GA EDE) model, for China. The coefficients of the three forms of the model (linear, exponential, and quadratic) are optimized by PSO–GA using factors, such as GDP, population, economic structure, urbanization rate, and energy consumption structure, that affect demand. Based on 20-year historical data between 1990 and 2009, the simulation results of the proposed model have greater accuracy and reliability than other single optimization methods. Moreover, it can be used with optimal coefficients for the energy demand projections of China. The departure coefficient method is applied to get the weights of the three forms of the model to obtain a combinational prediction. The energy demand of China is going to be 4.79, 4.04, and 4.48 billion tce in 2015, and 6.91, 5.03, and 6.11 billion tce (“standard†tons coal equivalent) in 2020 under three different scenarios. Further, the projection results are compared with other estimating methods.
Article
This paper proposes a new hybrid method (HAP) for estimating energy demand of Turkey using Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). Proposed energy demand model (HAPE) is the first model which integrates two mentioned meta-heuristic techniques. While, PSO, developed for solving continuous optimization problems, is a population based stochastic technique; ACO, simulating behaviors between nest and food source of real ants, is generally used for discrete optimizations. Hybrid method based PSO and ACO is developed to estimate energy demand using gross domestic product (GDP), population, import and export. HAPE is developed in two forms which are linear (HAPEL) and quadratic (HAPEQ). The future energy demand is estimated under different scenarios. In order to show the accuracy of the algorithm, a comparison is made with ACO and PSO which are developed for the same problem. According to obtained results, relative estimation errors of the HAPE model are the lowest of them and quadratic form (HAPEQ) provides better-fit solutions due to fluctuations of the socio-economic indicators.
Article
This paper proposes two new models based on artificial bee colony (ABC) and particle swarm optimization (PSO) techniques to estimate electricity energy demand in Turkey. ABC and PSO electricity energy estimation models (ABCEE and PSOEE) are developed by incorporating gross domestic product (GDP), population, import and export figures of Turkey as inputs. All models are proposed in two forms, linear and quadratic. Also different neighbor selection mechanisms are attempted for ABCEE model to increase convergence to minimum of the algorithm. In order to indicate the applicability and accuracy of the proposed models, a comparison is made with ant colony optimization (ACO) which is available for the same problem in the literature. According to obtained results, relative estimation errors of the proposed models are lower than ACO and quadratic form provides better-fit solutions than linear form due to fluctuations of the socio-economic indicators. Finally, Turkey’s electricity energy demand is projected until 2025 according to three different scenarios.
Article
a b s t r a c t This study deals with the modeling of the energy consumption in Turkey in order to forecast future pro-jections based on socio-economic and demographic variables (gross domestic product-GDP, population, import and export amounts, and employment) using artificial neural network (ANN) and regression anal-yses. For this purpose, four diverse models including different indicators were used in the analyses. As the result of the analyses, this research proposes Model 2 as a suitable ANN model (having four independent variables being GDP, population, the amount of import and export) to efficiently estimate the energy con-sumption for Turkey. The proposed model predicted the energy consumption better than the regression models and the other three ANN models. Thus, the future energy consumption of Turkey is calculated by means of this model under different scenarios. The predicted forecast results by ANN were compared with the official forecasts. Finally, it was concluded that all the scenarios that were analyzed gave lower estimates of the energy consumption than the MENR projections and these scenarios also showed that the future energy consumption of Turkey would vary between 117.0 and 175.4 Mtoe in 2014.
Article
The energy supply and demand should be closely monitored and revised the forecasts to take account of the progress of liberalization, energy efficiency improvements, structural changes in industry and other major factors. Medium and long-term forecasting of energy demand, which is based on realistic indicators, is a prerequisite to become an industrialized country and to have high living standards. Energy planning is not possible without a reasonable knowledge of past and present energy consumption and likely future demands. Energy demand management activities should bring the demand and supply closer to a perceived optimum. Turkey's energy demand has grown rapidly almost every year and is expected to continue growing. However, the energy demand forecasts prepared by the Turkey Ministry of Energy and Natural Resources overestimate the demand. Recently many studies are performed by researchers to forecast the energy demand of Turkey. Particle swarm optimization (PSO) technique has never been used for such a study. In this study a model is proposed, using PSO-based energy demand forecasting (PSOEDF), to forecast the energy demand of Turkey more efficiently. Although there are other indicators as well, gross domestic product (GDP), population, import and export are used as basic energy indicators of energy demand. In order to show the accuracy of the algorithm, a comparison is made with the ant colony optimization (ACO) energy demand estimation model which is developed for the same problem.
Article
This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. ACO energy demand estimation (ACOEDE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear and quadratic. Quadratic_ACOEDE provided better-fit solution due to fluctuations of the economic indicators. The ACOEDE model plans the energy demand of Turkey until 2025 according to three scenarios. The relative estimation errors of the ACOEDE model are the lowest when they are compared with the Ministry of Energy and Natural Resources (MENR) projection.
