Conference PaperPDF Available

Neuromuscular Skeletal Arm Modeling to Analysis of Stability and Movement Control

Authors:

Figures

No caption available
… 
No caption available
… 
No caption available
… 
Content may be subject to copyright.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The paralysis resulting from spinal cord injury severely limits voluntary seated-posture control and increases predisposition to a number of health risks. We developed and verified a musculoskeletal model of the hips and lumbar spine using published data. We then used the model to select the optimal muscles for-and evaluate the likely functional recovery benefit of-an 8-channel seated-posture-control neuroprosthesis based on functional electrical stimulation (FES). We found that the model-predicted optimal muscle set included the erector spinae, oblique abdominals, gluteus maximus, and iliopsoas. We mapped muscle excitations to seated trunk posture so that the required excitations at any posture could be approximated using a static map. Using the optimal muscle set, the model predicted a maximum stimulated range of motion of 49 degrees flexion, 9 degrees extension, and 16 degrees lateral bend. In the nominal upright posture, the modeled user could hold almost 15 kg with arms at sides and elbows bent. We discuss in this article the practicality of using FES with the oblique abdominals. A seated-posture-control neuroprosthesis would increase the user's bimanual work space and include several secondary benefits.
Article
Full-text available
We compared motor unit synchronization and firing rate variability within and across synergistic hand muscles during a pinching task following short-term light-load training to improve force steadiness in older adults. A total of 183 motor unit pairs before training and 158 motor unit pairs after training were recorded with intramuscular fine-wire electrodes within and across the first dorsal interosseous (FDI) and adductor pollicis (AdP) muscles during a pinch task performed by ten older adults before and after a 4-week short-term light-load training program. Nine younger adults performed the same experimental sessions 4 weeks apart with no training intervention. Two-minute sustained contractions of 2, 4, 8, and 12% maximal voluntary contraction (MVC) were performed with the non-dominant hand. The coefficient of variation (CV) of force was greater in older than in younger adults and was lower at the 2 and 4% MVC levels in both the finger (0.12 +/- 0.01 vs. 0.08 +/- 0.01, and 0.08 +/- 0.01 vs. 0.05 +/- 0.01, respectively) and thumb (0.11 +/- 0.01 vs. 0.08 +/- 0.01, and 0.09 +/- 0.01 vs. 0.05 +/- 0.01, respectively) compared to higher force levels following training in the older adults. There were no changes in CIS or k'-1 values following training. Motor unit firing rate variability significantly decreased at low force levels in the FDI muscle and also tended to decrease with training in the AdP muscle (p = 0.06). No changes occurred in the younger control group. These findings are the first to show that motor unit synchronization does not change during light-load training. Thus, it is likely that force steadiness in older adults improves by reducing motor unit firing variability rather than by changing motor unit synchronization.
Article
Full-text available
The mammalian target of rapamycin (mTOR) has been identified as a growth factor and nutrient-sensitive molecule that controls the translational machinery and cell growth. Rapamycin-sensitive (RS) signaling events have also been shown to be necessary for mechanical load-induced growth of skeletal muscle, but the mechanisms involved in the mechanical activation of RS signaling are not known. The finding that mechanical stimuli induce nutrient uptake in skeletal muscle raises the possibility that mechanically induced RS signaling is mediated via a nutrient-dependent mechanism. To investigate this hypothesis, skeletal muscles (ex vivo) were stimulated with nutrients or intermittent mechanical stretch and the phosphorylation of p70S6k [P-p70(389)], PKB [P-PKB], mTOR [P-mTOR(2481)], and p38 [P-p38] was assessed. In comparison to vehicle-treated controls, both nutrient and mechanical stimuli induced P-p70(389), neither stimulus altered P-PKB or P-mTOR(2481), and only mechanical stimuli induced P-p38. The nutrient and mechanically induced increase in P-p70(389) was blocked by rapamycin, but only nutrient-induced signaling to P-p70(389) was blocked by wortmannin. Furthermore, the mechanically induced increase in P-p70(389) was not impaired by the removal of exogenous nutrients. Taken together, these results indicate that exogenous nutrients are not required for mechanically induced RS signaling and that nutrient and mechanical stimuli activate RS signaling through distinct upstream mechanisms.
