BookPDF Available

Borg's Perceived Exertion And Pain Scales

Authors:
A preview of the PDF is not available
... Maximum heart rate and total test duration were monitored as an indicator of performance. The Rate of Perceived Exertion (RPE) was determined at the end of the test using the Borg scale [23]. Data were analysed using the Wilcoxon signed-ranked test. ...
Article
Full-text available
Purpose To establish intra- and inter-session reliability of high-density surface electromyography (HDEMG)-derived parameters from the thoracic erector spinae (ES) during static and dynamic goal-directed voluntary movements of the trunk, and during functional reaching tasks. Methods Twenty participants performed: 1) static trunk extension, 2) dynamic trunk forward and lateral flexion, and 3) multidirectional functional reaching tasks on two occasions separated by 7.5 ± 1.2 days. Muscle activity was recorded bilaterally from the thoracic ES. Root mean square (RMS), coordinates of the barycentre, mean frequency (MNF), and entropy were derived from the HDEMG signals. Reliability was determined with intraclass correlation coefficient (ICC), coefficient of variation, and standard error of measurement. Results Good-to-excellent intra-session reliability was found for all parameters and tasks (ICC: .79-.99), whereas inter-session reliability varied across tasks. Static tasks demonstrated higher reliability in most parameters compared to functional and dynamic tasks. Absolute RMS and MNF showed the highest overall reliability across tasks (ICC: .66-.98), while reliability of the barycentre was influenced by the direction of the movements. Conclusion RMS and MNF derived from HDEMG show consistent inter-session reliability in goal-directed voluntary movements of the trunk and reaching tasks, whereas the measures of the barycentre and entropy demonstrate task-dependent reliability.
Article
Full-text available
Background NorthCape4000 (NC4000) is the most participated ultra-endurance cycling race. Eight healthy male Caucasian amateur cyclists were evaluated: (a) before starting the preparation period; (b) in the week preceding NC4000 (after the training period); (c) after NC4000 race, with the aim to identify the effects of ultra-cycling on body composition, aerobic capacity and biochemical parameters as well as on the differentiation of progenitor cells. Methods Bioelectrical impedance analysis (BIA) and dual energy x-ray absorptiometry (DEXA) assessed body composition; cardiopulmonary exercise test (CPET) evaluated aerobic capacity. Differentiation of circulating progenitor cells was evaluated by analyzing the modulation in the expression of relevant transcription factors. In addition, in vitro experiments were performed to investigate the effects of sera of NC4000 participants on adipogenesis and myogenesis. The effects of NC4000 sera on Sestrins and Sirtuin modulation and the promotion of brown adipogenesis in progenitor cells was investigated as well. Two-tailed Student’s paired-test was used to perform statistical analyses. Results We observed fat mass decrease after training as well as after NC4000 performance; we also recorded that vitamin D and lipid profiles were affected by ultra-cycling. In addition, our findings demonstrated that post-NC4000 participant’s pooled sera exerted a positive effect in stimulating myogenesis and in inducing brown adipogenesis in progenitor cells. Conclusions The training program and Ultra-cycling lead to beneficial effects on body composition and biochemical lipid parameters, as well as changes in differentiation of progenitor cells, with significant increases in brown adipogenesis and in MYOD levels.
Article
Background While walking in nature has been shown to improve affect in adults from the community to a greater extent than walking in urban settings, it is unknown whether such benefits apply to individuals suffering from depression. Using a parallel group design, this randomized controlled trial examined the effects of a single walk in nature versus urban settings on negative and positive affect in adult psychiatric outpatients diagnosed with major depressive disorder (MDD). Method Participants recruited from a psychiatric outpatient clinic for adults with MDD were randomly assigned to a nature or urban walk condition. Thirty-seven adults (mean age = 49 years) completed a single 60-minute walk. Negative and positive affect were assessed using The Positive and Negative Affect Schedule or PANAS at 6 time points: before the walk, halfway during the walk, immediately post-walk, at home before bedtime, 24 h post-walk, and 48 h post-walk. Results Controlling for baseline levels of affect before the walk, individuals who walked in nature experienced overall lower levels of negative affect, F(1, 35.039) = 4.239, p = .047, compared to those who walked in urban settings. Positive affect did not differ across walk conditions. Limitations The generalizability of results are limited by the small sample size and the presence of more female than male participants. Conclusions Walking in nature might be a useful strategy to improve negative affect in adults with MDD. Future research should investigate different ways to integrate the beneficial effects of nature exposure into existing treatment plans for psychiatric outpatients with MDD.
Article
Digital eye strain (DES), caused by prolonged exposure to digital screens, stresses the visual system and negatively affects users’ well-being and productivity. While DES is well-studied in computer displays, its impact on users of virtual reality (VR) head-mounted displays (HMDs) is largely unexplored—despite that some of their key properties (e.g., the vergence-accommodation conflict) make VR-HMDs particularly prone. This work provides the first comprehensive investigation into DES in VR HMDs. We present results from a survey with 68 experienced users to understand DES symptoms in VR-HMDs. To help address DES, we investigate eye exercises resulting from survey answers and blue light filtering in three user studies (N = 71). Results demonstrate that eye exercises, but not blue light filtering, can effectively reduce DES. We conclude with an extensive analysis of the user studies and condense our findings in 10 key challenges that guide future work in this emerging research area.
