Conference PaperPDF Available

The observed Antarctic Peninsula warming during the 20th century in the AOGCMs and the 21st century projections for the region

Authors:
  • Ukrainian Hydrometeorological Institute

Abstract and Figures

The most rapid warming on the Earth during the second half of the 20th century was recorded in the Antarctic Peninsula region. Data set of 2-m temperature at the Ukrainian Antarctic Station “Academik Vernadsky” (British station “Faraday” before 1996) is used to demonstrate the ability of modern AOGCMs to represent the recent warming in the region where simulation of numerical models are not too much accurate. The methodology was as follows. A set of AOGCMs with the highest complexity and resolution presented in the IPCC AR-4 (2007) were chosen. Model runs for the control 20th century (20c3m) experiments and three SRES scenarios (B1, A1B, F2) were used in the study. If a model had more than one run, an ensemble mean was obtained for such models. Monthly surface temperature in four grid points 2x2 centred over the “Acad. Vernadsky” station with coordinates 64.16W, 65.16S were selected and averaged for every model from the global data. Obtained time-series of yearly temperatures for some of AOGCMs along with the measured data at the “Acad.Vernadsky” station are presented at the Figure. Analysis has shown that in most AOGCMs 2-m yearly temperature is lower than measured one on 2–5oC. Just MPI-ECHAM5/OM is very close to the observations for temperature. At the same time most of the AOGCMs (except UKMO-HADGEM1) have captured rapid warming during 1950-2000 period and their linear trend coefficients are close to the observed one. The 21st century projections of selected AOGCMs for three SRES scenarios were analysed too and will be presented.
No caption available
… 
Content may be subject to copyright.
The observed Antarctic Peninsula warming
during the 20th century in the AOGCMs
and the 21st century projections for the region
S.V. Krakovska*, G.A. Djukel
Ukrainian Hydrometeorological Institute, Ukraine
KraSvit@ua.fm
Objective:
To demonstrate the ability of modern AOGCMs to represent
the recent warming in the Antarctic Peninsula region where
simulations of numerical models are not too much accurate.
To analyze climate projection for the region at the different
scenarios for the XXI century.
Methodology:
A set of 10 AOGCMs with the highest complexity and
resolution presented in the IPCC AR-4 (2007) were chosen.
Model runs for the control 20th century (20c3m) experiments
and three SRES scenarios (B1, A1B, F2) were used in the
study. If a model had more than one run, an ensemble mean
was obtained for such models.
Yearly mean surface temperatures in four grid points 2x2
centered over the “Akad.Vernadsky” station were selected
and averaged for every model. Then ensemble mean of all
models was obtained and compared with observation data.
Ukrainian Antarctic Station
Akademik Vernadsky
(65 15S, 64 16W)
Model ID,
Vintage Sponsor,
country Atmosph.
Top,resol. Number
of expe-
rim. В1-
А1В-А2
1: BCCR-
BCM2.0,
2005
Bjerknes Centre
for Climate
Research,
Norway
top = 25 hPa
T63 (1.9°x1.9°)
L16
1-1-1
2: NCAR-
CCSM3,
2005
National Center
for Atmospheric
Research, USA
top = 2.2 hPa
T85 (1.4°x1.4°)
L26
9-7-4
3:CGCM3.1
(T47), 2005 Canadian Centre
for Climate
Modelling and
Analysis, Canada
top = 1 hPa
T47 (2.8°x2.8°)
L31
5-5-5
4:CGCM3.1
(T63), 2005 Canadian Centre
for Climate
Modelling and
Analysis, Canada
top = 1 hPa
T63 (1.9°x1.9°)
L31
1-1-0
5: ECHAM5
/ MPI-OM,
2005
Max Planck
Institute for
Meteorology,
Germany
top = 10 hPa
T63 (1.9°x1.9°)
L31
5-4-3
Model ID,
Vintage Sponsor, country Atmosph.
