Article

Pure Δ9-tetrahydrocannabivarin and a Cannabis sativa extract with high content in Δ9-tetrahydrocannabivarin inhibit nitrite production in murine peritoneal macrophages

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Pharmacologically, THC is a partial agonist at CB 1 and CB 2 receptor with inhibitory constant (Ki) of 40.7 nM for CB 1 and 36.4 nM for CB 2 [57]. ∆8-THC is a stable isomer of THC with similar Ki [58]. ...
... An exciting area of research is the technological improvement of existing pharmaceutical formulations, especially the development of new cannabis-based extracts. Romano et al. [57] found that a CO 2 extracted cannabis extract, with a high content (64.8%) in Δ9-tetrahydrocannabivarin (THCV), inhibits nitrite production induced by lipopolysaccharides (LPS) in murine peritoneal macrophages, and thus may have a potential to modulate the inflammatory response in different [57]. Another study compared in vitro antioxidant activity and gene expression of antioxidant enzymes between ethanol and supercritical fluid (SF) extracts of dehulled hemp seed. ...
... An exciting area of research is the technological improvement of existing pharmaceutical formulations, especially the development of new cannabis-based extracts. Romano et al. [57] found that a CO 2 extracted cannabis extract, with a high content (64.8%) in Δ9-tetrahydrocannabivarin (THCV), inhibits nitrite production induced by lipopolysaccharides (LPS) in murine peritoneal macrophages, and thus may have a potential to modulate the inflammatory response in different [57]. Another study compared in vitro antioxidant activity and gene expression of antioxidant enzymes between ethanol and supercritical fluid (SF) extracts of dehulled hemp seed. ...
Article
Full-text available
The plant Cannabis sativa L. has been used as an herbal remedy for centuries and is the most important source of phytocannabinoids. The endocannabinoid system (ECS) consists of receptors, endogenous ligands (endocannabinoids) and metabolizing enzymes, and plays an important role in different physiological and pathological processes. Phytocannabinoids and synthetic cannabinoids can interact with the components of ECS or other cellular pathways and thus affect the development/progression of diseases, including cancer. In cancer patients, cannabinoids have primarily been used as a part of palliative care to alleviate pain, relieve nausea and stimulate appetite. In addition, numerous cell culture and animal studies showed antitumor effects of cannabinoids in various cancer types. Here we reviewed the literature on anticancer effects of plant-derived and synthetic cannabinoids, to better understand their mechanisms of action and role in cancer treatment. We also reviewed the current legislative updates on the use of cannabinoids for medical and therapeutic purposes, primarily in the EU countries. In vitro and in vivo cancer models show that cannabinoids can effectively modulate tumor growth, however, the antitumor effects appear to be largely dependent on cancer type and drug dose/concentration. Understanding how cannabinoids are able to regulate essential cellular processes involved in tumorigenesis, such as progression through the cell cycle, cell proliferation and cell death, as well as the interactions between cannabinoids and the immune system, are crucial for improving existing and developing new therapeutic approaches for cancer patients. The national legislation of the EU Member States defines the legal boundaries of permissible use of cannabinoids for medical and therapeutic purposes, however, these legislative guidelines may not be aligned with the current scientific knowledge.
... THCV is a minor cannabinoid from C. sativa with evidence of medicinal properties in metabolism [80], nausea [81], obesity and insulin sensitivity [35], pain [52], and inflammation [82]. Low concentrations, 0.2-3 nM, of THCV elevated murine macrophage TNFα secretion, whereas higher concentrations were not different from LPS-treated cells ( Figure 4B). ...
... Overall, the results show that THCV did not improve inflammation markers in our system. This is in accordance with results of Rao et al. [82] that showed that THCV did not reduce LPS-induced NO production in RAW264.7 and similarly to the observed for keratinocytes [83]. ...
Article
Full-text available
Intestinal inflammation is mediated by a subset of cells populating the intestine, such as enteric glial cells (EGC) and macrophages. Different studies indicate that phytocannabinoids could play a possible role in the treatment of inflammatory bowel disease (IBD) by relieving the symptoms involved in the disease. Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative anti-inflammatory effect of nine selected pure cannabinoids in J774A1 macrophage cells and EGCs triggered to undergo inflammation with lipopolysaccharide (LPS). The anti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNFα transcription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and transcription in EGCs. Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti-inflammatory effect in both J774A1 macrophages and EGCs compared to the other phytocannabinoids tested herein. We then performed RNA-seq analysis of EGCs exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGCs revealed 23 differentially expressed genes (DEG) compared to the treatment with only LPS. Pretreatment with THC resulted in 26 DEG, and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments, we used the Ingenuity platform. We show that THC treatment affects the mTOR and RAR signaling pathway, while THC-COOH mainly affects the IL6 signaling pathway.
... Therefore, it may be difficult to effectively utilize active ingredients in clinical therapy due to the absence of a predictable dose-response relationship [32]. Romano et al. (2016) found that THCV shows a downregulatory effect on the excessive expression of nitric oxide synthase (iNOS), COX-2, and IL-1β proteins induced by LPS. Additionally, THCV counteracted the LPS-induced upregulation of CB1 receptors, while it did not affect changes in CB2R, TRPV2, or TRPV4 mRNA expression [33]. ...
... Romano et al. (2016) found that THCV shows a downregulatory effect on the excessive expression of nitric oxide synthase (iNOS), COX-2, and IL-1β proteins induced by LPS. Additionally, THCV counteracted the LPS-induced upregulation of CB1 receptors, while it did not affect changes in CB2R, TRPV2, or TRPV4 mRNA expression [33]. However, they did not decipher the exact downregulatory mechanism of THCV. ...
Article
Full-text available
Inflammation is a natural response of the body to signals of tissue damage or infection caused by pathogens. However, when it becomes imbalanced, it can lead to various disorders such as cancer, obesity, cardiovascular problems, neurological conditions, and diabetes. The endocannabinoid system, which is present throughout the body, plays a regulatory role in different organs and influences functions such as food intake, pain perception, stress response, glucose tolerance, inflammation, cell growth and specialization, and metabolism. Phytocannabinoids derived from Cannabis sativa can interact with this system and affect its functioning. In this study, we investigate the mechanisms underlying the anti-inflammatory effects of three minor phytocannabinoids including tetrahydrocannabivarin (THCV), cannabichromene (CBC), and cannabinol (CBN) using an in vitro system. We pre-treated THP-1 macrophages with different doses of phytocannabinoids or vehicle for one hour, followed by treating the cells with 500 ng/mL of LPS or leaving them untreated for three hours. To induce the second phase of NLRP3 inflammasome activation, LPS-treated cells were further treated with 5 mM ATP for 30 min. Our findings suggest that the mitigation of the PANX1/P2X7 axis plays a significant role in the anti-inflammatory effects of THCV and CBC on NLRP3 inflammasome activation. Additionally, we observed that CBC and THCV could also downregulate the IL-6/TYK-2/STAT-3 pathway. Furthermore, we discovered that CBN may exert its inhibitory impact on the assembly of the NLRP3 inflammasome by reducing PANX1 cleavage. Interestingly, we also found that the elevated ADAR1 transcript responded negatively to THCV and CBC in LPS-macrophages, indicating a potential involvement of ADAR1 in the anti-inflammatory effects of these two phytocannabinoids. THCV and CBN inhibit P-NF-κB, downregulating proinflammatory gene transcription. In summary, THCV, CBC, and CBN exert anti-inflammatory effects by influencing different stages of gene expression: transcription, post-transcriptional regulation, translation, and post-translational regulation.
... THCV is a minor cannabinoid from C. sativa with evidence of medicinal properties in metabolism [103], nausia [68], obesity and insulin sensitivity [46], pain [71] and inflammation [104]. Low concentrations, 0.2-3nM of THCV elevated murine macrophage TNFɑ secretion whereas higher concentrations were not different to LPS treated cells ( Figure 4B). ...
... Low concentrations, 0.2-3nM of THCV elevated murine macrophage TNFɑ secretion whereas higher concentrations were not different to LPS treated cells ( Figure 4B). Overall,the results show that 11 THCV did not improve inflammation markers in our system, this is in accordance with results of Rao et al. [104] that showed that THCV did not reduce LPS induced NO production in RAW264.7 and similarly to the observed for keratinocytes [105]. ...
Preprint
Full-text available
Inflammatory bowel diseases (IBD) includes Crohn's disease and ulcerative colitis, are idiopathic chronic relapsing inflammatory disorders of the intestinal tract. Different studies indicate that phytocanna-binoids, could play a possible role in the treatment of IBD by relieving the symptoms involved in the dis-ease. Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative-anti-inflammatory effect of nine-selected pure cannabinoids in J774A1 macrophages cells and enteric glial cells (EGC’s) triggered to undergo inflammation with lipopolysaccharide (LPS). The an-ti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNF tran-scription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and tran-scription in EGC’s. Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti- inflammatory effect in both J774A1 macrophages and EGC’s compared to the other phy-tocannabinoids tested herein. We then performed RNA-seq analysis of EGC’s exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGC’s revealed 23 differ-entially expressed genes (DEG) compared to treatment with only LPS. Pretreatment with THC resulted in 26 DEG and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments we used the Ingenuity platform. We show that THC treatment affected the mTOR and RAR signaling pathway while THC-COOH affected mainly the IL6 signaling pathway.
... Δ 9 -THCV is a neutral CB 1 R antagonist and likely via this mechanism, it ameliorates insulin sensitivity. In rodent studies, it decreases appetite, increases satiety, and upregulates energy metabolism, making it a clinically useful remedy for weight loss and management of obesity and type 2 diabetic patients (Abioye et al., 2020;Romano et al., 2016). Via CB 2 R receptor, Δ 9 -THCV, inhibits nitrite production in macrophages. ...
... Via CB 2 R receptor, Δ 9 -THCV, inhibits nitrite production in macrophages. This antioxidant CB 2 R agonist properties of Δ 9 -tetrahydrocannabivarin (Δ 9 -THCV) afforded neuroprotection in experimental Parkinson's disease (PD), whereas its CB 1 R antagonist profile at doses lower than 5 mg/kg caused antihypokinetic effects (Espadas et al., 2020;Romano et al., 2016). ...
... Tetrahydrocannabinol (THC) and cannabidiol (CBD) are major phytocannabinoid constituents of the cannabis plant and act on cannabinoid receptors [29,30]. Cannabis sativa also contains a plethora of phytochemicals including the minor phytocannabinoids β-caryophyllene (BCP) and tetrahydrocannabivarin (THCV) [31,32]. BCP is a component of cannabis essential oil and essential oils from cinnamon, black pepper, and oregano [31]. ...
