Since the early 1980s we have witnessed the digital audio and video revolution: the Compact Disc (CD) has become a commodity audio system. CD-ROM and DVD-ROM have become the de facto standard for the storage of large computer programs and files. Growing fast in popularity are the digital audio and video recording systems called DVD and BluRay Disc. The above mass storage products, which form the backbone of modern electronic entertainment industry, would have been impossible without the usage of advanced coding systems.
Pulse Code Modulation (PCM) is a process in which an analogue, audio or video, signal is encoded into a digital bit stream. The analogue signal is sampled, quantized and finally encoded into a bit stream. The origins of digital audio can be traced as far back as 1937, when Alec H. Reeves, a British scientist, invented pulse code modulation \cite{Ree}. The advantages of digital audio and video recording have been known and appreciated for a long time. The principal advantage that digital implementation confers over analog systems is that in a well-engineered digital recording system the sole significant degradation takes place at the initial digitization, and the quality lasts until the point of ultimate failure. In an analog system, quality is diminished at each stage of signal processing and the number of recording generations is limited. The quality of analog recordings, like the proverbial 'old soldier', just fades away. The advent of ever-cheaper and faster digital circuitry has made feasible the creation of high-end digital video and audio recorders, an impracticable possibility using previous generations of conventional analog hardware.
The general subject of coding for digital recorders is very broad, with its roots deep set in history. In digital recording (and transmission) systems, channel encoding is employed to improve the efficiency and reliability of the channel. Channel coding is commonly accomplished in two successive steps: (a) error-correction code followed by (b) recording (or modulation) code. Error-correction control is realized by adding extra symbols to the conveyed message. These extra symbols make it possible for the receiver to correct errors that may occur in the received message.
In the second coding step, the input data are translated into a sequence with special properties that comply with the given "physical nature" of the recorder. Of course, it is very difficult to define precisely the area of recording codes and it is even more difficult to be in any sense comprehensive. The special attributes that the recorded sequences should have to render it compatible with the physical characteristics of the available transmission channel are called channel constraints. For instance, in optical recording a '1' is recorded as pit and a '0' is recorded as land. For physical reasons, the pits or lands should neither be too long or too short. Thus, one records only those messages that satisfy a run-length-limited constraint. This requires the construction of a code which translates arbitrary source data into sequences that obey the given constraints. Many commercial recorder products, such as Compact Disc and DVD, use an RLL code.
The main part of this book is concerned with the theoretical and practical aspects of coding techniques intended to improve the reliability and efficiency of mass recording systems as a whole. The successful operation of any recording code is crucially dependent upon specific properties of the various subsystems of the recorder. There are no techniques, other than experimental ones, available to assess the suitability of a specific coding technique. It is therefore not possible to provide a cookbook approach for the selection of the 'best' recording code.
In this book, theory has been blended with practice to show how theoretical principles are applied to design encoders and decoders. The practitioner's view will predominate: we shall not be content with proving that a particular code exists and ignore the practical detail that the decoder complexity is only a billion times more complex than the largest existing computer. The ultimate goal of all work, application, is never once lost from sight. Much effort has been gone into the presentation of advanced topics such as in-depth treatments of code design techniques, hardware consequences, and applications. The list of references (including many US Patents) has been made as complete as possible and suggestions for 'further reading' have been included for those who wish to pursue specific topics in more detail.
The decision to update Coding Techniques for Digital Recorders, published by Prentice-Hall (UK) in 1991, was made in Singapore during my stay in the winter of 1998. The principal reason for this decision was that during the last ten years or so, we have witnessed a success story of coding for constrained channels. The topic of this book, once the province of industrial research, has become an active research field in academia as well. During the IEEE International Symposia on Information Theory (ISIT and the IEEE International Conference on Communications (ICC), for example, there are now usually three sessions entirely devoted to aspects of constrained coding. As a result, very exciting new material, in the form of (conference) articles and theses, has become available, and an update became a necessity.
The author is indebted to the Institute for Experimental Mathematics, University of Duisburg-Essen, Germany, the Data Storage Institute (DSI) and National University of Singapore (NUS), both in Singapore, and Princeton University, US, for the opportunity offered to write this book. Among the many people who helped me with this project, I like to thank Dr. Ludo Tolhuizen, Philips Research Eindhoven, for reading and providing useful comments and additions to the manuscript.
Preface to the Second Edition
About five years after the publication of the first edition, it was felt that an update of this text would be inescapable as so many relevant publications, including patents and survey papers, have been published. The author's principal aim in writing the second edition is to add the newly published coding methods, and discuss them in the context of the prior art. As a result about 150 new references, including many patents and patent applications, most of them younger than five years old, have been added to the former list of references. Fortunately, the US Patent Office now follows the European Patent Office in publishing a patent application after eighteen months of its first application, and this policy clearly adds to the rapid access to this important part of the technical literature.
I am grateful to many readers who have helped me to correct (clerical) errors in the first edition and also to those who brought new and exciting material to my attention. I have tried to correct every error that I found or was brought to my attention by attentive readers, and seriously tried to avoid introducing new errors in the Second
Edition.
China is becoming a major player in the art of constructing, designing, and basic research of electronic storage systems. A Chinese translation of the first edition has been published early 2004. The author is indebted to prof. Xu, Tsinghua University, Beijing, for taking the initiative for this Chinese version, and also to Mr. Zhijun Lei, Tsinghua University, for undertaking the arduous task of translating this book from English to Chinese. Clearly, this translation makes it possible that a billion more people will now have access to it.
Kees A. Schouhamer Immink, Rotterdam, November 2004