ArticlePDF Available

Evaluation of chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effects of Aloysia citrodora extract on colon cancer cell line

Authors:

Abstract

Background: Aloysia citrodora belongs to the Verbenaceae family of plants, a well-known herbal medicine in Iran. The aim of the present study was to investigate the chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effect of A. citrodora extract against human colon cancer (HT29) cells by using real-time polymerase chain reaction and flow-cytometry methods. Methods: This experimental study was carried out in Islamic Azad University, East Tehran Branch, from March to September of 2014. At first, the A. citrodora chemical constituents were analyzed by gas chromatography-mass spectrometry (GC-MS) technique. In addition, antioxidant assay, antibacterial and anti-cancer effect was performed using 1,1-diphenyl-2-picrylhydrazyl (DPPH), disk diffusion and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, respectively. The half maximal inhibitory concentration (IC50) value was calculated. We extracted total RNA molecules by using RNX solution, after which cDNA was synthesized. Finally, the pro-apoptotic (Bax) and anti-apoptotic (Bcl2) gene expression was performed by real-time polymerase chain reaction and apoptotic effects were analyzed using Flow-cytometry method. Results: GC-MS analysis of Aloysia citrodora extract was shown 37 major components and the most frequent component was belonged to Spathulenol (17.57%) and Caryophyllene oxide (15.15%) The antioxidant activity of the extract was IC50= 0.6±0.03 mg/ml. The maximum and minimum antibacterial effects of extract were belonged to gram-negative and gram-positive bacteria, respectively. Cytotoxic results revealed that the A.citrodora extract have IC50= 20.1±0.78 mg/ml against colon cancer (HT29) cell line and real-time polymerase chain reaction results showed the expression level of Bax and Bcl2 was increased and decreased respectively in colon cancer cell line (3.470±0.72 (P< 0.05), 0.43±0.35 (P< 0.05)). In addition, the flow-cytometry results indicated the 38.66% apoptosis in colon cancer cell line. Conclusion: According to the results, it seems that A. citrodora extract has potential antioxidant, antibacterial and anticancer effects and it suggested that further studies were performed for A. citrodora pharmaceutical importance.



















*




















*



E-mail: amir_mirzaie92@yahoo.com


(Aloysia citrodora)




Gas chromatography-mass spectrometry (GC-MS)
DPPH
MTTRNAcDNA
Bax
Bcl2Real-Time PCR

Spathulenol
Caryophyllene oxidemg/ml=
50
IC



BaxBcl2± P±P






 









       


    
       
          
       
  

    






















   




http://tumj.tums.ac.ir
Tehran Univ Med J (TUMJ) 201
6
June
;
74
(
3
):
168
-
76




    

   

  


 

    Aloysia citrodora 
    
Lippia

  (Verbenaceae)    


      


  

    
        A.
citrodora
      
       
Real Time PCR

 
    
          

g
ml

   
Gas chromatography-mass spectrometry (GC-MS)
Agilent 6890 (Agilent Technologies Inc.,
Clara, CA, USA)DB-5m
mm    
eV
CC
µl
mlµl
GC/MS   
        

  GC-MS   National
institute standard and technology (NIST) 

NIST
        
DPPH(2,2-
diphenyl-1-picrylhydrazyl)
mg/ml  
   DPPH (Merck KGaA, Darmstadt, Germany)
 mg/ml    
 Spectrophotometer, NanoDrop™ 2000
(Thermo Fisher Scientific Inc., Wilmington, USA)
DPPH
Inhibition (%)= [Ab-As/Ab]×100AbAs

Pseudomonas aeruginosa ATCC 1544223857
Bacillus subtilis ATCCEscherichia coli ATCC 25922


        

    (HT29 cell line)  
        

















RPMI1640 (Biosera, USA)  (v/v)
(Fetal bovine serum, FBS)
C

 Microculture Tetrazolium Test, MTT (Sigma
Aldrich, Steinheim, Germany)
mg/ml
         
(HT29)  
MTT

2
COC
MTT
  
ELISA reader
(Organon Teknika, Boxtel, Belgium)  nm



(IC50)
BaxBcl2Real Time
PCRRNA
RNA (Qiagen RNeasy Plus Mini Kit 50, USA)
         