... BCP is a component of cannabis essential oil and essential oils from cinnamon, black pepper, and oregano [31]. These compounds may display neuroprotective activity via cannabinoid receptor-2 (CB2) agonistic effects, and without exhibiting the psychoactive effects of THC [30][31][32][33]. BCP exerts anti-inflammatory activity via activation of members of the nuclear receptor family of peroxisome proliferated activator receptors (PPARs) [33,34]. ...
Article
Full-text available
Currently, there are no pharmacological treatments able to reverse nigral degeneration in Parkinson's disease (PD), hence the unmet need for the provision of neuroprotective agents. Cannabis-derived phytocannabinoids (CDCs) and resveratrol (RSV) may be useful neuroprotective agents for PD due to their anti-oxidative and anti-inflammatory properties. To evaluate this, we undertook a systematic review of the scientific literature to assess the neuroprotective effects of CDCs and RSV treatments in pre-clinical in vivo animal models of PD. The literature databases MEDLINE, EMBASE, PsychINFO, PubMed, and Web of Science core collection were systematically searched to cover relevant studies. A total of 1034 publications were analyzed, of which 18 met the eligibility criteria for this review. Collectively, the majority of PD rodent studies demonstrated that treatment with CDCs or RSV produced a significant improvement in motor function and mitigated the loss of dopaminergic neurons. Biochemical analysis of rodent brain tissue suggested that neuroprotection was mediated by anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. This review highlights the neuroprotective potential of CDCs and RSV for in vivo models of PD and therefore suggests their potential translation to human clinical trials to either ameliorate PD progression and/or be implemented as a prophylactic means to reduce the risk of development of PD.
... However, Prociuk et al. (2006) have shown the beneficial effects of dietary hemp seeds in hypercholesterolemic rabbits following cardiac ischemia/reperfusion injury [40], which can lead to oxidative stress [41]. A direct anti-inflammatory effect (decreased release of pro-inflammatory mediators by mast cells, attenuated inflammatory pain and decreased generation of NO) caused by cannabinoids (chemical constituents of hemp) was described in animal models such as guinea pigs [42] and mice [43][44][45]. Similarly, Hong et al. (2015) observed that hemp seed effectively inhibited H 2 O 2 -mediated oxidative stress by increasing the gene expression of antioxidant enzymes in HepG2 cells [46]. ...
... The inclusion of this hemp seed in the diets of sows during late gestation and lactation decreased by 34.32% the dietary ω-6: ω-3 ratio, the key index for balanced synthesis of eicosanoids in the body [78,79], compared to the control diet. The concentration of cannabinoid compounds was also in the range reported by other studies [25,45,80]. By contrast, the LC-MS method used in our study detected only negligible polyphenol concentrations. ...
Article
Full-text available
This study shows the antioxidant effect of a dietary hemp seed diet rich in ω-6 polyunsaturated fatty acid (PUFA) on oxidative status in sows during late gestation and lactation and their offspring. Ten pregnant sows were divided into two groups and fed either a control diet (CD) or a hemp diet (HD) containing 2% hemp seed meal for a period of 10 days before farrowing and 5% throughout the lactation period (21 d). After farrowing, 16 of their resulting piglets were divided into two groups: control group CD (eight piglets derived from control sows) and HD group (eight piglets derived from HD sows), respectively. Blood collected from sows and piglets at day 1, 7 and 21 was used for the measurement of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), glutathione (GPx)), nitric oxide production (NO), lipid peroxidation (thiobarbituric acid reactive substances—TBARS), reactive oxygen species (ROS) generation and total antioxidant capacity (TAC) in plasma. The results showed a significant improvement in the oxidative status of sows fed HD throughout lactation compared with CD. Similarly, in piglets, HD positively influenced the activities of antioxidant enzymes, TAC and NO levels and significantly decreased lipid peroxidation in plasma until weaning, in comparison with the CD group. This study suggests the potential of hemp seed diet to improve the overall antioxidant status of the lactating sows and their progeny.
... In hyperthermic shock conditions, the presence of TRPV3 in nucleolus correlated with lysosomal function and stress level [151]. According to the other data, TRPV3 mRNA expression was practically undetectable in unstimulated or LPS-stimulated mouse macrophages [152]. Other data indicated that TRPV3 regulates nitric oxide synthesis in the skin, thus promoting wound healing in vivo [153]. ...
Article
Full-text available
Transient receptor potential vanilloid subtype 3 (TRPV3) is an ion channel with a sensory function that is most abundantly expressed in keratinocytes and peripheral neurons. TRPV3 plays a role in Ca2+ homeostasis due to non-selective ionic conductivity and participates in signaling pathways associated with itch, dermatitis, hair growth, and skin regeneration. TRPV3 is a marker of pathological dysfunctions, and its expression is increased in conditions of injury and inflammation. There are also pathogenic mutant forms of the channel associated with genetic diseases. TRPV3 is considered as a potential therapeutic target of pain and itch, but there is a rather limited range of natural and synthetic ligands for this channel, most of which do not have high affinity and selectivity. In this review, we discuss the progress in the understanding of the evolution, structure, and pharmacology of TRPV3 in the context of the channel’s function in normal and pathological states.
... Not many studies have been reported with THCV as an anticancer agent in the literature. Romano et al. demonstrated that a CO2 extracted cannabis extract, with a high content (64.8%) in D9tetrahydrocannabivarin (THCV), inhibited nitrite production induced by lipopolysaccharides (LPS) in murine peritoneal macrophages, and thus may have a potential to modulate the inflammatory response in different disease conditions like cancer [57]. ...
Article
The significant resistance to currently available chemotherapeutics makes treatment for TNBC a key clinical concern. Herein, we studied the anti-cancer potentials of synthetic cannabidiol (CBD) and Tetrahydrocannabivarin (THCV) when used alone or in combination with doxorubicin (DOX) against MDA-MB-231 resistant cells. Pre-treatment with CBD and THCV significantly increased the cytotoxicity of DOX in MDA-MB-231 2D and 3D cultures that were DOX-resistant. Transcriptomics and Proteomics studies revealed that CBD and THCV, by downregulating PD-L1, TGF-β, sp1, NLRP3, P38-MAPK, and upregulating AMPK induced apoptosis leading to improved DOX's chemosensitivity against DOX resistant MDA-MB-231 tumors in BALB/c nude mice. CBD/THCV in combination with DOX significantly inhibited H3k4 methylation and H2K5 acetylation as demonstrated by western blotting and RT-PCR. Based on these findings, CBD and THCV appear to counteract histone modifications and their subsequent effects on DOX, resulting in chemo-sensitization against MDA-MB-231 resistant cancers.
... For example, Δ9-tetrahydrocannabinol (THC) inhibits macrophage phagocytosis by 90% [17], and in lipopolysaccharide-activated macrophages, Δ9-tetrahydrocannabivarin (THCV) inhibited IL-1β protein levels [18]. Cannabidiol (CBD) was shown to reduce the production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts [19] and was suggested to be added to anti-viral therapies to alleviate COVID-19-related inflammation [20]. ...
Article
Full-text available
Lung inflammation is associated with elevated pro-inflammatory cytokines and chemokines. Treatment with FCBD:std (standard mix of cannabidiol [CBD], cannabigerol [CBG] and tetrahydrocannabivarin [THCV]) leads to a marked reduction in the inflammation of alveolar epithelial cells, but not in macrophages. In the present study, the combined anti-inflammatory effect of FCBD:std with two corticosteroids (dexamethasone and budesonide) and two non-steroidal anti-inflammatory drugs (NSAID; ibuprofen and diclofenac), was examined. Enzyme-linked immunosorbent assay (ELISA) was used to determine protein levels. Gene expression was determined by quantitative real-time PCR. Inhibition of cyclo-oxygenase (COX) activity was determined in vitro. FCBD:std and diclofenac act synergistically, reducing IL-8 levels in macrophages and lung epithelial cells. FCBD:std plus diclofenac also reduced IL-6, IL-8 and CCL2 expression levels in co-cultures of macrophages and lung epithelial cells, in 2D and 3D models. Treatment by FCBD:std and/or NSAID reduced COX-1 and COX-2 gene expression but not their enzymatic activity. FCBD:std and diclofenac exhibit synergistic anti-inflammatory effects on macrophages and lung epithelial cells, yet this combined activity needs to be examined in pre-clinical studies and clinical trials.
... We found that both THC and CBD, as well as cannabis extracts treatments, inhibit activation-induced NO• secretion from both female and male peritoneal macrophages. These results were in agreement with the results of Romano et al. who demonstrated a similar effect with the cannabinoid THCV [32]. Cannabis extracts and pure cannabinoids were used in a concentration of 5 µg/mL; the extracts had stronger effect than the pure cannabinoids, although cannabinoids constituted only 35-38% of their content. ...
Article
Full-text available
Phytocannabinoids possess a wide range of immune regulatory properties, mediated by the endocannabinoid system. Monocyte/macrophage innate immune cells express endocannabinoid receptors. Dysregulation of macrophage function is involved in the pathogenesis of different inflammatory diseases, including inflammatory bowel disease. In our research, we aimed to evaluate the effects of the phytocannabinoids D9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on macrophage activation. Macrophages from young and aged C57BL/6 mice were activated in vitro in the presence of pure cannabinoids or cannabis extracts. The phenotype of the cells, nitric oxide (NO•) secretion, and cytokine secretion were examined. In addition, these treatments were administered to murine colitis model. The clinical statuses of mice, levels of colon infiltrating macrophages, and inflammatory cytokines in the blood, were evaluated. We demonstrated inhibition of macrophage NO• and cytokine secretion and significant effects on expression of cell surface molecules. In the murine model, clinical scores were improved and macrophage colon infiltration reduced following treatment. We identified higher activity of cannabis extracts as compared with pure cannabinoids. Each treatment had a unique effect on cytokine composition. Overall, our results establish that the effects of cannabinoid treatments differ. A better understanding of the reciprocal relationship between cannabinoids and immunity is essential to design targeted treatment strategies.
... Most synthetic cannabinoids such as dronabinol, nabilone and synthetic CBD were reported to be 100 times more potent when compared with THC [74,75]. Few formulations of dronabinol, nabilone and synthetic CBD are approved to stimulate appetite in AIDS patients and in cancer patients to treat cytostatic-induced nausea/vomiting [76]. Noscapine, a nonsedative isoquinolone alkaloid obtained from the opium latex was reported to effectively inhibit the in-vitro and in-vivo progression of different cancers such as Breast Cancer, Lymphoma, Ovarian Carcinoma, Melanoma, Colon Cancer, Human Non-small cell Lung Cancer and Glioblastoma in different experimental models [77e86]. ...