Article
Full-text available
We performed this study to determine the feasibility of controlling and stabilizing seated posture with functional electrical stimulation (FES) after paralysis from spinal cord injury (SCI) using computer simulations and a 3-dimensional model of the hip and trunk. We used the model to approximate the range of postures in the sagittal and transverse planes attainable by a seated subject and to estimate the maximum restorative moment that could be produced in a neutral posture in response to a disturbance. The simulations predicted that approximately 28 degrees of forward flexion in the sagittal plane (combined hip and trunk) and 9 degrees of lateral bending in the transverse plane should be possible with FES and that a maximum disturbance rejection moment of approximately 45 newton meters could be expected with the chosen muscle set. We tested a subject with a motor complete thoracic SCI and implanted electrodes in a subset of the selected muscles to compare the moments the subject required to maintain various hip and trunk positions with those predicted by the model. Although a significant range of seated postures was possible with FES, the data demonstrated that more complete activation of the paralyzed muscles would be needed for the subject to fully achieve the theoretical range of motion. With further refinements, we could apply these techniques to the design of control systems for regulation of seated posture and dynamic motion of the torso.
Article
Eccentric contractions induce muscle fiber damage that is associated with delayed-onset muscle soreness and an impaired ability of the muscle to generate voluntary force. Pain and pathophysiological changes within the damaged muscle can delay or inhibit neuromuscular responses at the injured site, which is expected to have an effect on reflex activity of the muscle. The aim of the study was to investigate the reflex activity of knee muscles to rapid destabilizing perturbations, before, immediately after, and 24 and 48 h after eccentric exercise. Bipolar surface EMG signals were recorded from 10 healthy men with seven pairs of electrodes located on the knee extensor muscles (vastus medialis, rectus femoris, and vastus lateralis) and knee flexor muscles (the medial and lateral heads of the hamstring and the medial and lateral heads of gastrocnemius) of the right leg during rapid perturbations. The maximal voluntary contraction force decreased by 24% ± 4.9% immediately after exercise and remained reduced by 21.4% ± 4.1% at 24 h and by 21.6% ± 9.9% at 48 h after exercise with respect to baseline. During the postexercise postural perturbations, the EMG average rectified value of the knee extensor muscles was significantly lower than baseline (P < 0.001). Moreover, the decrease in average rectified value over time during postexercise sustained contractions was greatest compared with the session before exercise (P < 0.0001). Reflex activity in leg muscles elicited by rapid destabilizing perturbations is reduced after exercise-induced muscle soreness.
Article
The focus of this paper is the study of stability and point-to-point movement of a one-link arm. The sagittal arm has two musculotendon actuators, two neural oscillators that generate burst signals as motoneuron inputs, and spindles and Golgi tendon organs for extrinsic reflex feedbacks. It is shown that coactivation leads to intrinsic position and velocity feedback, and that the tendons introduce intrinsic force and rate of force feedback. In addition, the integrating effects of the tendons are studied when the actuator is constructed from a large number of identical fibers that are excited by alpha signals whose arrival times at the fiber are randomly distributed. Each of the musculotendon actuators receives two input signals--a burst signal analogous to alpha inputs and a conventional analogue signal that represents fusimotor input to the spindles. The process of combining burst signals and conventional analogue signals is studied. Simulation results show that the movement of the system with burst signals as inputs has overshoot and speed similar to the system with analogue signals.
Article
This paper's focus is the stability, point-to-point, and rhythmic movements of a one-link sagittal arm. The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear muscle-like actuators for control purposes, existence of nonlinear spindle-like sensors, and actions of gravity and loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops. An algorithm for computation of the actuator forces and the feedback signals in the system is provided. It automatically renders positive forces and positive neural signals. The positiveness of the forces represents the unidirectional character of muscular forces, i.e., natural muscles can only pull in the direction of shortening. The positiveness of the neural signals implies these signals can correspond to firing rates. The stability of the system is analyzed. The role of the nonlinearities in the dynamics, actuators, and feedback signals, and the delays in the feedback loops in destabilizing the system, and the consequently undesirable oscillations are studied by simulation. The system is designed to perform stable point-to-point movement. The effects of the presetting of the input signals, gain of the feedback loops, and the duration of delays in generating undesirable tremor-like oscillations at the end of the movement are studied and demonstrated by digital computer simulations.