Nanophotometer (Implen GmbH, Munich, Germany)
DNAfist strand
TM
Revert Aid
cDNA Synthesis Kit (Fermentas, Hanover, MD, USA)
µlxµgRNA
µlµldT
µlµl
  RNaseU/µl µl  
µl
 C   
CcDNAC
C

BaxBcl2GAPDH
         Bax
5'-TTGCTTCAGGGTTTCATCCAG-3'
C 5'-AGCTTCTTGGTGGACGCATC-3' 
C   Bcl2
5'-TGTGGATGACTGAGTACCTGAACC -3'
 C 5'-CAGCCAGGAGAAATCAAACAGAG-3'
C    GAPDH
5'-CGTCTGCCCTATCAACTTTCG-3'C
5'-CGTTTCTCAGGCTCCCTCT-3' C
    
       BLAST
(http://www.ncbi.nlm.nih.gov/blast)   
Real-Time PCRLight Cycler (Bioneer, Seongnam,
Korea)CCC
       
(HT29)
   AnnexinV/propidium iodide (PI)(Apoptosis
detection kit, Roch, Germany)

× 50CI
         



SPSS software, version 20 (SPSS, Inc., Chicago,
IL, USA)       
±SEMP

 GC-MS







http://tumj.tums.ac.ir
Tehran Univ Med J (TUMJ) 201
6
June
;
74
(
3
):
168
-
76
DP PH

(mg/ml)












(mg/ml)
50
IC






±



±



±



±



±








±



±



±



±



±



±



SA%


















C




±



±



±



±



±



±



SA%
















SA%: Scavenging Activity



mm±

(mg/mL)

B. subtilis

E. coli

P. aeroginosa







±


±


±



±


±


±




±


±


±




±


±



±






±



±



±



     NIST 
        
SpathulenolCaryophyllene oxide


mg/mL 0.674±0.03 =
50
IC 
       =
50
IC
0.03±0.0001 mg/mL
       
   E. coli
P. aeroginosaB. subtilis

          
P. aeroginosaB. subtilis

   (HT29)  
    MTT  
        
mg/ml
P
PPP
P< P 
PP

      mg/ml 
P
  mg/ml  
          
=P
50
IC
mg/ml
BaxBcl2
)29HT(  
50
IC
Real-Time PCR     

           
Bcl2Bax
     P< 
P<






















(HT29)

*P**P<***Pn=










BaxBcl2
Bcl2Bax
P<±P<±



(a)(b)



       FITC Annexin V/ PI

      
Annexin VPI
   
 (Q1)
 (Q2)
        
        


        
    



hr




http://tumj.tums.ac.ir
Tehran Univ Med J (TUMJ) 201
6
June
;
74
(
3
):
168
-
76


         
        




     
          
 
       
Shahhoseini      
      GC-MS   

GeranialNeralLimonene



      
Stashenko
Lippia origanoidesGC-MS
          
         
Alpha and beta-phellandrenesP-CymeneLimonene



         
Ferraz
Lippia gracilis
HepG2

 (Thymol)      
HepG2 
         


Melo JoAloysia
gracilis(Hela)
(B16)(MCF-7)MTT
         
(Thymol)  
    

  

 GC-MS
Spathulenol
Caryophyllene oxide
HepG2


50
IC
mg/ml   
 
   
     Mesa-Arango
       
     Lippia alba   
  (Hela)   




Aloysia citrodora
     Bax    
Bcl2   
      Bax/Bcl2


" mRNA
 
"
        

50
IC


      Annexin V   













(PI)

          


     




           
            




P. aeroginosa
       B. subtilis
  
          
Mothana     

   
    
      

Pinto
Aloysia
          A.
origanoides
       







         





  
"
BaxBcl-2"