Article
Full-text available
Schedule E1 is an important part of Drugs and Cosmetics Act (Government of India) that comprises the list of poisonous drugs from plant, animal and mineral origins to be consumed under medical supervision. Ayurveda, the world's oldest medicinal system has a list of drugs represented in schedule E1 that are used since thousands of years. This review reports the anti-cancer activities of fifteen toxic ayurvedic drugs from plant origin represented in Drugs and Cosmetics Act, 1940. The information was collected from the various authentic sources, compiled and summarised. The plant extracts, formulations, phytoconstituents and other preparations of these drugs have shown effective activities against mammary carcinoma, neuroblastoma, non-small cell lung carcinoma, lymphocytic leukaemia, colorectal adenocarcinoma, Ehrlich ascites carcinoma, prostate adenocarcinoma, glioblastoma asterocytoma and other malignancies. They have various mechanisms of action including Bax upregulation, Bcl2 downregulation, induction of cell cycle arrest at S phase, G2/M phase, inhibition of vascular endothelial growth factors, inhibition of Akt/mTOR signalling etc. Certain traditional ayurvedic preparations containing these plants are reported beneficial and the possibilities of these drugs as the alternative and adjuvant therapeutic agents in the current cancer care have been discussed. The studies suggest that these drugs could be utilised in future for the critical care of malignancies.
... Elsewhere, in terms of the impact of phytocannabinoids on TLR4 signalling, THC (10 µM) and CBD (5 µM, 10 µM) have been shown to inhibit TLR4-induced IL-1β production in microglia [35]. CBD (3 µM) also reduces TLR4-induced oxidative stress in mesenchymal stromal cells [52], while tetrahydrocannabivarin (THCV; 1 µM) inhibits TLR4 inflammatory signalling in macrophages [53]. In terms of TLR3 signalling, we have previously shown that THC and CBD (both at 10 µM) inhibit TLR3-induced inflammatory signalling in macrophages [25], which is consistent with the effects of several phytocannabinoids including CBD, THCV, cannabigerol (CBG), cannabichromene (CBC), and cannabigevarin (CBGV) (all in the 5-20 µM range) on TLR3 signalling in keratinocytes [21]. ...
Article
Full-text available
The innate immune response to bacterial and viral molecules involves the coordinated production of cytokines, chemokines, and type I interferons (IFNs), which is orchestrated by toll-like receptors (TLRs). TLRs, and their intracellular signalling intermediates, are closely associated with multiple sclerosis (MS) pathogenesis. Recent data from our laboratory reported that the plant-derived cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), regulate viral and bacterial inflammatory signalling pathways controlled by TLR3 and TLR4 in macrophages. The aim of this study was to assess the impact of THC and CBD, when delivered in isolation and in combination (1:1), on TLR3- and TLR4-dependent signalling in peripheral blood mononuclear cells (PBMCs) from people with MS (pwMS; n = 21) and healthy controls (HCs; n = 26). We employed the use of poly(I:C) and lipopolysaccharide (LPS) to induce viral TLR3 and bacterial TLR4 signalling, and PBMCs were pre-exposed to plant-derived highly purified THC (10 μM), CBD (10 μM), or a combination of both phytocannabinoids (1:1 ratio, 10:10 μM), prior to LPS/poly(I:C) exposure. TLR3 stimulation promoted the protein expression of the chemokine CXCL10 and the type I IFN-β in PBMCs from both cohorts. THC and CBD (delivered in 1:1 combination at 10 μM) attenuated TLR3-induced CXCL10 and IFN-β protein expression in PBMCs from pwMS and HCs, and this effect was not seen consistently when THC and CBD were delivered alone. In terms of LPS, TLR4 activation promoted TNF-α expression in PBMCs from both cohorts, and, interestingly, CBD when delivered alone at 10 μM, and in combination with THC (in 1:1 combination at 10 μM), exacerbated TLR4-induced TNF-α protein expression in PBMCs from pwMS and HCs. THC and CBD displayed no evidence of toxicity in primary PBMCs. No significant alteration in the relative expression of TLR3 and TLR4 mRNA, or components of the endocannabinoid system, including the cannabinoid receptor CB1 (encoded by CNR1 gene) and CB2 (encoded by CNR2 gene), and endocannabinoid metabolising enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGLL), was determined in PBMCs from pwMS versus HCs. Given their role in inflammation, TLRs are clinical targets, and data herein identify CBD and THC as TLR3 and TLR4 modulating drugs in primary immune cells in vitro. This offers insight on the cellular target(s) of phytocannabinoids in targeting inflammation in the context of MS.
... Thus, when tested in vivo, THCV exhibits both CB1 and CB2 receptor agonist activity. These anti-inflammatory actions of THCV were further supported by in vitro experiments using peritoneal-derived macrophages (Romano, et al., 2016). THCV was found to suppress inflammatory pathways by down-regulating LPSinduced expression of iNOS, COX-2 and interleukin 1β. ...
Article
Full-text available
The medicinal use of Cannabis sativa L. can be traced back thousands of years to ancient China and Egypt. While marijuana has recently shown promise in managing chronic pain and nausea, scientific investigation of cannabis has been restricted due its classification as a schedule 1 controlled substance. A major breakthrough in understanding the pharmacology of cannabis came with the isolation and characterization of the phytocannabinoids trans -Δ ⁹ -tetrahydrocannabinol (Δ ⁹ -THC) and cannabidiol (CBD). This was followed by the cloning of the cannabinoid CB1 and CB2 receptors in the 1990s and the subsequent discovery of the endocannabinoid system. In addition to the major phytocannabinoids, Δ ⁹ -THC and CBD, cannabis produces over 120 other cannabinoids that are referred to as minor and/or rare cannabinoids. These cannabinoids are produced in smaller amounts in the plant and are derived along with Δ ⁹ -THC and CBD from the parent cannabinoid cannabigerolic acid (CBGA). While our current knowledge of minor cannabinoid pharmacology is incomplete, studies demonstrate that they act as agonists and antagonists at multiple targets including CB1 and CB2 receptors, transient receptor potential (TRP) channels, peroxisome proliferator-activated receptors (PPARs), serotonin 5-HT 1a receptors and others. The resulting activation of multiple cell signaling pathways, combined with their putative synergistic activity, provides a mechanistic basis for their therapeutic actions. Initial clinical reports suggest that these cannabinoids may have potential benefits in the treatment of neuropathic pain, neurodegenerative diseases, epilepsy, cancer and skin disorders. This review focuses on the molecular pharmacology of the minor cannabinoids and highlights some important therapeutic uses of the compounds.
... Macrophages 3.7.1. Expression TRPA1 was absent in naïve and activated murine peritoneal macrophages on the mRNA level [81][82][83] and protein level [83]. These cells also showed no increase in intracellular Ca 2+ levels upon AITC application [83]. ...
Article
Full-text available
The non-selective cation channel TRPA1 is best known as a broadly-tuned sensor expressed in nociceptive neurons, where it plays key functions in chemo-, thermo-, and mechano-sensing. However, in this review we illustrate how this channel is expressed also in cells of the immune system. TRPA1 has been detected, mainly with biochemical techniques, in eosinophils, mast cells, macrophages, dendritic cells, T cells, and B cells, but not in neutrophils. Functional measurements, in contrast, remain very scarce. No studies have been reported in basophils and NK cells. TRPA1 in immune cells has been linked to arthritis (neutrophils), anaphylaxis and atopic dermatitis (mast cells), atherosclerosis, renal injury, cardiac hypertrophy and inflammatory bowel disease (macrophages), and colitis (T cells). The contribution of TRPA1 to immunity is dual: as detector of cell stress, tissue injury, and exogenous noxious stimuli it leads to defensive responses, but in conditions of aberrant regulation it contributes to the exacerbation of inflammatory conditions. Future studies should aim at characterizing the functional properties of TRPA1 in immune cells, an essential step in understanding its roles in inflammation and its potential as therapeutic target.
... In another study, D 9 THC was able to reduce IL-1b and NF-kB levels via CB2R activation in a human osteosarcoma cell line after LPS stimulation (190). D 9 -tetrahydrocannabivarin (THCV) was also shown to inhibit IL-1b levels in LPS-challenged murine macrophages (193). Feeding D 9 THC mixed with sesame oil orally to rats with chemically induced rheumatoid arthritis (RA) for 21 days significantly reduced IL-1b concentration to baseline, suggesting the possible inhibition of inflammasomes as a promising target in RA (191). ...
Article
Full-text available
Inflammasomes are cytoplasmic inflammatory signaling protein complexes that detect microbial materials, sterile inflammatory insults, and certain host-derived elements. Inflammasomes, once activated, promote caspase-1–mediated maturation and secretion of pro-inflammatory cytokines, interleukin (IL)-1β and IL-18, leading to pyroptosis. Current advances in inflammasome research support their involvement in the development of chronic inflammatory disorders in contrast to their role in regulating innate immunity. Cannabis (marijuana) is a natural product obtained from the Cannabis sativa plant, and pharmacologically active ingredients of the plant are referred to as cannabinoids. Cannabinoids and cannabis extracts have recently emerged as promising novel drugs for chronic medical conditions. Growing evidence indicates the potent anti-inflammatory potential of cannabinoids, especially Δ ⁹ -tetrahydrocannabinol (Δ ⁹ -THC), cannabidiol (CBD), and synthetic cannabinoids; however, the mechanisms remain unclear. Several attempts have been made to decipher the role of cannabinoids in modulating inflammasome signaling in the etiology of chronic inflammatory diseases. In this review, we discuss recently published evidence on the effect of cannabinoids on inflammasome signaling. We also discuss the contribution of various cannabinoids in human diseases concerning inflammasome regulation. Lastly, in the milieu of coronavirus disease-2019 (COVID-19) pandemic, we confer available evidence linking inflammasome activation to the pathophysiology of COVID-19 suggesting overall, the importance of cannabinoids as possible drugs to target inflammasome activation in or to support the treatment of a variety of human disorders including COVID-19.
... For example, THCV inhibited LPS-induced iNOS-dependent NO production in murine peritoneal macrophages via CB2 agonism. 56 Cannabichromene, which is not particularly active at the classic CB receptors, and THC exerted similar effects via unclear mechanisms with the former being possibly related to TRPA1 activation. 57 CBG also reduced iNOS expression and NO production in murine gut macrophages via CB2 agonism in a mouse model of inflammatory bowel disease (IBD). ...
Article
The increasing legalization of Cannabis for recreational and medicinal purposes in the United States has spurred renewed interest in the therapeutic potential of cannabinoids (CBs) for human disease. The skin has its own endocannabinoid system (eCS) which is a key regulator of various homeostatic processes, including those necessary for normal physiologic wound healing. Data on the use of CBs for wound healing are scarce. Compelling pre‐clinical evidence supporting the therapeutic potential of CBs to improve wound healing by modulating key molecular pathways is herein reviewed. These findings merit further exploration in basic science, translational and clinical studies.