Article
This study demonstrates the validity of a mathematical model that predicts the force generated by rat skeletal muscles during brief subtetanic and tetanic isometric contractions. The model consists of three coupled differential equations (ODE's). The first two equations represent the calcium dynamics and the third equation represents force dynamics. The model parameters were identified from brief trains of regularly spaces pulses [constant-frequency trains (CFT's)] that produce subtetanic muscle responses. Using these parameters, the model was able to predict isometric forces from other stimulation patterns. For the gastrocnemius muscles predictions were made for responses to CFT's with interpulse intervals (IPI's) ranging from 10 to 50 ms and variable-frequency trains (VFT's), where the initial IPI = 10 ms and the remaining IPI's were identical to those used for the CFT's. For the soleus muscles predictions were made for 10-100-ms CFT's. The shape of the predicted responses closely match the experimental data. Comparisons between experimental and modeled force-time integrals, peak forces, and time-to-peak also suggest excellent agreement between the model and the experiment data. Many physiological parameters predicted by the model agree with values obtained independently by others. In conclusion, the model accurately predicts isometric forces generated by rat gastrocnemius and soleus muscles produced by brief stimulation trains.
Article
1In human pennate muscle, changes in anatomical cross-sectional area (CSA) or volume caused by training or inactivity may not necessarily reflect the change in physiological CSA, and thereby in maximal contractile force, since a simultaneous change in muscle fibre pennation angle could also occur.2Eleven male subjects undertook 14 weeks of heavy-resistance strength training of the lower limb muscles. Before and after training anatomical CSA and volume of the human quadriceps femoris muscle were assessed by use of magnetic resonance imaging (MRI), muscle fibre pennation angle (θp) was measured in the vastus lateralis (VL) by use of ultrasonography, and muscle fibre CSA (CSAfibre) was obtained by needle biopsy sampling in VL.3Anatomical muscle CSA and volume increased with training from 77.5 ± 3.0 to 85.0 ± 2.7 cm2 and 1676 ± 63 to 1841 ± 57 cm3, respectively (±s.e.m.). Furthermore, VL pennation angle increased from 8.0 ± 0.4 to 10.7 ± 0.6 deg and CSAfibre increased from 3754 ± 271 to 4238 ± 202 μm2. Isometric quadriceps strength increased from 282.6 ± 11.7 to 327.0 ± 12.4 N m.4A positive relationship was observed between θp and quadriceps volume prior to training (r = 0.622). Multifactor regression analysis revealed a stronger relationship when θp and CSAfibre were combined (R= 0.728). Post-training increases in CSAfibre were related to the increase in quadriceps volume (r = 0.749).5Myosin heavy chain (MHC) isoform distribution (type I and II) remained unaltered with training.6VL muscle fibre pennation angle was observed to increase in response to resistance training. This allowed single muscle fibre CSA and maximal contractile strength to increase more (+16 %) than anatomical muscle CSA and volume (+10 %).7Collectively, the present data suggest that the morphology, architecture and contractile capacity of human pennate muscle are interrelated, in vivo. This interaction seems to include the specific adaptation responses evoked by intensive resistance training.
Article
This study measured changes in maximal voluntary contraction (MVC) force, percentage maximal activation, maximal surface EMG, M-wave amplitude and average motor unit firing rates during the initial 3 weeks of isometric resistance training of the quadriceps muscle. Ten men participated in a resistance training programme three times a week for 3 weeks and 10 men participated as a control group. In the training group, MVC increased by 35% (from 761 +/- 77 to 1031 +/- 78 N) by the end of the 3 weeks. There were no changes in mean motor unit firing rates during submaximal or maximal voluntary contractions of 50 (15.51 +/- 1.48 Hz), 75 (20.23 +/- 1.85 Hz) or 100% MVC (42.25 +/- 2.72 Hz) with isometric resistance training. There was also no change in maximal surface EMG relative to the M-wave amplitude. However, there was a small increase in maximal activation (from 95.7 +/- 1.83 to 98.44 +/- 0.66%) as measured by the twitch interpolation technique. There were no changes in any of the parameters measured in the control group. It is suggested that mechanisms other than increases in average motor unit firing rates contributed to the increase in maximal force output with resistance training. Such mechanisms may include a combination of increased motor unit recruitment, enhanced protein synthesis, and changes in motor unit synchronization and muscle activation patterns across the quadriceps synergy.