1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,
2002. CA Cancer J Clin 2005;55(2):74-108.
2. Hanahan D1, Weinberg RA. The hallmarks of cancer. Cell
2000;100(1):57-70.
3. Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J
Exp Clin Cancer Res 2011;30(1):87-90.
4. Dorai T, Aggarwal BB. Role of chemopreventive agents in cancer
therapy. Cancer Lett 2004;215(2):129-40.
5. Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomateri-
als in combating cancer: therapeutic applications and developments.
Nanomedicine 2014;10(1):19-34.
6. Fock KM. Review article: the epidemiology and prevention of
gastric cancer. Aliment Pharmacol Ther 2014;40(3):250-60.
7. Edwards MS, Chadda SD, Zhao Z, Barber BL, Sykes DP. A sys-
tematic review of treatment guidelines for metastatic colorectal
cancer. Colorectal Dis 2012;14(2):e31-47.
8. Herszényi L, Tulassay Z. Epidemiology of gastrointestinal and liver
tumors. Eur Rev Med Pharmacol Sci 2010;14(4):249-58.
9. Urruticoechea A, Alemany R, Balart J, Villanueva A, Viñals F, Ca-
pellá G. Recent advances in cancer therapy: an overview. Curr
Pharm Des 2010;16(1):3-10.
10. Zaidi SH, Huddart RA, Harrington KJ. Novel targeted radiosensitis-
ers in cancer treatment. Curr Drug Discov Technol 2009;6(2):103-34.
11. Kaur R, Kapoor K, Kaur H. Plants as a source of anticancer agents.
J Nat Prod Plant Resour 2011;1(1):119-24.
12. Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J
Ethnopharmacol 2005;22:72-9.
13. Vuorelaa P, Leinonenb M, Saikkuc P, Tammelaa P, Rauhad JP,
Wennberge T, Vuorela H.Natural products in the process of finding
new drug candidates. Curr Med Chem 2004;11:1375-89.
14. Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants.
Life Sci 2005;78(5):431-41.
15. Mukherjee AK, Basu S, Sarkar N, Ghosh AC. Advances in cancer
therapy with plant based natural products. Curr Med Chem
2001;8(12):1467-86.
16. Shahhoseini H, Ghorbani H, Saleh R. Omidbaigi R, Identification
of essential oil content and composition of Lippia citriodora seed. J
Plant Production 2012;18(4):91-6.
17. Pascual ME, Slowing K, Carretero E, Sanchez MD, Villar, A.
Lippia: traditional uses, chemistry and pharmacology. J Eth-
nopharmacology 2001;76(3):201-14.
18. Stashenko EE, Martínez JR, Ruíz CA, Arias G, Durán C, Salgar W,
Cala M. Lippia origanoides chemotype differentiation based on es-
sential oil GC-MS and principal component analysis. J Sep Sci
2010;33(1):93-103.
19. Carcas L. Gastric cancer review. J Carcinog 2014; 13:14.
References

Mirzaie A. et al.
             
http://tumj.tums.ac.ir
Tehran Univ Med J (TUMJ) 201
6
June
;
74
(
3
):
168
-
76
20. Ferraz RP, Bomfim DS, Carvalho NC, Soares MB, da Silva TB,
Machado WJ. Cytotoxic effect of leaf essential oil of Lippia gra-
cilis Schauer (Verbenaceae). Phytomedicine 2013;20(7):615-21.
21. Mesa-Arango AC, Montiel-Ramos J, Zapata B, Durán C, Betancur-
Galvis L, Stashenko E. Citral and carvone chemotypes from the es-
sential oils of Colombian Lippia alba (Mill.) N.E. Brown: composi-
tion, cytotoxicity and antifungal activity. Mem Inst Oswaldo Cruz
2009;104(6):878-84.
22. Melo JO, Fachin AL, Rizo WF, Jesus HC, Arrigoni-Blank MF,
Alves PB, et al. Cytotoxic effects of essential oils from three Lippia
gracilis Schauer genotypes on HeLa, B16, and MCF-7 cells and
normal human fibroblasts. Genet Mol Res 2014;13(2):2691-7.
23. Vanajothi R, Sudha A, Manikandan R, Rameshthangam P, Srini-
vasan P. Luffa acutangula and Lippia nodiflora leaf extract induces
growth inhibitory effect through induction of apoptosis on human
lung cancer cell line. Biomed Prev Nutr 2012;2(4):287-93.
24. Funari CS, Passalacqua TG, Rinaldo D, Napolitano A, Festa M,
Capasso A, Piacente S, Pizza C, Young MC, Durigan G, Silva DH.
Interconverting flavanone glucosides and other phenolic com-
pounds in Lippia salviaefolia Cham ethanol extracts. Phytochemis-
try 2011;72(16):2052-61.
25. Inbathamizh L, Mekalai Ponnu T, Jancy Mary E. In vitro evalua-
tion of antioxidant and anticancer potential of Morinda pubescens
synthesized silver nanoparticles. J Pharm Res 2013;6:32-8.
26. Parsaee H, Asili J, Mousavi SH, Soofi H, Emami SA, Tayarani-
Najaran Z. Apoptosis induction of Salvia chorassanica root extract on
human cervical cancer cell line. Iran J Pharm Res 2013;12:75-83.
27. Mothana RA, Abdo SA, Hasson S, Althawab FM, Alaghbari SA,
Lindequist U. Antimicrobial, antioxidant and cytotoxic activities
and phytochemical screening of some yemeni medicinal plants.
Evid Based Complement Alternat Med 2010;7(3):323-30.
28. Pinto Cda P, Rodrigues VD, Pinto Fda P, Pinto Rda P, Uetanabaro
AP, Pinheiro CS, et al. Antimicrobial activity of lippia species
from the brazilian semiarid region traditionally used as antiseptic
and anti-infective agents. Evid Based Complement Alternat Med
2013;2013:614501.