... Cannabinoids also in uence macrophage activity. For example, Δ9-tetrahydrocannabivarin (THCV) inhibited nitrite production and interleukin 1β (IL-1β) protein levels in lipopolysaccharide activated macrophages 10 . Further, Δ9-tetrahydrocannabinol (THC) was shown to inhibit macrophages phagocytosis by 90% 11 . ...
Preprint
Full-text available
Cannabis sativa is widely used for medical purposes and has anti-inflammatory activity. The purpose of this study was to examine the anti-inflammatory activity of cannabis on markers of immune responses associated with Coronavirus disease 2019 (COVID-19) inflammation. An extract fraction from C. sativa Arbel strain (F CBD ) substantially reduced dose dependently interleukin (IL) 6 and 8 levels in an alveolar epithelial (A549) cell line. F CBD contained cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), and multiple terpenes. Treatments with F CBD and phytocannabinoid standards that compose F CBD (F CBD:std ) reduced IL-6, IL-8, C-C Motif Chemokine Ligands ( CCLs ) 2 and 7, and angiotensin I converting enzyme 2 ( ACE2 ) expression in the A549 cell line. Treatment with F CBD induced macrophages (differentiated KG1 cell line) polarization and phagocytosis in vitro , and increased CD36 and type II receptor for the Fc region of IgG ( FcγRII ) expression. F CBD treatment also substantially increased IL-6 and IL-8 expression in macrophages. F CBD:std , while maintaining the anti-inflammatory activity in alveolar epithelial cells, led to reduced phagocytosis and pro-inflammatory IL secretion in macrophages in comparison to F CBD . The phytocannabinoid mixture may show superior activity versus cannabis fraction for reduction of lung inflammation, yet there is a need of caution in proposing cannabis as treatment for COVID-19.
... in vitro, ex vivo, and in vivo data show that the effects of Δ 9 THCV are mediated by both cannabinoid receptors and alternative targets. It is likely that Δ 9 THCV and Δ 9 THCV-rich plant extracts decrease, via CB 2 R, the production of proinflammatory factors that are induced by the lipopolysaccharide (LPS) treatment of peripheral macrophages [114]. A reduction in inflammatory pain [112] and a antiinflammatory action in the gastrointestinal tract seemingly involve TRPV3 and TRPV4 channels [115]. ...
Article
While natural Δ⁹-tetrahidrocannabinol (Δ⁹THC), cannabidiol (CBD), and their therapeutic potential have been extensively researched, some cannabinoids have not been widely investigated. The present article compiles data from the literature that highlights research on and the therapeutic possibilities of lesser known phytocannabinoids, which we have divided into varinic, acidic, and “minor” (i.e., cannabinoids that are not present in high quantities in common varieties of Cannabis sativa L). A growing interest in these compounds, which are enriched in some cannabis varieties, has already resulted in enough preclinical information to show that they are promising therapeutic agents for a variety of diseases. Each phytocannabinoid has a “preferential” mechanism of action, and often target the cannabinoid receptors CB1 and/or CB2. The recent resolution of the structure of cannabinoid receptors demonstrates the atypical nature of cannabinoid binding, and that different binding modes depend on the agonist or partial agonist/inverse agonist, which allows for differential signaling, even acting on the same cannabinoid receptor. In addition, other players and multiple signaling pathways may be targeted/engaged by phytocannabinoids, thereby expanding the mechanistic possibilities for therapeutic use.
... [24]. Δ 9 -THCV aynı zamanda CB2 reseptörleri üzerinden makrofajlarda LPS tarafından stimüle edilen nitrik oksidi inhibe etmektedir [44,45]. ...
... On the contrary, at higher doses (10 mg/kg) D9-THCV shows an agonist profile (Pertwee, 2008). In addition, D9-THCV can activate CB2 receptors ( Bolognini et al., 2010) and inhibit LPS-stimulated nitric oxide pro- duction in macrophages ( Romano et al., 2016). Cannabicyclol (CBL) type: A racemic mixture of phytocannabinoids that occurs during storage of the C. sativa parts in the presence of light, but with still unknown biological properties ( Hanus et al., 2016). ...
Article
Ethnopharmacological relevance: Cannabis sativa L. (C. sativa) is an annual dioecious plant, which shares its origins with the inception of the first agricultural human societies in Asia. Over the course of time different parts of the plant have been utilized for therapeutic and recreational purposes, for instance, extraction of healing oils from seed, or the use of inflorescences for their psychoactive effects. The key psychoactive constituent in C. sativa is called Δ-9-tetrahydrocannabinol (D9-THC). The endocannabinoid system seems to be phylogenetically ancient, as it was present in the most primitive vertebrates with a neuronal network. N-arachidonoylethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG) are the main endocannabinoids ligands present in the animal kingdom, and the main endocannabinoid receptors are cannabinoid type-1 (CB1) receptor and cannabinoid type-2 (CB2) receptor. Aim of the study: The review aims to provide a critical and comprehensive evaluation, from the ancient times to our days, of the ethnological, botanical, chemical and pharmacological aspects of C. sativa, with a vision for promoting further pharmaceutical research to explore its complete potential as a therapeutic agent. Materials and methods: This study was performed by reviewing in extensive details the studies on historical significance and ethnopharmacological applications of C. sativa by using international scientific databases, books, Master's and Ph.D. dissertations and government reports. In addition, we also try to gather relevant information from large regional as well as global unpublished resources. In addition, the plant taxonomy was validated using certified databases such as Medicinal Plant Names Services (MPNS) and The Plant List. Results and conclusions: A detailed comparative analysis of the available resources for C. sativa confirmed its origin and traditional spiritual, household and therapeutic uses and most importantly its popularity as a recreational drug. The result of several studies suggested a deeper involvement of phytocannabinoids (the key compounds in C. sativa) in several others central and peripheral pathophysiological mechanisms such as food intake, inflammation, pain, colitis, sleep disorders, neurological and psychiatric illness. However, despite their numerous medicinal benefits, they are still considered as a menace to the society and banned throughout the world, except for few countries. We believe that this review will help lay the foundation for promoting exhaustive pharmacological and pharmaceutical studies in order to better understand the clinical relevance and applications of non-psychoactive cannabinoids in the prevention and treatment of life-threatening diseases and help to improve the legal status of C. sativa.
... A study reported that western diets can produce more advanced glycation end products (AGE), which interact with receptors for advanced glycation end products (RAGE), which in turn induce cardiac in ammation (Tikellis et al., 2008). Recent reports suggested that cardiac in ammation eventually alters the extracellular matrix in heart failure patients and that phages concurrently contribute to the Heart Failure with Normal Ejection Fraction (HFNEF) rate, ultimately increasing mortality (Westermann et al., 2010 ( Romano et al., 2016) which makes them interrelated with each other. A population-based study reported that patients with dilated cardiomyopathy showed the presence of iNOS and TNF-α mRNA in their cardiomyocytes (Satoh et al., 1997). ...
Article
Full-text available
Vascular damage and subsequent cardiac failure due to immune cytokines is steadily increasing the morbidity of cardiovascular diseases (CVD), making them the leading cause of death globally. Nevertheless, improper diagnosis is an important hurdle in case management. Free radicals are one of major factors in producing vascular abnormalities in CVD. Additionally, some other factors such as high blood pressure, myocardial injuries, vascular damage, ventricular hypertrophy, cardiac fibrosis and myocardial necrosis are also the results of free radical-mediated abnormal cardiac activity/function. Of note, Nitric Oxide Synthase (iNOS) is produced in the body at an elevated rate in the presence of free radicals which has been shown to lead to cardiac issues. Furthermore, iNOS is also increased due to cytoplasmic stress, faulty DNA replication and membrane potential impairment. Moreover, abnormal cardiac rhythm has also been reported to be linked to the presence of iNOS. iNOS can also lead to abnormal cardiac function through inhibition of mitochondrial activity and production of pro-inflammatory cytokines. The molecular mechanism of iNOS that leads to CVD is comprehensively summarized in this review so as to aid in drug discovery strategies for the treatment of CVD
... THCV 11, chemically the n-propyl analogue of 9 -THC 1, is another non-psychotropic phytocannabinoid exerting its pharmacological activity via CB1 receptor blockade [54] or CB2 receptor activation [55]. Over the last decade, several studies have demonstrated its effectiveness in reducing food intake, in ameliorating insulin sensitivity in diabetes, in reducing nausea and, importantly, in inhibiting LPS-stimulated nitric oxide production in macrophages [56] and thus contributing to immunomodulatory and anti-inflammatory properties of Cannabis. ...
Article
Full-text available
Endocannabinoid System (ES) has gained over the years a leading position in scientific research thanks to its involvement in numerous patho/physiological conditions. Accordingly, its main components, such as receptors, enzymes and mediators, have become important drug targets for the management of diseases where it is dysregulated. Within the manuscript, several classes of cannabinergic ligands are examined, emphasizing molecules coming from the natural world, unique source of active compounds. Firstly, the endogenous lipid ES modulators are described, starting from the major endocannabinoids to the plethora of endocannabinoid congeners. Afterwards, Cannabis-derived cannabinoids, namely well-known phytocannabinoids and new constituents from different varieties of Cannabis, are reviewed also mentioning the huge effort of pharmaceutical research in obtaining synthetic analogues. Finally, an overview of peptides and miscellaneous natural products points out new opportunities to modulate ES, offering an enormous chemical heterogeneity. Accordingly, hemopressin and related peptides, plant-derived alkylamides, terpenoid derivatives, neolignans and examples from the marine world can provide interesting hints and original ideas to develop new cannabinergic compounds.
... Relative expression calculation, correct for PCR efficiency and normalized with respect to reference genes β-actin and hypoxanthine-guanine phosphoribosyltransferase, was performed by the iQ5 software. Results are expressed as fold expression (Romano et al., 2016). Statistical significance was evaluated by the by the REST 2009 software (Pfaffl et al., 2002). ...
