Content uploaded by Harm Brouwer
Author content
All content in this area was uploaded by Harm Brouwer on Aug 24, 2016
Content may be subject to copyright.
Jesús Calvillo, Harm Brouwer, Matthew Crocker
jesusc; brouwer; crocker@coli.uni-saarland.de
Saarland University
Connectionist Semantic Systematicity in
Language Production
!"#$"#%"&'()*+%,)#-&&
Mapping'''
Seman+cs'à'Sentences.'
!./$"01,%2$.-&
Generaliza+on'to'
unseen'sentences/
seman+cs.'
'
High' overall' performance' of' the' model' shows' that' the' DSS-based'
representa+ons'are'/+2$134"&5)(&0)*"42#6&41#6+16"&7()*+%,)#8&
'
'
The' model' is' able' to' generate' novel' sentences' for' seman+cally' known'
situa+ons'but'with'a'different'voice'(cond.'1&2)'showing'
&à&!.#$1%,%&!./$"01,%2$.&
'
'
The'model' is' able' to' generate' sentences' for' unseen' areas' in' the' seman+c'
space'(cond.'3&5)'showing'
&à&!"01#,%&!./$"01,%2$.'
!"01#,%&!71%"& 92#6+2/,%&!71%"&
Similar'situa+ons'are'close'
to'each'other.'
Con+nuous'
Space'
Similar'situa+ons'are'
assigned'linguis+cally'
similar'realiza+ons.'
Generaliza+on'to'unseen'areas'is'
possible'if'the'model'learns'an'
abstrac+on'of'the'topology'of'the'
spaces'and'their'mapping,'as'proposed'
by'Frank'et'al.'(2009).'
:)#*2,)#& ;+"(.& !20241(2$.&<=>& '"(5"%$&?1$%@&<=>&
1' pas' 97.66' 92.86'
2' act' 97.58' 93.57'
3' act' 98.35' 93.57'
3' pas' 96.79' 83.57'
5' act' 95.08' 85.0'
Average'Test' -' AB8C& DD8EB&
*10-fold'cross'valida+on'averages'(90%'training,'10%'tes+ng)'
*Levenshtein'Similarity'
*Condi+on'4'had'no'passive'sentences'to'compare'with,'thus'no'similarity'scores'could''
''be'calculated.'
F+$7+$& Sophia'beats'Heidi'with'ease'at'hide_and_seek.'
GH7"%$"*& Sophia'beats'Heidi'with'ease'at'hide_and_seek'2#&$@"&3"*())0.'
F+$7+$& Sophia'beats'someone'at'hide_and_seek'in'the'bedroom.'
GH7"%$"*& someone'loses'to'Sophia'at'hide_and_seek'in'the'bedroom.'
PP-aZachment'
31.6%'
'
The'errors'of'5'folds'were'manually'inspected'(38'errors).'
'
With'a'couple'of'excep+ons,'all'sentences'are'/.#$1%,%144.&%)(("%$&1#*&/"01#,%144.&5"42%2$)+/8&
'
Mistakes'occur'when'the'model'produces'a'sentence'that'is'/"01#,%144.&@26@4.&/20241(&to'the'
one'expected.'
'1//2I"&F+$7+$& @2*"J1#*J/""K'is'won'with'ease'by'L"2*2'in'the'playground.'
M%,I"&!"#$"#%"& L"2*2'beats'Sophia'with'ease'in'the'playground'at'@2*"J1#*J/""K.'
'1//2I"&&F+$7+$& 1&$).'is'played'with'in'the'playground'by'Sophia.'
M%,I"&!"#$"#%"& Sophia'plays'in'the'playground.'
Output'of'3'folds'was'manually'inspected'(84'situa+ons).'
'
u ''Mostly'correct'and'coherent'with'the'given'seman+cs.'
u ''Model'learns'that:''
o passive'sentences'begin'by'the'object'of'the'ac+on.'''''
o the'object'is'never'a'person.'
Hidden'
'(120'units)'
Words'
(40'units)'
DSS'
(150'units)'
'
Comprehension'Model'
Frank'et'al.'(2009)'
monitoring'
Hidden'
'(120'units,'htan)'
Words'
(43'units,'so`max)'
Produc+on'Model'
DSS'
(45'units)'
Passive'
Sentences'
setAP''
(424'situa+ons)'
setA'
(358'situa+ons)'
Ac+ve'
Sentences'
?
✔
1
Condi+ons'
?
2
?
✔
3
?
✔
4
?
?
5
?