Cytotoxic effects of Aloysia citrodora extract on colon cancer cell line













Evaluation of chemical composition, antioxidant, antibacterial, cytotoxic
and apoptotic effects of
Aloysia citrodora
extract on colon cancer cell line
Amir Mirzaie Ph.D.1*
Seyed Ataollah Sadat Shandiz
Ph.D.1
Hassan Noorbazargan Ph.D.2
Elahe Ali Asgary Ph.D.3
1- Young Researchers and Elite
Club, East Tehran Branch, Islamic
Azad University, Tehran, Iran.
2- Department of Biotechnology,
Shahid Beheshti University of Med-
ical Sciences, Tehran, Iran.
3- Department of Biology, East
Tehran Branch, Islamic Azad Uni-
versity, Tehran, Iran.
* Corresponding author: East Tehran
Branch, Islamic Azad University, Shahid
Bahonar St., Ghiamdasht, Khavaran
Highway, Tehran, Iran.
Tel: +98 21 33594950
E-mail: amir_mirzaie92 @yahoo.com
Background: Aloysia citrodora belongs to the Verbenaceae family of plants, a well-
known herbal medicine in Iran. The aim of the present study was to investigate the
chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effect of A.
citrodora extract against human colon cancer (HT29) cells by using real-time polymer-
ase chain reaction and flow-cytometry methods.
Methods: This experimental study was carried out in Islamic Azad University, East
Tehran Branch, from March to September of 2014. At first, the A. citrodora chemical
constituents were analyzed by gas chromatography-mass spectrometry (GC-MS)
technique. In addition, antioxidant assay, antibacterial and anti-cancer effect was per-
formed using 1,1-diphenyl-2-picrylhydrazyl (DPPH), disk diffusion and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, respectively.
The half maximal inhibitory concentration (IC50) value was calculated. We extracted
total RNA molecules by using RNX solution, after which cDNA was synthesized.
Finally, the pro-apoptotic (Bax) and anti-apoptotic (Bcl2) gene expression was per-
formed by real-time polymerase chain reaction and apoptotic effects were analyzed
using Flow-cytometry method.
Results: GC-MS analysis of Aloysia citrodora extract was shown 37 major components
and the most frequent component was belonged to Spathulenol (17.57%) and Caryo-
phyllene oxide (15.15%) The antioxidant activity of the extract was IC50= 0.6±0.03
mg/ml. The maximum and minimum antibacterial effects of extract were belonged to
gram-negative and gram-positive bacteria, respectively. Cytotoxic results revealed that
the A.citrodora extract have IC50= 20.10.78 mg/ml against colon cancer (HT29) cell
line and real-time polymerase chain reaction results showed the expression level of Bax
and Bcl2 was increased and decreased respectively in colon cancer cell line (3.470±0.72
(P< 0.05), 0.43±0.35 (P< 0.05)). In addition, the flow-cytometry results indicated the
38.66% apoptosis in colon cancer cell line.
Conclusion: According to the results, it seems that A. citrodora extract has potential
antioxidant, antibacterial and anticancer effects and it suggested that further studies
were performed for A. citrodora pharmaceutical importance.
Keywords: Aloysia citrodora, antioxidant activity, apoptosis, cytotoxicity, flow-cytometry.
Abstract Received: 16 Mar. 2016 Revised: 05 Jun. 2016 Accepted: 26 Jul. 2016 Available online: 31 Jul. 2016
Original Article
Tehran University Medical Journal, June 2016; Vol. 74, No. 3: 168-176
... The effects of this plant on increasing cell resistance to oxidative stress, lipid peroxidation, and protein carbonylation have been confirmed [11,12]. Also, the ethanolic extract of this plant increased apoptosis of colon cancer cell line by increasing proapoptotic gene BAX activity and decreasing anti-apoptotic gene Bcl-2 [13]. There is no report on antihypoxic activities of Lemon Beebrush. ...
... Hypoxia stimulate tumour metastasis through a variety of direct and indirect mechanisms, and hypoxic tumour cells, therefore, represent a significant impediment to successful cancer therapy [6]. It seems good antihypoxic activity of this extract can justify its reported anticancer activity [13]. Many papers about medicinal plants (such as Hibiscus esculentus seeds, Sambucus ebulus leaf and fruit and Myrtus communis leaf and Allium sativum flower) with high antihypoxic activities have been published by our group [16,27,28]. ...
Article
Full-text available