Article
Full-text available
One important risk factor for the development of asthma is allergen sensitization. Recent increasing evidence suggests a prominent role of mast cells in asthma pathophysiology. Since Palmitoylethanolamide (PEA), an endogenous lipid mediator chemically related to – and co-released with- the endocannabinoid anandamide, behaves as a local autacoid down-regulator of mast cell activation and inflammation, we explored the possible contribution of PEA in allergic sensitization, by using ovalbumin (OVA) as sensitizing agent in the mouse. PEA levels were dramatically reduced in the bronchi of OVA-treated animals. This effect was coupled to a significant up-regulation of CB2 and GPR55 receptors, two of the proposed molecular PEA targets, in bronchi harvested from allergen-sensitized mice. PEA supplementation (10 mg/kg, 15 min before each allergen exposure) prevented OVA-induced bronchial hyperreactivity, but it did not affect IgE plasma increase. On the other hand, PEA abrogated allergen-induced cell recruitment as well as pulmonary inflammation. Evaluation of pulmonary sections evidenced a significant inhibitory action of PEA on pulmonary mast cell recruitment and degranulation, an effect coupled to a reduction of leukotriene C4 production. These findings demonstrate that allergen sensitization negatively affects PEA bronchial levels and suggest that its supplementation has the potential to prevent the development of asthma-like features.
... 11 For example, D9tetrahydrocannabivarin (THCV) was demonstrated to inhibit nitrite production in macrophages and thereby to play an immunomodulatory role. 12 Phytocannabinoids have been shown to exert their anti-inflammatory functions on the GI tract by activating receptors that are part of the endocannabinoid system, mainly the G-protein-coupled cannabinoid receptor type 2 (CB2). 4,13 In the human colonic epithelial cell line HT29, a number of cannabinoid receptor agonists and antagonists, including the plant-derived THC, have been shown to inhibit tumor necrosis factor alpha (TNFa)-induced interleukin-8 (IL-8) release. ...
Article
Full-text available
Introduction: Inflammatory bowel diseases (IBDs) include Crohn's disease, and ulcerative colitis. Cannabis sativa preparations have beneficial effects for IBD patients. However, C. sativa extracts contain hundreds of compounds. Although there is much knowledge of the activity of different cannabinoids and their receptor agonists or antagonists, the cytotoxic and anti-inflammatory activity of whole C. sativa extracts has never been characterized in detail with in vitro and ex vivo colon models. Material and Methods: The anti-inflammatory activity of C. sativa extracts was studied on three lines of epithelial cells and on colon tissue. C. sativa flowers were extracted with ethanol, enzyme-linked immunosorbent assay was used to determine the level of interleukin-8 in colon cells and tissue biopsies, chemical analysis was performed using high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance and gene expression was determined by quantitative real-time PCR. Results: The anti-inflammatory activity of Cannabis extracts derives from D9-tetrahydrocannabinolic acid (THCA) present in fraction 7 (F7) of the extract. However, all fractions of C. sativa at a certain combination of concentrations have a significant increased cytotoxic activity. GPR55 receptor antagonist significantly reduces the anti-inflammatory activity of F7, whereas cannabinoid type 2 receptor antagonist significantly increases HCT116 cell proliferation. Also, cannabidiol (CBD) shows dose dependent cytotoxic activity, whereas anti-inflammatory activity was found only for the low concentration of CBD, and in a bell-shaped rather than dose-dependent manner. Activity of the extract and active fraction was verified on colon tissues taken from IBD patients, and was shown to suppress cyclooxygenase-2 (COX2) and metalloproteinase-9 (MMP9) gene expression in both cell culture and colon tissue. Conclusions: It is suggested that the anti-inflammatory activity of Cannabis extracts on colon epithelial cells derives from a fraction of the extract that contains THCA, and is mediated, at least partially, via GPR55 receptor. The cytotoxic activity of the C. sativa extract was increased by combining all fractions at a certain combination of concentrations and was partially affected by CB2 receptor antagonist that increased cell proliferation. It is suggested that in a nonpsychoactive treatment for IBD, THCA should be used rather than CBD.
Chapter
Despite the history of scientific evidence regarding plants and their products in prophylactics and therapeutics, their applications in healthcare systems are only now gaining momentum. Plants contain bioactive compounds that target certain viruses to cure or prevent viral diseases and infections. They provide a rich resource of antiviral drugs. Identifying the antiviral mechanisms in plants has shed light on where they interact with the life cycle of viruses, such as viral entry, replication, assembly, and release.
Article
The incidence of chronic inflammatory disorders and autoimmune diseases is rapidly growing. To date, the COVID-19 pandemic caused by SARS-CoV-2 has killed over 6,209,000 people globally, while no drug has been proven effective for the disease. Screening natural anti-inflammatory compounds for clinical application has drawn much attention. In this study, we showed that high-CBD cannabis extracts #1, #5, #7, #169, and #317 suppressed the levels of expression of proinflammatory cyclooxygenase 2 (COX2) and increased the expression of the anti-inflammatory suppressor of cytokine signaling 3 (SOCS3) in human small intestinal epithelial cells (HSIEC) in TNFα/IFNγ-triggered inflammation. We revealed that these extracts, with the exception of extract #169, also profoundly attenuated induction of proinflammatory cytokines interleukin-6 (IL-6) and/or IL-8 proteins through miR-760- and miR-302c-3p-mediated silencing. The prevalent components in extracts #1 and #7 influenced the levels of IL-8 both individually as well as in combination with each other. However, the high-dose cannabis extracts displayed an inhibitory effect in the growth of HSIEC cells. These results show that our high-CBD cannabis extracts decrease the levels of proinflammatory molecules COX2, IL-6, and IL-8 via transcriptional suppression or miRNA-mediated silencing, highlighting their potential against COVID-19-associated cytokine storm syndrome.
Article
Fiber and bioactive cannabinoids are obtained naturally from cannabis. Till now, almost 144 cannabinoids have been found and more are being unveiled. Cannabinoids which are in natural or in altered forms are more exposed to light, oxygen and high temperature. The recent approval of cannabis legalization has increased the cannabis application in the food processing industries. Studies regarding safety and quality assurance of food systems of cannabis edibles are limited. Moreover, with cannabinoids, there are many other phytochemicals like flavonoids, terpenoids, lignans and polysaccharides. Within the matrix of cannabis, these polysaccharides are able to exhibit the probiotic or prebiotic properties and also can improve the microbiome composition in the gut. Through the processes of metabolism and excretion, bioactive phytochemicals of cannabis specially cannabinoids, can modify structurally during enterohepatic detoxification and fermentation process of gut. Edibles are now being used widely in food industries for consumer use. In this review, we discussed edibles in the food industry, their potential hazards regarding food safety and its future implementation. Furthermore, consumer perception and acceptance of the edibles products and the challenges involved in developing the edibles products would be discussed in detail in this article. By understanding the edibles, legislation, safety and consumers’ willingness, the edibles food could be acceptable among worldwide consumers in the near future.
Article
• Delta(9)-tetrahydrocannabinolic acid (THCA) and Delta(9)-tetrahydrocannabivarin (THCV) are phytocannabinoids with a similar structure derived from Cannabis sativa and possess a variety of biological activities. However, the relationship between the metabolic characterization and bioactivity of THCA and THCV remains elusive. • To explore the relationship between the metabolism of THCA and THCV and their underlying mechanism of activity, human/mouse liver microsomes and mouse primary hepatocytes were used to compare the metabolic maps between THCA and THCV through comparative metabolomics. A total of 29 metabolites were identified containing 7 previously undescribed THCA metabolites and 10 previously undescribed THCV metabolites. Of these metabolites, THCA was transformed into an active metabolite of THC in these three systems, while THCV was transformed into THC and CBD. • Bioactivity assays indicated that all of these phytocannabinoids exhibited anti-inflammatory activity, but the effects of THCA and THCV were sightly difference in macrophages RAW264.7. Prediction of ADMET lab demonstrated that THCV and its metabolites were endowed with the advantage of BBB (blood-brain barrier) penetration compare to THCA. • In conclusion, this study highlighted that metabolism plays a critical role in the biological activity of phytocannabinoids.
Article
The number of people diagnosed with diabetes mellitus and its complications is markedly increasing worldwide, leading to a worldwide epidemic across all age groups, from children to older adults. Diabetes is associated with premature aging. In recent years, it has been found that peripheral overactivation of the endocannabinoid system (ECS), and in particular cannabinoid receptor 1 (CB1R) signaling, plays a crucial role in the progression of insulin resistance, diabetes (especially type 2), and its aging-related comorbidities such as atherosclerosis, nephropathy, neuropathy, and retinopathy. Therefore, it is suggested that peripheral blockade of CB1R may ameliorate diabetes and diabetes-related comorbidities. The use of synthetic CB1R antagonists such as rimonabant has been prohibited because of their psychiatric side effects. In contrast, phytocannabinoids such as cannabidiol (CBD) and tetrahydrocannabivarin (THCV), produced by cannabis, exhibit antagonistic activity on CB1R signaling and do not show any adverse side effects such as psychoactive effects, depression, or anxiety, thereby serving as potential candidates for the treatment of diabetes and its complications. In addition to these phytocannabinoids, cannabis also produces a substantial number of other phytocannabinoids, terpenes, and flavonoids with therapeutic potential against insulin resistance, diabetes, and its complications. In this review, the pathogenesis of diabetes, its complications, and the potential to use cannabinoids, terpenes, and flavonoids for its treatment are discussed.
Preprint
Full-text available
Currently, there are no pharmacological treatments able to reverse nigral degeneration in Parkinson’s disease (PD), hence the unmet need for the provision of neuroprotective agents. Cannabis-derived phytocannabinoids (CDCs) and resveratrol (RSV) may be useful neuroprotective agents for PD due to their anti-oxidative and anti-inflammatory properties. To evaluate this, we undertook a systematic review of the scientific literature to assess the neuroprotective effects of CDCs and RSV treatments in pre-clinical in vivo animal models of PD. The literature databases MEDLINE, EMBASE, PsychINFO, PubMed and Web of Science core collection were systematically searched to cover relevant studies. A total of 1034 publications were analyzed, of which 18 met the eligibility criteria for this review. Collectively, the majority of neurotoxin-induced PD rodent studies demonstrated that treatment with CDCs or RSV produced a significant improvement in motor function and mitigated the loss of dopaminergic neurons. Biochemical analysis of rodent brain tissue suggested that neuroprotection was mediated by anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. This review highlights the neuroprotective potential of CDCs and RSV for in vivo models of PD, and therefore suggests their potential translation to human clinical trials to either ameliorate PD progression and/or be implemented as a prophylactic means to reduce the risk of development of PD.
Article
Full-text available
The legalization of the cultivation of low Δ9-tetrahydrocannabinol (Δ9-THC) and high cannabidiol (CBD) Cannabis Sativa plants is gaining momentum around the world due to increasing demand for CBD-containing products. In many countries where CBD oils, extracts and CBD-infused foods and beverages are being sold in health shops and supermarkets, appropriate testing of these products is a legal requirement. Normally this involves determining the total Δ9-THC and CBD and their precursor tetrahydrocannabinolic acids (THCA) and cannabidiolic acid (CBDA). As our knowledge of the other relevant cannabinoids expands, it is likely so too will the demand for them as additives in many consumer products ensuring a necessity for quantification methods and protocols for their identification. This paper discusses therapeutically relevant cannabinoids found in Cannabis plant, the applicability and efficiency of existing extraction and analytical techniques as well as the legal requirements for these analyses.