?2%()41#6+16"&
'
43'words'
§ 40#original#words#+2#determiners#and#end-of-sentence#marker#'
'
8201'lawful'sentences:'
§ 83%'in'ac+ve'voice'
§ 17%'in'passive'voice'
'
782'unique'DSS'representa+ons:'
§ 424'related'to'ac+ve'and'passive'sentences'
§ 358'related'only'to'ac+ve'sentences'
'
Frank'et'al.'(2009)’s'grammar'does'not'define'passive'
sentences'for'situa+ons'where:'
§ the'object'of'the'ac+on'is'a'person'(“Heidi'beats'Charlie.”)''
§ or'undefined'(“Charlie'plays.”).'
0.1'
''0'
1.0'
0.03'
'…'''
0.8'
''C&
someone,'plays,'chess,'.'
someone,'plays,'chess,'inside,'.'
…'
a,'girl,'plays,'chess,'inside,'.'
a,'girl,'plays,'chess,'in,'the,'bedroom,'.'
0.1'
''0'
1.0'
0.03'
'…'''
0.8'
''N&
chess,'is,'played,'.'
chess,'is,'played,'by,'someone,'.'
…'
chess,'is,'played,'by,'a,'girl,'inside,'.'
chess,'is,'played,'by,'a,'girl,'in,'the,'bedroom,'.'
Ac+veà'
Passiveà'
&
O(12#2#6&'()%"*+("&
'
• Cross-Entropy'Backpropaga+on'(Rumelhart,'Hinton'&'Williams,'1986).'
• Weight'updates'a`er'each'word.'
• Weight'ini+aliza+on'with'random'values'drawn'from'N(0,0.1).'
• Bias'units'weights'ini+alized'to'zeros.'
• At'+me't,'monitoring'units'were'set'to'what'the'model'was'supposed'
to'produce'at't-1'given'the'training'item.'
• Ini+al'learning'rate'of'0.124'which'has'halved'each'+me'there'was'no'
improvement'of'performance'on'the'training'set'during'15'epochs.'
• Training'halted'a`er'200'epochs'or'if'there'was'no'performance'
improvement'on'the'training'set'over'a'40-epoch'interval.'
F+$7+$& Sophia'wins'with'ease'at'a'game'2#&$@"&/$(""$.'
GH7"%$"*& Sophia'wins'with'ease'at'a'game')+$/2*".'
overspecifica+on'
23.5%'
underspecifica+on'
39.9%'
DSS'
DSS'
Many'samples'of'microworld'situa+ons'cons+tute'a'“situation-state space”'
Columns'represent'observa+ons'(states-of-affairs).#
Rows'represent'situa+on'vectors'for'basic'events.'
'
Complex'event'vectors'can'be'obtained'by'combining'basic'event'vectors'through'
logical'opera+ons.'
k=1' k=2' k=3' …' k=25000'
741.<@"2*2P%@"//>& 1' 1' 0' …' 0'
741%"</)7@21P/$(""$>& 1' 0' 0' …' 0'
4)/"<@"2*2>& 0' 1' 0' …' 0'
Q&
R2#<%@1(42">& 0' 1' 0' …' 1'
ß'''microworld'observa+ons''à'
ß'''44'basic'events''à'
“charlie'plays'soccer”'
Distributed'Situa+on'Space'(DSS)'model''
(Frank'et'al.,'2009)'
A'state-of-affairs'(situa+on)'in'a'microworld'is'defined'in'terms'of'basic
events'that'can'be'assigned'a'state'(i.e.,'they'can'be'the#case'or'not'the#case)'
Example—“heidi'loses'at'chess”:'
States-of-affairs'are'combina+ons'of'basic'events.'
So'now'we'have'a'way'to'represent'events'(basic'and'complex)'in'terms'of'the'
/2$+1,)#/'in'which'they'are'true.'
0'
0'
1'
0'
…'''
1'
1'
Situa+on'vectors'encode'event'probabili+es.'
Similar'events'are'represented'by'similar'vectors.'
'
Define'the'meaning'of'an'event'in'terms'of'the'31/2%&"I"#$/&with'
which'it'appears.'
###############
à
belief'vectors'
'
Dimensionality':='#'basic'events'
'
Each'dimension:'
P(basic'event'|'complex'event)'
>'Proposi+onal'logic'seman+cs'are'translated'into'belief'vectors'
0.3,'0.5,'0.0,'…,'0.75,'1.0'
0.0,'1.0,'0.1,'…,'0.5,'0.8'
0.0,'1.0,'0.1,'…,'0.5,'0.8'
Results
Model Architecture
Conclusion
Belief Vectors
Semantics
O"/,#6&:)#*2,)#/&
S#7+$TF+$7+$&GH1074"&
Goals
Qualitative Analysis Conds. 4-5 Passives?