Article
Because South Korea's industries depend heavily on imported energy sources (fifth largest importer of oil and second largest importer of liquefied natural gas in the world), the accurate estimating of its energy demand is critical in energy policy-making. This research proposes an artificial neural network model (a structure with feed-forward multilayer perceptron, error back-propagation algorithm, momentum process, and scaled data) to efficiently estimate the energy demand for South Korea. The model has four independent variables, such as gross domestic product (GDP), population, import, and export amounts. The data are obtained from diverse local and international sources. The proposed model better estimated energy demand than a linear regression model (a structure with multiple linear variables and least square method) or an exponential model (a structure with mixed integer variables, branch and bound method, and Broyden–Fletcher–Goldfarb–Shanno (BFGS) method) in terms of root mean squared error (RMSE). The model also forecasted better than the other two models in terms of RMSE without any over-fitting problem. Further testing with four scenarios based upon reliable source data showed unanticipated results. Instead of growing permanently, the energy demands peaked at certain points, and then decreased gradually. This trend is quite different from the results by regression or exponential model.
Article
Systematic change of neighborhood within a possibly randomized local search algorithm yields a simple and effective metaheuristic for combinatorial and global optimization, called variable neighborhood search (VNS). We present a basic scheme for this purpose, which can easily be implemented using any local search algorithm as a subroutine. Its effectiveness is illustrated by solving several classical combinatorial or global optimization problems. Moreover, several extensions are proposed for solving large problem instances: using VNS within the successive approximation method yields a two-level VNS, called variable neighborhood decomposition search (VNDS); modifying the basic scheme to explore easily valleys far from the incumbent solution yields an efficient skewed VNS (SVNS) heuristic. Finally, we show how to stabilize column generation algorithms with help of VNS and discuss various ways to use VNS in graph theory, i.e., to suggest, disprove or give hints on how to prove conjectures, an area where metaheuristics do not appear to have been applied before.
Article
This study deals with estimation of energy demand based on economic indicators in Turkey. The genetic algorithm energy demand (GAEDM) Model is developed based on past data using the genetic algorithm approach. The economic indicators that are used during the model development are: gross national product (GNP), population and import and export figures of Turkey. Two forms of the GAEDM model are developed to estimate energy demand. The GAEDM can be used for estimating the energy demand in the future by optimizing the parameter value using available data. The future energy demand is calculated under different scenarios. The current models overestimate the energy demand in the years 2020 and 2025. The relative estimation errors of the GAEDM model are the lowest when they are compared with the Ministry of Energy and Natural Resources (MENR) projection.
Article
This paper presents Turkey's net electricity energy generation and demand based on economic indicators. Forecasting model for electricity energy generation and demand is first proposed by the ant colony optimization (ACO) approach. It is multi-agent system in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. Ant colony optimization electricity energy estimation (ACOEEE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear electricity energy generation and demand (linear_ACOEEGE and linear ACOEEDE) and quadratic energy generation and demand (quadratic_ACOEEGE and quadratic ACOEEDE). Quadratic models for both generation and demand provided better fit solution due to the fluctuations of the economic indicators. The ACOEEGE and ACOEEDE models indicate Turkey's net electricity energy generation and demand until 2025 according to three scenarios.
Article
Forecasting of energy demand in emerging markets is one of the most important policy tools used by the decision makers all over the world. In Turkey, most of the early studies used include various forms of econometric modeling. However, since the estimated economic and demographic parameters usually deviate from the realizations, time-series forecasting appears to give better results. In this study, we used the Autoregressive Integrated Moving Average (ARIMA) and seasonal ARIMA (SARIMA) methods to estimate the future primary energy demand of Turkey from 2005 to 2020. The ARIMA forecasting of the total primary energy demand appears to be more reliable than the summation of the individual forecasts. The results have shown that the average annual growth rates of individual energy sources and total primary energy will decrease in all cases except wood and animal–plant remains which will have negative growth rates. The decrease in the rate of energy demand may be interpreted that the energy intensity peak will be achieved in the coming decades. Another interpretation is that any decrease in energy demand will slow down the economic growth during the forecasted period. Rates of changes and reserves in the fossil fuels indicate that inter-fuel substitution should be made leading to a best mix of the country's energy system. Based on our findings we proposed some policy recommendations.
Ant colony optimization approach to estimate energy demand of Turkey Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025
  • M D Toksari
Toksari, M.D.: Ant colony optimization approach to estimate energy demand of Turkey. Energy Policy 35(8), 3984–3990 (2007) 16. ¨ Unler, A.: Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025. Energy Policy 36(6), 1937–1944 (2008)