Article
Full-text available
Vitellaria paradoxa C. F. Gaertn is widely used in African traditional medicine as an anti-inflammatory remedy to treat rheumatism, gastric problems, diarrhea, and dysentery. The phytochemical investigation of the ethyl acetate extract of V. paradoxa stem bark collected in Burkina Faso led to the isolation of eight known and two triterpenes undescribed to date (7 and 10), in the free alcohol form or as acetyl and cinnamyl ester derivatives. The stereostructures of the new compounds were elucidated using HR-ESIMS and 1D and 2D NMR data. The isolated compounds were evaluated in vitro for their inhibitory effect on nitrite levels on murine macrophages J774 stimulated with the lipopolysaccharide (LPS). Among all the compounds tested, lupeol cinnamate (3) and betulinic acid (5) showed a beneficial effect in reducing nitrite levels produced after LPS stimulation.
Article
Full-text available
Cannabis sativa is widely used for medical purposes and has anti-inflammatory activity. This study intended to examine the anti-inflammatory activity of cannabis on immune response markers associated with coronavirus disease 2019 (COVID-19) inflammation. An extract fraction from C. sativa Arbel strain ( FCBD) substantially reduced (dose dependently) interleukin (IL)-6 and -8 levels in an alveolar epithelial (A549) cell line. FCBD contained cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), and multiple terpenes. Treatments with FCBD and a FCBD formulation using phytocannabinoid standards ( FCBD:std) reduced IL-6, IL-8, C–C Motif Chemokine Ligands (CCLs) 2 and 7, and angiotensin I converting enzyme 2 (ACE2) expression in the A549 cell line. Treatment with FCBD induced macrophage (differentiated KG1 cell line) polarization and phagocytosis in vitro, and increased CD36 and type II receptor for the Fc region of IgG (FcγRII) expression. FCBD treatment also substantially increased IL-6 and IL-8 expression in macrophages. FCBD: std, while maintaining antiinflammatory activity in alveolar epithelial cells, led to reduced phagocytosis and pro-inflammatory IL secretion in macrophages in comparison to FCBD. The phytocannabinoid formulation may show superior activity versus the cannabis-derived fraction for reduction of lung inflammation, yet there is a need of caution proposing cannabis as treatment for COVID-19.
Article
Plant-based therapies date back centuries. Cannabis sativa is one such plant that was used medicinally up until the early part of the 20th century. Although rich in diverse and interesting phytochemicals, cannabis was largely ignored by the modern scientific community due to its designation as a schedule 1 narcotic and restrictions on access for research purposes. There was renewed interest in the early 1990s when the endocannabinoid system (ECS) was discovered, a complex network of signaling pathways responsible for physiological homeostasis. Two key components of the ECS, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), were identified as the molecular targets of the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC). Restrictions on access to cannabis have eased worldwide, leading to a resurgence in interest in the therapeutic potential of cannabis. Much of the focus has been on the two major constituents, Δ9-THC and cannabidiol (CBD). Cannabis contains over 140 phytocannabinoids, although only a handful have been tested for pharmacological activity. Many of these minor cannabinoids potently modulate receptors, ionotropic channels, and enzymes associated with the ECS and show therapeutic potential individually or synergistically with other phytocannabinoids. The following review will focus on the pharmacological developments of the next generation of phytocannabinoid therapeutics.
Article
Full-text available
This Editorial is part of a series. To view the other Editorials in this series, visit: http://onlinelibrary.wiley.com/doi/10.1111/bph.12956/abstract; http://onlinelibrary.wiley.com/doi/10.1111/bph.12954/abstract; http://onlinelibrary.wiley.com/doi/10.1111/bph.12955/abstract and http://onlinelibrary.wiley.com/doi/10.1111/bph.13112/abstract. © 2015 The British Pharmacological Society.
Article
Full-text available
Background: Cannabinoid type-1 (CB1) receptor inverse agonists improve type 2 diabetes and dyslipidaemia but were discontinued due to adverse psychiatric effects. Δ9-Tetrahydrocannabivarin (THCV) is a neutral CB1 antagonist producing hypophagia and body weight reduction in lean mice. We investigated its effects in dietary-induced (DIO) and genetically (ob/ob) obese mice. Methods: We performed two dose-ranging studies in DIO mice; study 1: 0.3, 1, 2.5, 5 and 12.5 mg kg−1, oral twice daily for 30 days and study 2: 0.1, 0.5, 2.5 and 12.5 mg kg−1, oral, once daily for 45 days. One pilot (study 3: 0.3 and 3 mg kg−1, oral, once daily) and one full dose-ranging (study 4: 0.1, 0.5, 2.5 and 12.5 mg kg−1, oral, once daily) studies in ob/ob mice for 30 days. The CB1 inverse agonist, AM251, oral, 10 mg kg−1 once daily or 5 mg kg−1 twice daily was used as the positive control. Cumulative food and water intake, body weight gain, energy expenditure, glucose and insulin levels (fasting or during oral glucose tolerance tests), plasma high-density lipoprotein and total cholesterol, and liver triglycerides were measured. HL-5 hepatocytes or C2C12 myotubes made insulin-resistant with chronic insulin or palmitic acid were treated with 0, 1, 3 and 10 μℳ THCV or AM251. Results: THCV did not significantly affect food intake or body weight gain in any of the studies, but produced an early and transient increase in energy expenditure. It dose-dependently reduced glucose intolerance in ob/ob mice and improved glucose tolerance and increased insulin sensitivity in DIO mice, without consistently affecting plasma lipids. THCV also restored insulin signalling in insulin-resistant hepatocytes and myotubes. Conclusions: THCV is a new potential treatment against obesity-associated glucose intolerance with pharmacology different from that of CB1 inverse agonists/antagonists.
Article
Full-text available
The transient receptor potential vanilloid type-2 (TRPV2), belonging to the transient receptor potential channel family, is a specialized ion channel expressed in human and other mammalian immune cells. This channel has been found to be expressed in CD34(+) hematopoietic stem cells, where its cytosolic Ca(2) (+) activity is crucial for stem/progenitor cell cycle progression, growth, and differentiation. In innate immune cells, TRPV2 is expressed in granulocytes, macrophages, and monocytes where it stimulates fMet-Leu-Phe migration, zymosan-, immunoglobulin G-, and complement-mediated phagocytosis, and lipopolysaccharide-induced tumor necrosis factor-alpha and interleukin-6 production. In mast cells, activation of TRPV2 allows intracellular Ca(2) (+) ions flux, thus stimulating protein kinase A-dependent degranulation. In addition, TRPV2 is highly expressed in CD56(+) natural killer cells. TRPV2 orchestrates Ca(2) (+) signal in T cell activation, proliferation, and effector functions. Moreover, messenger RNA for TRPV2 are expressed in CD4(+) and CD8(+) T lymphocytes. Finally, TRPV2 is expressed in CD19(+) B lymphocytes where it regulates Ca(2) (+) release during B cell development and activation. Overall, the specific expression of TRPV2 in immune cells suggests a role in immune-mediated diseases and offers new potential targets for immunomodulation.
Article
Full-text available
Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60) are frequently used to model macrophage function. Methods The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR) and ion channel expression in alveolar macrophages and their widely used surrogates. Results The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. Conclusions The data described in this report provides insight into the appropriate choice of cell models for investigating macrophage biology and highlights the importance of confirming experimental data in primary alveolar macrophages.
Article
Full-text available
Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL -1. They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant.
Article
Full-text available
The hallucinogenic compound, salvinorin A, is a potent κ-opioid receptor (KOR) agonist. However, other target(s) than the KOR, such as the cannabinoid CB1 receptor, have been proposed to explain its multiple pharmacological actions. Here, we have evaluated the effect of salvinorin A in lipopolysaccharide (LPS)-stimulated macrophages as well as in models of inflammation in vivo. Salvinorin A (0.1-10 pM) reduced LPS-stimulated nitrite, TNF-α and IL-10 (but not IL-1β) levels as well as iNOS (but not COX-2) LPS-induced hyperexpression. The effect of salvinorin A on nitrite levels was reverted by the opioid antagonist naloxone, the KOR antagonist nor-binaltorphimine and by the CB1 antagonist rimonabant Salvinorin A also prevented KOR and CB1 hyperexpression induced by LPS. In vivo, salvinorin A reduced the LPS- and the carrageenan-induced paw oedema and formalin-induced inflammatory pain, in a nor-binaltorphimine and rimonabant-sensitive manner. It is concluded that salvinorin A-via KORs and CB1 receptors-exerts ultrapotent actions on macrophages and also shows moderate antinflammatory effects in vivo.
Article
Full-text available
We have previously implicated transient receptor potential vanilloid 4 (TRPV4) channels and alveolar macrophages in initiating the permeability increase in response to high peak inflation pressure (PIP) ventilation. Alveolar macrophages were harvested from TRPV4(-/-) and TRPV4(+/+) mice and instilled in the lungs of mice of the opposite genotype. Filtration coefficients (K(f)) measured in isolated perfused lungs after ventilation with successive 30-min periods of 9, 25, and 35 cmH(2)O PIP did not significantly increase in lungs from TRPV4(-/-) mice but increased >2.2-fold in TRPV4(+/+) lungs, TRPV4(+/+) lungs instilled with TRPV4(-/-) macrophages, and TRPV4(-/-) lungs instilled with TRPV4(+/+) macrophages after ventilation with 35 cmH(2)O PIP. Activation of TRPV4 with 4-alpha-phorbol didecanoate (4alphaPDD) significantly increased intracellular calcium, superoxide, and nitric oxide production in TRPV4(+/+) macrophages but not TRPV4(-/-) macrophages. Cross-sectional areas increased nearly 3-fold in TRPV4(+/+) macrophages compared with TRPV4(-/-) macrophages after 4alphaPDD. Immunohistochemistry staining of lung tissue for nitrotyrosine revealed increased amounts in high PIP ventilated TRPV4(+/+) lungs compared with low PIP ventilated TRPV4(+/+) or high PIP ventilated TRPV4(-/-) lungs. Thus TRPV4(+/+) macrophages restored susceptibility of TRPV4(-/-) lungs to mechanical injury. A TRPV4 agonist increased intracellular calcium and reactive oxygen and nitrogen species in harvested TRPV4(+/+) macrophages but not TRPV4(-/-) macrophages. K(f) increases correlated with tissue nitrotyrosine, a marker of peroxynitrite production.