Lemon Beebrush, known as Lippia citroiodora and Aloysia citrodora is a known medicinal plant in Iran. Many biological activities have been reported from this plant. In spite of many works, nothing is known about protective effect of A. citrodora against hypoxia conditions. In this study, protective effects of A. citrodora leaf extract against hypoxia-induced lethality in mice were evaluated by three experimental models of hypoxia, asphyctic, haemic and circulatory. Its phenol and flavonoid contents and antioxidant activity were also evaluated. Statistically significant protective activities were established in some doses of extract in three models. Antihypoxic activity was especially pronounced in circulatory hypoxia where extract at 62.5 mg kg-1 prolonged the latency for death with respect to control group (p<0.01). The effect was dose dependent. At 250 mg kg-1, it prolonged the latency for death with the same activity of propranolol (20 mg kg-1), that used as positive control (p>0.05). Extract showed weak activity in haemic model. Only at the highest tested dose, 250 mg kg-1, it significantly prolonged latency for death with respect to control group (p<0.05). Extract at this dose showed the same activity of propranolol which used as positive control (p>0.05). In asphytic model, extract at the highest tested dose showed statistically significant activity respect to the control. At 250 mg kg-1, it significantly prolonged the latency for death (26.84 ± 4.11 vs. 19.45 ± 1.13 min, p = 0.0006). At 125 mg kg-1, it also prolonged survival time but this increase was not significantly different. Phenytoin that used as positive control kept mice alive for 29.60 ± 2.51 min (p<0.0001). Extract at 250 mg kg-1 showed the same activity of phenytoin (p>0.05). The total phenolic content was 342.9 ± 11.5 mg gallic acid equivalent/g of extract powder and flavonoid content was 90.2 ± 7.8 mg quercetin equivalent/g of extract powder. IC50 for DPPH radical-scavenging activity was 21.97 ± 2.4 mg/ml. The presence of polyphenols in this plant may be a proposal mechanism for reported antihypoxic activities.
... aeroginosa' and the least effect on the gram positive bacterium 'B. subtilis', which indicates the presence of strong antibacterial compounds in this plant (Mirzaie et al., 2016). In contrast, aqueous and ethanolic extract of the leaf in the concentration range of 625-20,000 μg/ml showed no significant inhibitory effect on the growth of clinically-isolated Streptococcus mutans and S. sobrinus (Shafiee et al., 2016). ...
... The ethanolic extract enhanced BAX (pro-apoptotic gene) and reduced Bcl-2 (antiapoptotic gene) expression level. Likewise, the extract induced apoptosis in the colon cancer cell line (38.66%), with a significant inhibition of the cell proliferation in a dose-dependent manner (maximum inhibition in 1000 mg/ml) (Mirzaie et al., 2016). ...
Article
Ethnopharmacological relevance: Aloysia citrodora Paláu (Lippia citriodora Kunth), commonly known as "lemon verbena" is a medicinal plant native to South America, North Africa, and South of Europe which is used by native people for several indications such as diarrhea, flatulence, insomnia, and rheumatism. Aim of the review: Despite the wide biological activities of lemon verbena, there is no current review summarizing medicinal properties of the plant; thus, this paper aims to discuss current state of the art regarding the phytochemistry, pharmacology, and therapeutic applications of A. citrodora considering in vitro, in vivo, and clinical studies. Materials and methods: Electronic databases including PubMed, Scifinder, Cochrane library, Scopus, and Science direct were searched with the scientific name of the plant and its synonyms, as well as the common name. All studies on the ethnobotany, phytochemistry, pharmacology, and clinical application of the plant until October 2017 were included in this review. Results: Despite the few number of studies on the ethnopharmacology of the plant, A. citrodora is widely assessed regarding its phytochemistry and biological activities. Neral and geranial are the main ingredients of the essential oil, whereas verbascoside is the most significant component of the extract. Biological activities such as antioxidant, anxiolytic, neuroprotective, anticancer, anesthetic, antimicrobial, and sedative effects are proved in cell cultures, as well as animal studies. Conclusions: Several pharmacological activities have been reported for A. citrodora; however, the plant is not fully assessed regarding its safety and efficacy in human. Future well-designed human studies are essential to confirm the therapeutic benefits of this plant in clinical settings.
... However, no activity was shown towards B. subtilis and E. coli strains. These results corroborate with those of Mirzaie et al. (2016). Several studies proved the antibacterial effect of polyphenols on Gram-positive and Gram-negative bacteria. ...