Top,resol. Number
of expe-
rim. В1-
А1В-А2
6: GFDL-
CM2.1,
2005
U.S. Department of
Commerce / NOAA
/ GFDL, USA
top = 3 hPa
2.0° x 2.5° L24 1-1-1
7: MIROC
3.2 (hires),
2004
Center for Climate
System Research,
National Institute for
Environmental
Studies, JAMSTEC,
Japan
top = 40 km
T106 (1.1°x1.1°)
L56
1-1-0
8: MIROC
3.2(medres),
2004
JAMSTEC, Japan top = 30 km
T42 (2.8°x2.8°)
L20
3-3-3
9: MRI-
CGCM2.3.2,
2003
Meteorological
Research Institute,
Japan
top = 0.4 hPa
T42 (2.8°x2.8°)
L30
5-5-5
10: UKMO-
HadGEM1,
2004
Hadley Centre for
Climate Prediction
and Research / Met
Office, UK
top = 39.2 km
(1.3°x1.9°)
L38
1-1-1
5-year running averages of temperature
for 10 AOGCMs and data of observation
at the Akademik Vernadsky station
1860 1880 1900 1920 1940 1960 1980 2000
yrs
-8
-6
-4
-2
2-m temperature, oC
1_BCCR_BCM2.0
2_NCAR
3_CGCM3_1_t47
4_CGCM3_1_t63
5_MPI-ECHAM5/OM
6_GFDL_CM2.1
7_MIROC_3_2_hires
8_MIROC_3_2_medres
9_MRI_CGCM2.3.2
10_UKMO_HADGEM1
10 models' mean
Obs. data 1947-2000
Y = 0.057 * X - 117
Temperature differences between year-
mean model and observation data
1940 1950 1960 1970 1980 1990 2000
yrs
-6
-4
-2
0
2
4
6
2-m temperature diff.
models - obs, oC
1_BCCR_BCM2.0
2_NCAR
3_CGCM3_1_t47
4_CGCM3_1_t63
5_MPI-ECHAM5/OM
6_GFDL_CM2.1
7_MIROC_3_2_hires
8_MIROC_3_2_medres
9_MRI_CGCM2.3.2
10_UKMO_HADGEM1
10 models' mean
The 21st century projection (scenario B1)
for the Akademik Vernadsky station region
2000 2020 2040 2060 2080 2100
yrs
-8
-6
-4
-2
0
2-m temperature, oC
1_BCCR_BCM2.0
2_NCAR
3_CGCM3_1_t47
4_CGCM3_1_t63
5_MPI-ECHAM5/OM
6_GFDL_CM2.1
7_MIROC_3_2_hires
8_MIROC_3_2_medres
9_MRI_CGCM2.3.2
10_UKMO_HADGEM1
10 models' mean
Y = 0.0144 * X - 32.52
2000 2020 2040 2060 2080 2100
yrs
-8
-6
-4
-2
0
2-m temperature, oC
1_BCCR_BCM2.0
2_NCAR
3_CGCM3_1_t47
4_CGCM3_1_t63
5_MPI-ECHAM5/OM
6_GFDL_CM2.1
7_MIROC_3_2_hires
8_MIROC_3_2_medres
9_MRI_CGCM2.3.2
10_UKMO_HADGEM1
10 models' mean
Y = 0.0255 * X - 54.97
The 21st century projection (scenario A1B)
for the Akademik Vernadsky station region
2000 2020 2040 2060 2080 2100
yrs
-8
-6
-4
-2
0
2-m temperature, oC
1_BCCR_BCM2.0
2_NCAR
3_CGCM3_1_t47
4_CGCM3_1_t63
5_MPI-ECHAM5/OM
6_GFDL_CM2.1
7_MIROC_3_2_hires
8_MIROC_3_2_medres
9_MRI_CGCM2.3.2
10_UKMO_HADGEM1
10 models' mean
Y = 0.0286 * X - 61.37
The 21st century projection (scenario A2)
for the Akademik Vernadsky station region
Projected 10-year mean air temperature differences (degС) of
2020-2029 and 2000-2009 at the Ukrainian Antarctic station
Akademik Vernadsky
-2
-1,5
-1
-0,5
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
1 2 3 4 5 6 7 8 9 10 All
models
Models
t, degС
B1 scenario A1B scenario A2 scenario