Article
Full-text available
We assessed the anticonvulsant potential of the phytocannabinoid Δ⁹-tetrahydrocannabivarin (Δ⁹-THCV) by investigating its effects in an in vitro piriform cortex (PC) brain slice model of epileptiform activity, on cannabinoid CB1 receptor radioligand-binding assays and in a generalized seizure model in rats. Δ⁹-THCV was applied before (10 μm Δ⁹-THCV) or during (10-50 μm Δ⁹-THCV) epileptiform activity induced by Mg²(+) -free extracellular media in adult rat PC slices and measured using multielectrode array (MEA) extracellular electrophysiologic techniques. The actions of Δ⁹-THCV on CB1 receptors were examined using [³H]SR141716A competition binding and [³⁵S]GTPγS assays in rat cortical membranes. Effects of Δ⁹-HCV (0.025-2.5 mg/kg) on pentylenetetrazole (PTZ)-induced seizures in adult rats were also assessed. After induction of stable spontaneous epileptiform activity, acute Δ⁹ -THCV application (≥ 20 μm) significantly reduced burst complex incidence and the amplitude and frequency of paroxysmal depolarizing shifts (PDSs). Furthermore, slices pretreated with 10 μm Δ⁹-THCV prior to induction of epileptiform activity exhibited significantly reduced burst complex incidence and PDS peak amplitude. In radioligand-binding experiments, Δ⁹-THCV acted as a CB1 receptor ligand, displacing 0.5 nm [³H]SR141716A with a Ki∼290 nm, but exerted no agonist stimulation of [³⁵S]GTPγS binding. In PTZ-induced seizures in vivo, 0.25 mg/kg Δ⁹-THCV significantly reduced seizure incidence. These data demonstrate that Δ⁹-THCV exerts antiepileptiform and anticonvulsant properties, actions that are consistent with a CB1 receptor-mediated mechanism and suggest possible therapeutic application in the treatment of pathophysiologic hyperexcitability states.
Article
Full-text available
Macrophage phagocytosis is critical for defense against pathogens. Whereas many steps of phagocytosis involve ionic flux, the underlying ion channels remain ill defined. Here we show that zymosan-, immunoglobulin G (IgG)- and complement-mediated particle binding and phagocytosis were impaired in macrophages lacking the cation channel TRPV2. TRPV2 was recruited to the nascent phagosome and depolarized the plasma membrane. Depolarization increased the synthesis of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)), which triggered the partial actin depolymerization necessary for occupancy-elicited phagocytic receptor clustering. TRPV2-deficient macrophages were also defective in chemoattractant-elicited motility. Consequently, TRPV2-deficient mice showed accelerated mortality and greater organ bacterial load when challenged with Listeria monocytogenes. Our data demonstrate the participation of TRPV2 in early phagocytosis and its fundamental importance in innate immunity.
Article
Full-text available
Idiopathic inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn's disease, are chronic inflammatory disorders of the gastrointestinal tract which lead an unpredictable clinical course undergoing a succession of exacerbations and remissions of variable intensity. The highest incidence rates for IBD are found in developed countries of the northern hemisphere (UK, Scandinavia, Canada, USA) with the average annual incidence ranging from six to 13 new cases per year per 100 000 of the general population.1 For the patient, the consequences of IBD include rectal bleeding, diarrhoea, weight loss, and a reduced quality of life and may even result in death (mortality rate for UK, USA, Canada, Scandinavia ∼3.9 per 106 per year (combined statistics from 1950 to 19942)). Investigators working on the aetiology of IBD have proposed many factors which are thought to be involved in the initiation or exacerbation, or both, of the inflammatory process. Some of these factors include increased epithelial permeability, inappropriate neutrophil infiltration into the intestine, activation of mast cells, and increased concentrations of pro-inflammatory mediators (cytokines, leukotrienes, reactive oxygen metabolites (ROMs)). In addition, over the past 10 years, the overproduction of nitric oxide (NO•) has received considerable attention as an important player in the pathogenesis of IBD.3-5 NO•is a free radical produced from l-arginine via the enzyme nitric oxide synthase (NOS). Alone, NO• is a weak free radical; however, it can react with superoxide (O2 −•) to produce peroxynitrite (OONO−) a highly toxic reactive nitrogen intermediary. In 1990, Beckman and colleagues6 showed that peroxynitrite had hydroxyl radical (•OH)-like activity at physiological pH and proposed a pathophysiological role for peroxynitrite. This work has since generated substantial interest in the role of peroxynitrite in IBD as it may provide an explanation for pathological roles …
Article
Full-text available
Four crosses were made between inbred Cannabis sativa plants with pure cannabidiol (CBD) and pure Delta-9-tetrahydrocannabinol (THC) chemotypes. All the plants belonging to the F(1)'s were analyzed by gas chromatography for cannabinoid composition and constantly found to have a mixed CBD-THC chemotype. Ten individual F(1) plants were self-fertilized, and 10 inbred F(2) offspring were collected and analyzed. In all cases, a segregation of the three chemotypes (pure CBD, mixed CBD-THC, and pure THC) fitting a 1:2:1 proportion was observed. The CBD/THC ratio was found to be significantly progeny specific and transmitted from each F(1) to the F(2)'s derived from it. A model involving one locus, B, with two alleles, B(D) and B(T), is proposed, with the two alleles being codominant. The mixed chemotypes are interpreted as due to the genotype B(D)/B(T) at the B locus, while the pure-chemotype plants are due to homozygosity at the B locus (either B(D)/B(D) or B(T)/B(T)). It is suggested that such codominance is due to the codification by the two alleles for different isoforms of the same synthase, having different specificity for the conversion of the common precursor cannabigerol into CBD or THC, respectively. The F(2) segregating groups were used in a bulk segregant analysis of the pooled DNAs for screening RAPD primers; three chemotype-associated markers are described, one of which has been transformed in a sequence-characterized amplified region (SCAR) marker and shows tight linkage to the chemotype and codominance.
Article
Full-text available
Overexpression of cyclooxygenase-2 (COX-2) has been observed in human colorectal cancer. COX-2 expression in human tumors can be induced by growth factors, cytokines, oncogenes, and other factors. The mechanisms regulating COX-2 expression in human colon cancer have not been completely elucidated. We hypothesized that the proinflammatory cytokine interleukin-1 beta (IL-1 beta) mediates COX-2 expression in HT-29 human colon cancer cells. Treatment of HT-29 cells with IL-1 beta induced expression of COX-2 mRNA and protein in a time- and dose-dependent manner. Inhibitors of the extracellular signal-regulated kinase 1/2, c-Jun NH(2)-terminal kinase, P38 mitogen-activated protein kinase, and nuclear factor-kappa B (NF-kappa B) signaling pathways blocked the ability of IL-1 beta to induce COX-2 mRNA. In contrast, Wortmannin, a phosphoinositide 3-kinase inhibitor upstream of protein kinase B/Akt, led to a slight increase in COX-2 mRNA expression after IL-1 beta treatment. Electrophoretic mobility shift assay on nuclear extracts demonstrated that IL-1 beta induced NF-kappa B DNA binding activity in HT-29 cells, and the activated NF-kappa B complex was eliminated after treatment with an inhibitor of NF-kappa B. Supershift assay indicated that the two NF-kappa B subunits, p65 and p50, were involved in activation of NF-kappa B complex by IL-1 beta stimulation. The stability of COX-2 mRNA was not altered by IL-1 beta treatment. These data demonstrate that IL-1 beta induces COX-2 expression in HT-29 cells through multiple signaling pathways and NF-kappa B.
Article
Full-text available
The study of marijuana cannabinoid biology has led to many important discoveries in neuroscience and immunology. These studies have uncovered a new physiological system, the endocannabinoid system, which operates in the regulation of not only brain function but also the regulation of the immune system. Studies examining the effect of cannabinoid-based drugs on immunity have shown that many cellular and cytokine mechanisms are suppressed by these agents leading to the hypothesis that these drugs may be of value in the management of chronic inflammatory diseases. In this report, we review current information on cannabinoid ligand and receptor biology, mechanisms involved in immune suppression by cannabinoids with emphasis on antigen-presenting cells, and preclinical and clinical models analyzing the therapeutic potential of cannabinoid-based drugs.
Article
Full-text available
The phytocannabinoid Delta(9)-tetrahydrocannabivarin (Delta(9)-THCV) has been reported to exhibit a diverse pharmacology; here, we investigate functional effects of Delta(9)-THCV, extracted from Cannabis sativa, using electrophysiological techniques to define its mechanism of action in the CNS. Effects of Delta(9)-THCV and synthetic cannabinoid agents on inhibitory neurotransmission at interneurone-Purkinje cell (IN-PC) synapses were correlated with effects on spontaneous PC output using single-cell and multi-electrode array (MEA) electrophysiological recordings respectively, in mouse cerebellar brain slices in vitro. The cannabinoid receptor agonist WIN 55,212-2 (WIN55) decreased miniature inhibitory postsynaptic current (mIPSC) frequency at IN-PC synapses. WIN55-induced inhibition was reversed by Delta(9)-THCV, and also by the CB(1) receptor antagonist AM251; Delta(9)-THCV or AM251 acted to increase mIPSC frequency beyond basal values. When applied alone, Delta(9)-THCV, AM251 or rimonabant increased mIPSC frequency. Pre-incubation with Delta(9)-THCV blocked WIN55-induced inhibition. In MEA recordings, WIN55 increased PC spike firing rate; Delta(9)-THCV and AM251 acted in the opposite direction to decrease spike firing. The effects of Delta(9)-THCV and WIN55 were attenuated by the GABA(A) receptor antagonist bicuculline methiodide. We show for the first time that Delta(9)-THCV acts as a functional CB(1) receptor antagonist in the CNS to modulate inhibitory neurotransmission at IN-PC synapses and spontaneous PC output. Delta(9)-THCV- and AM251-induced increases in mIPSC frequency beyond basal levels were consistent with basal CB(1) receptor activity. WIN55-induced increases in PC spike firing rate were consistent with synaptic disinhibition; whilst Delta(9)-THCV- and AM251-induced decreases in spike firing suggest a mechanism of PC inhibition.