Article
Full-text available
The present study aims to optimize the extraction of phenolics by microwave-assisted extraction (MAE) using the response surface methodology (RSM), from Lemon verbena leaves. The optimized extract was tested for its antioxidant activity using two methods (DPPH and reducing power) and its antibacterial efficiency by using disk diffusion assay and broth microdilution, against two Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) and two Gram-positive (Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633) strains. Under the optimized conditions (40% (v/v): of ethanol concentration, 188 s of irradiation time, 600 W of microwave power and 1:40 g/mL of solid-to-liquid ratio) the total phenolic content (TPC) was 67.87±1.61 mg GAE/g DW. The IC50 of the extract was 139.65±1.44 µg/mL and 56.60±2.79 µg/mL for DPPH inhibition and reducing power, respectively. The best antibacterial activity was shown by the extract obtained by MAE with lower MBC (1.56 to 18.75 mg/mL) and MBC/MIC ratio. Lemon verbena extract can be used as an ingredient in cosmetics, food supplements and herbal medicinal products due to its interesting biological properties.
... In addition, some species have been used in traditional medicine to alleviate several ailments, such as stomach ache, fever, indigestion or joint pains [71][72][73]. The beneficial properties have been linked to phytochemicals present in these plants. ...
Article
Full-text available
Epidemiological studies have reported convincing evidence that natural dietary compounds may modify inflammation, it being an important event described in the pathophysiology of age-related infirmity. Among different dietary components, nutritional phenolics have demonstrated links to a lower risk of inflammation in the most common degenerative and chronic diseases. In this way, the healthy potential of phenolics against inflammation and the emergence of new functional ingredients have caused an enhancement of nutraceutical and functional food formulation. The present review focuses on: (a) nutritional phenolics and their effects on inflammation and (b) functional ingredients based on phenolic compounds with anti-inflammatory properties. Furthermore, the emerging interest in health-promoting products by consumers has caused an increase in the demand for functional products and nutraceuticals. Additionally, this review includes a case study of the Lippia genus, which has shown anti-inflammatory effects claiming to be a natural alternative for the management of this physiological disorder. This report is a practical tool for healthcare providers.
Article
Full-text available
An attempt has been made to review some medicinal plants used for the prevention and treatment of cancer. Plant derived compounds have played an important role in the development of several clinically useful anticancer agents. Several anticancer agents including taxol, vinblastine, vincristine and topotecan are in clinical use all over the world. A number of promising agents such as combrestatin, betulinic acid and silvesterol are in clinical or preclinical development.
Article
Full-text available
This study aimed to evaluate the chemical composition of the essential oils from three genotypes of Lippia gracilis Schauer (Verbenaceae) and investigate the cytotoxic activities of these oils. Essential oils were extracted from the leaves using a Clevenger-type apparatus, and chemical analysis was performed using a gas chromatograph coupled to a mass spectrometer and flame ionization detector. 3T3, MRC5, B16, HeLa, and MCF-7 cell lines were used to study the in vitro cytotoxicity of the essential oils, and the level of cell death was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test with three replicates. The cytotoxic activity was expressed as the concentration that inhibited 50% of cell growth. The main compound in the essential oil of LGRA-106 was thymol (40.52%), while LGRA-109 and LGRA-201 contained 45.84 and 32.60% carvacrol, respectively, as their major compound. The essential oils of L. gracilis showed cytotoxic activity against both normal and tumor cells at concentrations below 100 μg/mL; this demonstrated the antitumor potential of these essential oils, which should be further investigated.
Article
Full-text available