Article
Full-text available
Electronic monitoring systems have been globally adopted to track criminals to ensure public safety efficiently. In this study, we aimed to assess the wearability of an electronic bracelet using multiple evaluation methods, including the evaluation of range of motion (ROM), air gap (AG), and clothing pressure (CP) at the wearer’s wrist, as well as self-scoring of subjective comfort (SC). We recruited eight Korean male participants (N = 8) who were in their 30 s and did not have any musculoskeletal problems at data collection. We compared the test results collected on the first day with those obtained after wearing the electronic wrist bracelet for 5 consecutive days. We also examined the differences between the normal-weight and overweight groups. Overall, the data evinced a decrease in the wrist ROM, AG, and SC, but an increase in the CP after it was worn for 5 days. And, the results were more observable in the overweight group, as compared to the normal-weight group. Furthermore, this study proposed a novel and effective assessment tool that could be used to measure the wearability of devices or systems intended to be worn on the human body—not only the electronic wrist bracelet for criminal monitoring but also popular commercial electronic bracelets for sportswear or health-related monitoring system.
Article
Purpose: The aim of this study was to investigate the time course of maximal isometric finger flexor force and blood acid-base balance during repeated simulated matches in world-class judokas. Methods: Seven 21- to 28-year-old world-class female judokas (including Olympic and World Championship medalists) repeated four 4-minute judo combats interspersed by 15 minutes of passive recovery. Maximal voluntary isometric finger flexor contraction (MVIC) force was measured in both hands after warm-up and immediately after each combat using a handgrip dynamometer. MVIC force was classified as MVIC hikite force (pulling hand) and MVIC tsurite force (lifting hand). Results: Blood lactate concentration, pH, bicarbonate concentration, partial pressure of oxygen, and oxygen saturation were measured between 3 and 5 minutes after each match. At completion of the fourth combat, mean MVIC hikite and tsurite force decreased by 18% and 12%, respectively (g = 0.23 and 0.29, respectively; P < .05), demonstrating that force production was substantial throughout repeated matches. Blood lactate concentration increased ∼5-fold from 2.69 (1.37) mmol·L-1 after warm-up to 13.10 (2.61) mmol·L-1 after the last match (g = 4.13, P = .018). Concurrently, blood pH decreased slightly from 7.44 (0.03) to 7.26 (0.05) (g = 2.34, P = .018), that is, by only 0.18 units. The decreased blood pH was significantly correlated with a decrease in bicarbonate concentration (R2 = .94, P < .001). Finally, partial pressure of oxygen and oxygen saturation remained unchanged during the judo contest. Conclusions: Female world-class judokas were able to maintain a high level of grip strength in both hands and efficiently regulate blood acid-base balance during repeated simulated high-intensity matches.
Article
Purpose: To examine the utility of a standardized small-sided game (SSG) for monitoring within-player changes in mean exercise heart rate (HRex) when compared with a submaximal interval shuttle-run test (ISRT). Methods: Thirty-six elite youth football players (17 [1] y) took part in 6 test sessions across an in-season period (every 4 wk). Sessions consisted of the ISRT (20-m shuttles, 30″:15″ work:rest ratio, 70% maximal ISRT) followed by an SSG (7v7, 80 × 56 m, 6 min). HRex was collected during both protocols, with SSG external load measured as high-speed running distance (>19.8 km·h-1) and acceleration distance (>2 m·s-2). Data were analyzed using linear mixed-effect models. Results: Controlling for SSG external load improved the model fit describing the SSG-ISRT HRex relationship (χ2 = 12.6, P = .002). When SSG high-speed running distance and SSG acceleration distance were held constant, a 1% point change in SSG HRex was associated with a 0.5% point change in ISRT HRex (90% CI: 0.4 to 0.6). Inversely, when SSG HRex was held constant, the effects of a 100-m change in SSG high-speed running distance and a 21-m change in SSG acceleration distance on ISRT HRex were -1.0% (-1.5 to -0.4) and -0.6% points (-1.1 to 0.0), respectively. Conclusions: An SSG can be used to track within-player changes in HRex for monitoring physiological state. Given the uncertainty in estimates, we advise to only give meaning to changes in SSG HRex >2% points. Additionally, we highlight the importance of considering external load when monitoring SSG HRex.
Article
The present study aimed to examine the impact of the level of physical activity on prefrontal cortex activation in older adults during single- and dual-task walking. Thirty physically inactive and 36 active older adults (60–85 years old) performed six 2-min tasks on a treadmill: two static cognitive tasks, two single-task walking tests, and two dual-task walking tests. Hemodynamics at the level of the prefrontal cortex were measured continuously using functional near-infrared spectroscopy to evaluate cortical activation. The perceived difficulty of the task, cognitive performance, and gait parameters were also measured. During the walking tasks, the level of prefrontal cortex activation, the perceived difficulty of the task, cognitive performance, and motor parameters were not significantly different between active and inactive older adults. This unchanged activation with physical activity was likely the consequence of a similar motor and cognitive load and cardiorespiratory fitness in both active and inactive older adults.
ResearchGate has not been able to resolve any references for this publication.