Projected 10-year mean air temperature differences (degС) of
2040-2049 and 2000-2009 at the Ukrainian Antarctic station
Akademik Vernadsky
-2
-1,5
-1
-0,5
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
1 2 3 4 5 6 7 8 9 10 All
models
Models
t, deg С
B1 scenario A1B scenario A2 scenario
Projected 10-year mean air temperature differences (degС) of
2090-2099 and 2000-2009 at the Ukrainian Antarctic station
Akademik Vernadsky
-2
-1,5
-1
-0,5
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
1.BCCR-
BCM2.0
2.NCAR-
CCSM3.0
3.CCCMA-
CGCM3.1(T47)
4.CCCMA-
CGCM3.1(T63)
5.ECHAM5/
MPI-OM
6.GFDL-CM2.1
7.MIROC3.2
(hires)
8.MIROC3.2
(medres)
9.MRI-
CGCM2.3.2
10.UKMO-
HadGEM1
All models
Models
t,degC
B1 scenario A1B scenario A2 scenario
10-years periods in the XXI century
2 3 4 5 6 7 8 9 10
B1 scenario
Mean 0,3 0,5 0,7 0,6 0,9 1,3 1,2 1,3 1,3
σ0,3 0,3 0,3 0,3 0,5 0,6 0,7 0,7 0,5
Min -0,2 0,1 0,4 0,2 0,3 0,5 0,5 0,7 0,6
Max 0,8 1,1 1,5 1,0 1,9 2,5 2,5 2,4 2,1
A1B scenario
Mean 0,1 0,5 1,0 1,5 1,9 2,3 2,6 2,8 3,1
σ0,4 0,4 0,3 0,3 0,3 0,3 0,5 0,6 0,7
Min -0,8 -0,2 0,4 1,0 1,5 1,8 1,6 2,2 2,4
Max 0,4 1,2 1,5 2,0 2,6 2,8 3,3 3,9 4,2
A2 scenario
Mean 0,2 0,4 0,5 0,6 1,0 1,2 1,4 1,8 2,1
σ0,4 0,3 0,3 0,3 0,5 0,5 0,5 0,8 0,7
Min -0,1 -0,1 0,1 0,4 0,7 0,9 1,2 1,2 1,6
Max 0,9 0,9 0,9 1,4 2,2 2,2 2,4 3,3 3,6
10-year mean temperature differences
comparable to the 2000-2009 period
CONCLUSIONS
Ensemble of 10 AOGCMs has demonstrated a good
ability to represent the recent warming at the
Akademik Vernadsky region.
At the same time, linear trends of just a few models
(MPI-ECHAM5/OM, BCCR_BCM2.0 and CGCM3.1-
t63) were close to the observed one since 1960, but
an ensemble mean trend is twice less.
The same fault is evident from the obtained tempe-
rature differences models-obs, when the models
show less warmer climate than observed in the last
decades of XXth century.
Projections for the XXIth century show the same
rate of warming for A1B and A2 scenarios as during
1960-2000 and almost twice less for B1 scenario,
but the most warming is projected for A1B scenario.
... Moreover, the errors that exist in models at all spatio-temporal scales are related to constraints in the represented physical processes (Covey et al., 2003;Giorgi et al., 2015;Taylor et al., 2011). However, despite some shortcomings, regional and global climate models are currently the only opportunity to project the future climate change (Krakovska et al., 2017;IPCC, 2013;Krakovska et al., 2010). First Global Circulation Mo dels (GCMs) and Regional Climate Models (RCMs) have already predicted that the mean surface air temperature will rise the fastest in the high latitudes. ...