Salvia chorassanica Bunge is one of the Iranian endemic species of Salvia. There is not any reported literature on S. chorassanica. This study was designed to examine the in-vitro anti-proliferative and proapoptotic effects of the methanol extract of S. chorassanica and its fractions on HeLa cell line. Cells were cultured in EX-CELL®, an animal free medium specially designed for HeLa cell line and incubated with different concentrations of plant extracts. Cell viability was quantified by MTS assay. Apoptotic cells were determined using propidium iodide (PI) staining of DNA fragmentation by flow cytometry (sub-G1 peak). Activity of caspase -3, -8 and -9 was measured by the caspase colorimetric kit assay. S. chorassanica inhibited the growth of malignant cells and the CH2Cl2 fraction was determined as the most cytotoxic fraction in comparison with other fractions. The calculated IC50 values for methanol extract, n-hexane, CH2Cl2 and EtOAc fractions were 8.841, 5.45, 2.38, and 58.03 μg/mL, respectively. S. chorassanica induced a sub-G1 peak in the flow cytometry histogram of treated cells compared to control cells indicating that the cytotoxic mechanism is characterized by apoptosis induction. The activity of caspase-3 and 8 proteins in treated HeLa cells was significantly higher than that of the control while caspase-9 activity did not change significantly. Based on the result obtained from our study, the apoptosis pathway involved in S. chorassanica-induced cell death may be through the extrinsic pathway and it can be a novel promising candidate in the treatment of cancer.
Article
Full-text available
Lippia origanoides Kunth, Lippia alnifolia Schauer, and Lippia thymoides Martius and Schauer are shrubs used in the traditional Brazilian medicine as antiseptics, as well as in the treatment of infectious diseases. This study was designed to investigate the antibacterial and antifungal activities of the methanolic extracts of these species, as new potential sources of antimicrobial drugs. The antimicrobial activity of methanolic extracts was investigated against resistant yeasts and bacteria by agar disk diffusion. Then, the MIC determination of the most active species and its fractions in hexane, dichloromethane, ethyl acetate, and water was performed. By the agar diffusion assay, all species were active against at least two microorganisms, giving evidence to support their use in the popular medicine. L. origanoides leaves exhibited the widest antimicrobial action, inhibiting the growth of two Gram-positive bacteria and two yeasts; this activity was also confirmed by the MIC evaluation. The fractionation of L. origanoides crude extracts improved the activity in spectrum and intensity. The results obtained in this study indicate that L. origanoides may be a promising alternative in the treatment of bacterial and fungal infections and in the seeking of new antimicrobial drugs.
Article
Luffa acutangula (Cucurbitaceae) and Lippia nodiflora (Verbenaceae) have been reputed in the indigenous medicine and claimed to possess a wide array of biological activities including anticancer activity. The present study was designed to assess the in vitro anticancer effect of L. acutangula and L. nodiflora leaf extracts in human lung cancer cell line (NCI-H460). The anticancer activity of both extracts was compared with that of paclitaxel as positive control and the effect was assessed by MTT assay, mitochondrial membrane potential (MMP) alteration, intracellular reactive oxygen species (ROS) measurement and nuclear morphology with the appearance of apoptosis. The leaf extracts exhibits high antiproliferative activity against cell line tested, as determined with MTT assay. The concentrations of growth inhibition at 50% (IC50) ranged from 1 to 50 μg/mL after 24 h treatment and the IC50 was found to be 20 μg/mL and 10 μg/mL for L. acutangula and L. nodiflora, respectively. Both extract treated groups exhibits high DCF fluorescence (enhanced ROS levels), significant increase in mitochondrial depolarization when compared to control groups. Nuclear morphology with induction of apoptosis in cells treated with leaf extracts were also observed by microscopic examination using dual staining method of acridine orange-ethidium bromide. The present study suggests the further research such as fractionation and purification of bioactive compounds in order to formulate natural compounds with anticancer activities.
Article
Gastric cancer is an aggressive disease that continues to have a daunting impact on global health. Despite an overall decline in incidence over the last several decades, gastric cancer remains the fourth most common type of cancer and is the second leading cause of cancer-related death worldwide. This review aims to discuss the global distribution of the disease and the trend of decreasing incidence of disease, delineate the different pathologic subtypes and their immunohistochemical (IHC) staining patterns and molecular signatures and mutations, explore the role of the pathogen H. pylori in tumorgenesis, discuss the increasing incidence of the disease in the young, western populations and define the role of biologic agents in the treatment of the disease.