Article
Full-text available
Objective. This paper deals with an estimation of the climate change at the Antarctic Peninsula region. During last decades, the most significant warming is observed in Polar regions, particularly in the Antarctic Peninsula region, where the Ukrainian Antarctic Akademik Vernadsky station is located. Therefore, the providing of the complex estimation of climate change trend is an important task for the region. These changes are taking place nowadays and will happen in the future. So, the main objective of the study is to estimate changes of climate characteristics in the Antarctic Peninsula region in the 21st century, based on calculation of the relevant climate indices. The projections of the temperature and precipitation characteristics in the Antarctic Peninsula region and Akademik Vernadsky station area for RCP4.5 and RCP8.5 scenarios are the objects of the research. Methods of the research are numerical simulation and statistical analysis of the regional climate model data for the Antarctic Peninsula region from the International Project Polar-CORDEX. Spatial distribution of this data is 0.44° and three periods are under consideration: historical climatic period (1986—2005) and two future periods 2041—2060 and 2081—2100. The R-code language and the modified computing code developed by Climate4R Hub project in Jupiter Notebook environment were used for climate data analysis in this research. Six parameters were chosen to estimate climate change in the Antarctic Peninsula region: number of frost days with minimal air temperature (Т) less 0 °C, number of ice days with maximal Т less 0 °C, annual total precipitation, mean precipitation rate, maximum yearly duration of periods without precipitation, maximum yearly duration of periods with precipitation more than 1 mm per day. Results as an analysis of the cold temperature indices are presented in the Part I of the paper, while an analysis of the wet/dry indices will be presented in the Part II of the paper. Conclusions. Over the Antarctic Peninsula region, both scenarios project an average decrease in the cold season period. This process will be more pronounced for the RCP 8.5 scenario, when even to the middle of the century the period with negative temperatures is rapidly decreasing over the Larsen Ice Sheet area, which may cause its total or partial collapse. Over Akademik Vernadsky station area, the climate indices changes will almost triple as high as the averaged values over the Antarctic Peninsula for the two scenarios, indicating a greater vulnerability to the climate change in the area.
Article
Full-text available
Стаття присвячена дослідженню динаміки зміни приземної температури повітря, як одного із основних показників кліматичних змін, за даними спостережень і моделей загальної циркуляції атмосфери та океану (МЗЦАО) у районі Антарктичного півострова, де ріст середньої річної температури є одним із найстрімкіших на планеті з другої половини ХХ ст. Для аналізу температурного режиму у ХХ ст. та побудови кліматичних проекцій до кінця ХХІ ст. залучено дані 93 розрахунків 10 МЗЦАО, оскільки метод моделювання є єдиним засобом у прогнозуванні майбутніх кліматичних змін. Тому метою даної роботи стала перевірка кожної з 10 МЗЦАО у порівнянні з даними спостережень на Українській антарктичній станції «Академік Вернадський» (колишня Фарадей) за 1947–2016 рр., а також побудова та аналіз кліматичних проекцій на майбутнє за сценаріями 4-ої та 5-ої доповідей Міжурядової групи експертів зі зміни клімату (МГЕЗК). У результаті за даними обох останніх доповідей МГЕЗК наведено порівняльний аналіз SRES та RCP сценаріїв зміни приземної температури повітря глобально та в Антарктиці, який показав відсутність значних розходжень у відповідних сценаріях. Проведено верифікацію результатів розрахунків 10 МЗЦАО даними вимірів за 70-річний період інструментальних спостережень на Українській антарктичній станції «Академік Вернадський», де лінійний тренд температури склав 0,51°С/10 років. Отримання близьких до реальних коефіцієнтів лінійних трендів та достатньо високих коефіцієнтів кореляції за даними рядів значень температури повітря на Українській антарктичній станції «Академік Вернадський» та в МЗЦАО у ХХ ст. підтвердило можливість використання глобальних моделей для отримання проекцій температури повітря у майбутньому. Висновок: розраховані кліматичні проекції на ХХІ ст. 10 МЗЦАО та їх ансамблів показали, що очікується продовження зростання температури за всіма сценаріями збільшення антропогенних викидів парникових газів. Найшвидше цей процес в районі Антарктичного півострова буде відбуватися за «песимістичним» сценарієм А2 із середнім трендом підвищення температури 0,29°С/10 років, за «збалансованим» сценарієм А1В отримано значення 0,26°С/10 років, а найповільніший ріст прогнозується за «оптимістичним» сценарієм В1 – 0,15°С/10 років.
ResearchGate has not been able to resolve any references for this publication.