Article
Plant-derived compounds have played an important role in the development of several clinically useful anti-cancer agents. These include vinblastine, vincristine, the camptothecin derivatives, topotecan and irinotecan, etoposide, and paclitaxel (Taxol®). Several promising new agents are in clinical development based on selective activity against cancer-related molecular targets, including flavopiridol and Combretastatin A4 phosphate. Recently, plants have yielded several agents showing anti-AIDS activity, and one of these, (+)-calanolide A, is in clinical development.
Article
Background: Gastric cancer can be divided into cardia and noncardia gastric adenocarcinoma (NCGA). Non cardia gastric cancer is a disease that has declined in global incidence but has remained as an extremely lethal cancer. Aim: To review recent advances in epidemiology and strategies in prevention of non cardia gastric cancer. Methods: A rapid literature search strategy was developed for all English language literature published before March 2013. The search was conducted using the electronic databases PubMed and EMBASE. The search strategy included the keywords 'stomach neoplasms', 'gastric cancer', 'epidemiology', 'risk factor', 'early detection of cancer', 'mass screening', 'cancer burden', 'prevention' and 'cost-effectiveness'. The search strategy was adjusted according to different requirements for each database. The specific search was also performed in cancer-related websites for country-specific information. The search was limited to past 10 years. Results: Gastric cancer is the fifth most common cancer but the third leading cause of cancer death. The case fatality rate is 75%. Screening by radiological or endoscopic methods has limited success in prevention of gastric cancer. Helicobacter pylori has been identified as a carcinogen, accounting for 60-70% of gastric cancer globally and eradication is a potential preventive measure. A meta-analysis in 2009 demonstrated that individuals treated with H. pylori eradication therapy can reduce gastric cancer risk. The extended Shandong Intervention trial that lasted 14.3 years showed that H. pylori eradication therapy significantly reduced gastric cancer incidence by 39%. Consensus groups from Asia, Europe and Japan have recommended H. pylori eradication as primary prevention in high-risk areas. Following eradication therapy, endoscopic surveillance of pre-malignant lesions using enhanced imaging appears to be another promising preventive strategy. Conclusions: Gastric cancer remains a major diagnostic and therapeutic challenge. There is emerging evidence that H. pylori eradication in high gastric cancer regions can lead to a decline in the incidence of this highly lethal disease.
Article
Objectives Plant mediated green synthesis of nanoparticles is an eco-friendly and efficacious approach which finds immense application in the field of medicine. The present study is undertaken to determine the antioxidant and anticancer activities of silver nanoparticles synthesized from the aqueous leaf extract of Morinda pubescens by reducing silver nitrate.Methods Free radical scavenging potential of M. pubescens synthesized silver nanoparticles is evaluated in vitro by using diphenyl-picryl-hydrazyl (DPPH) assay. Other antioxidant assays like Ferric thiocyanate (FTC) method, Thiobarbituric acid (TBA) method, Superoxide Anion Radical scavenging assay, Hydroxyl radical scavenging assay, Metal chelating assay and Phosphomolybdenum assay are also adopted. The anticancer effect of these nanoparticles on HEP G2 (Human Epithelium cells of liver cancer) is determined by MTT (Methylthiazolyl diphenyl-tetrazolium bromide) assay.ResultsThe nanoparticles are found to possess high antioxidant capacity and thus can be used as potential radical scavengers against deleterious damages caused by the free radicals. MTT assay shows that the nanoparticles have cytotoxic activity against HEP G2 cell lines and can be used as anticancer agents.Conclusion The results suggest that the silver nanoparticles from M. pubescens can be potent natural antioxidants and can be essential for health preservation against oxidative stress related degenerative diseases, such as cancer.