Article
Full-text available
We have recently shown that the phytocannabinoid Delta9-tetrahydrocannabivarin (Delta9-THCV) and the CB1 receptor antagonist AM251 increase inhibitory neurotransmission in mouse cerebellum and also exhibit anticonvulsant activity in a rat piriform cortical (PC) model of epilepsy. Possible mechanisms underlying cannabinoid actions in the CNS include CB1 receptor antagonism (by displacing endocannabinergic tone) or inverse agonism at constitutively active CB1 receptors. Here, we investigate the mode of cannabinoid action in [35S]GTPgammaS binding assays. Effects of Delta9-THCV and AM251 were tested either alone or against WIN55,212-2-induced increases in [35S]GTPgammaS binding in mouse cerebellar and PC membranes. Effects on non-CB receptor expressing CHO-D2 cell membranes were also investigated. Delta9-THCV and AM251 both acted as potent antagonists of WIN55,212-2-induced increases in [35S]GTPgammaS binding in cerebellar and PC membranes (Delta9-THCV: pA2=7.62 and 7.44 respectively; AM251: pA2=9.93 and 9.88 respectively). At micromolar concentrations, Delta9-THCV or AM251 alone caused significant decreases in [35S]GTPgammaS binding; Delta9-THCV caused larger decreases than AM251. When applied alone in CHO-D2 membranes, Delta9-THCV and AM251 also caused concentration-related decreases in G protein activity. Delta9-THCV and AM251 act as CB1 receptors antagonists in the cerebellum and PC, with AM251 being more potent than Delta9-THCV in both brain regions. Individually, Delta9-THCV or AM251 exhibited similar potency at CB1 receptors in the cerebellum and the PC. At micromolar concentrations, Delta9-THCV and AM251 caused a non-CB receptor-mediated depression of basal [35S]GTPgammaS binding.
Article
There are anecdotal reports that some Cannabis preparations may be useful for bladder dysfunctions. Here, we investigated the effect of a number of non- psychotropic phytocannabinoids, namely cannabidiol (CBD), cannabigerol (CBG), cannabidivarin (CBDV), Δ9-tetrahydrocannabivarin (THCV) and cannabichromene (CBC) on mouse bladder contractility in vitro. CBG, THCV, CBD and CBDV, but not CBC, at concentration ranging from 10(-8) M to 10(-4) M, decreased (with similar potency), the contractions induced by acetylcholine without significantly modifying the contractions induced by electrical stimulation. The rank order of efficacy was CBG=THCV>CBD>CBDV. In depth studies on CBG showed that the effect of this phytocannabinoid on acetylcholine-induced contractions was not affected by CB1 or CB2 receptor antagonists. Additionally, CBG also reduced acetylcholine-induced contractions in the human bladder.
Article
Other than the potentially therapeutic bronchodilatory influences of marihuana, very little is known of its biologic effects on the lung. To evaluate this problem, alveolar macrophages were harvested from rats by bronchopulmonary lavage and incubated in vitro with Staphylococcus albus and marihuana smoke of standardized 2.2-percent tetrahydrocannabinol content in graded amounts. After three hours, control alveolar macrophages inactivated 78.0 ± 5.0 percent of the staphylococcal challenge. There was a dose-dependent depression of alveolar macrophage bactericidal activity, with 66.7 ± 7.1 percent, 23.7 ± 7.0 percent, 20.5 ± 7.0 percent, and 11.4 ± 7.6 percent of the bacteria killed following exposures to 2 ml, 4 ml, 6 ml, or 8 ml of marihuana smoke, respectively. Differential filtration of marihuana smoke revealed that the alveolar macrophage cytotoxin was present in the gas phase of the smoke and was water-soluble. Studies on purified tetrahydrocannabinol and on tetrahydrocannabinol-extracted marihuana revealed that the impairment in alveolar macrophage function was not related to the psychomimetic or bronchodilatory components of marihuana.
Article
Obesity and associated metabolic syndrome have quickly become a pandemic and a major detriment to human health globally. The presence of non-alcoholic fatty liver disease (NAFLD; hepatosteatosis) in obesity has been linked to the worsening of the metabolic syndrome, including the development of insulin resistance and cardiovascular disease. Currently, there are few options to treat NAFLD, including life style changes and insulin sensitizers. Recent evidence suggests that the cannabinoids Δ(9)-tetrahydrocannabivarin (THCV) and cannabidiol (CBD) improve insulin sensitivity; we aimed at studying their effects on lipid levels. The effects of THCV and CBD on lipid levels were examined in a variety of in vitro and in vivo systems, with special emphasis on models of hepatosteatosis. Transcriptional, post-translational and metabolomic changes were assayed. THCV and CBD directly reduce accumulated lipid levels in vitro in a hepatosteatosis model and adipocytes. Nuclear Magnetic Resonance- (NMR) based metabolomics confirmed these results and further identified specific metabolic changes in THCV and CBD-treated hepatocytes. Treatment also induced post-translational changes in a variety of proteins such as CREB, PRAS40, AMPKa2 and several STATs indicating increased lipid metabolism and, possibly, mitochondrial activity. These results are supported by in vivo data from zebrafish and obese mice indicating that these cannabinoids are able to increase yolk lipid mobilization and inhibit the development of hepatosteatosis respectively. Our results suggest that THCV and CBD might be used as new therapeutic agents for the pharmacological treatment of obesity- and metabolic syndrome-related NAFLD/hepatosteatosis. Copyright © 2015. Published by Elsevier B.V.
Article
This themed issue of the British Journal of Pharmacology contains review and research articles on recent advances in transient receptor potential (TRP) channel pharmacology. The review articles, written by a panel of distinguished experts, address the rapid progress in TRP channel research in fields as diverse as oncology, urology, dermatology, migraine, inflammation and pain. These reviews are complemented by original research reports focusing, among others, on the emerging roles of TRPV1 in osteoporosis and cystitis and on evodiamine as a lead structure for the development of potent TRPV1 agonists/desensitizers. Other papers highlight the differences in TRPV3 pharmacology between recombinant and native systems, the mechanisms of TRPM3 activation/inhibition and TRPP2 as a target of naringenin, a dietary flavonoid with anticancer actions. New therapeutic opportunities in pain may arise from the strategy to combine TRP channel and cell membrane impermeant sodium channel blockers to inhibit sensory nerve activity. This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10.
Article
Transient receptor potential ( TRP ) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so‐called ‘ TRP channelopathies’) that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small‐molecule TRPV 1, TRPV 3 and TRPA 1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first‐in‐class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue‐10
Article
The cannabinoid 1(CB1 ) receptor inverse agonists/antagonists, rimonabant (SR141716, SR) and AM251, produce nausea and potentiate toxin-induced nausea by inverse agonism (rather than antagonism) of the CB1 receptor. Here, we evaluated two phytocannabinoids, cannabidivarin (CBDV) and Δ(9) -tetrahydrocannabivarin (THCV) for their ability to produce these behavioural effects characteristic of CB1 receptor inverse agonism in rats. In Experiment 1, we investigated the potential of THCV and CBDV to produce conditioned gaping (measure of nausea-induced behaviour), in the same manner as SR and AM251. In Experiment 2, we investigated the potential of THCV and CBDV to enhance conditioned gaping produced by a toxin, in the same manner as CB1 receptor inverse agonists. SR (10 and 20 mg kg(-1) ) and AM251 (10 mg kg(-1) ) produced conditioned gaping; however, THCV (10 or 20 mg kg(-1) ) and CBDV (10 or 200 mg kg(-1) ) did not. At a subthreshold dose for producing nausea, SR (2.5 mg kg(-1) ) enhanced LiCl-induced conditioned gaping, whereas Δ(9) -tetrahydrocannabinol (THC, 2.5 and 10 mg kg(-1) ), THCV (2.5 or 10 mg kg(-1) ) and CBDV (2.5 or 200 mg kg(-1) ) did not; in fact, THC (2.5 and 10 mg kg(-1) ), THCV (10 mg kg(-1) ) and CBDV (200 mg kg(-1) ) suppressed LiCl-induced conditioned gaping, suggesting anti-nausea potential. The pattern of findings indicates that neither THCV nor CBDV produced a behavioural profile characteristic of CB1 receptor inverse agonists. As well, these compounds may have therapeutic potential in reducing nausea.
Article
Epilepsy is the most prevalent neurological disease and is characterised by recurrent seizures. Here we investigate: (i) the anticonvulsant profiles of cannabis-derived botanical drug substances (BDS) rich in cannabidivarin (CBDV) and containing cannabidiol (CBD) in acute in vivo seizure models and (ii) the binding of CBDV BDSs and their components at cannabinoid CB1 receptors. The anticonvulsant profiles of two CBDV BDSs (50-422 mg kg(-1) ) were evaluated in three animal models of acute seizure. Purified CBDV and CBD were also evaluated in an isobolographic study to evaluate potential pharmacological interactions. CBDV BDS effects on motor function were also investigated using static beam and grip-strength assays. Binding of CBDV BDSs to cannabinoid CB1 receptors was evaluated using displacement binding assays. CBDV BDSs exerted significant anticonvulsant effects in the PTZ (≥100 mg kg(-1) ) and audiogenic seizure models (≥87 mg kg(-1) ), and suppressed pilocarpine-induced convulsions (≥100 mg kg(-1) ). The isobolographic study revealed the anticonvulsant effects of purified CBDV and CBD were linearly additive when co-administered. Some motor effects of CBDV BDSs were observed on static beam performance; no effects on grip-strength were found. The Δ(9) -THC and Δ(9) -THCV content of CBDV BDS accounted for its greater affinity for CB1 cannabinoid receptors than purified CBDV. CBDV BDSs exerted significant anticonvulsant effects in three models of seizure that were not mediated by the CB1 cannabinoid receptor, and were of comparable efficacy to purified CBDV. These findings strongly support the further clinical development of CBDV BDSs for treatment of epilepsy.
Article
Background and purpose: The non-psychotropic cannabinoid cannabichromene is known to activate the transient receptor potential ankyrin-type1 (TRPA1) and to inhibit endocannabinoid inactivation, both of which are involved in inflammatory processes. We examined here the effects of this phytocannabinoid on peritoneal macrophages and its efficacy in an experimental model of colitis. Experimental approach: Murine peritoneal macrophages were activated in vitro by LPS. Nitrite levels were measured using a fluorescent assay; inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2) and cannabinoid (CB1 and CB2 ) receptors were analysed by RT-PCR (and/or Western blot analysis); colitis was induced by dinitrobenzene sulphonic acid (DNBS). Endocannabinoid (anandamide and 2-arachidonoylglycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry. Colonic inflammation was assessed by evaluating the myeloperoxidase activity as well as by histology and immunohistochemistry. Key results: LPS caused a significant production of nitrites, associated to up-regulation of anandamide, iNOS, COX-2, CB1 receptors and down-regulation of CB2 receptors mRNA expression. Cannabichromene significantly reduced LPS-stimulated nitrite levels, and its effect was mimicked by cannabinoid receptor and TRPA1 agonists (carvacrol and cinnamaldehyde) and enhanced by CB1 receptor antagonists. LPS-induced anandamide, iNOS, COX-2 and cannabinoid receptor changes were not significantly modified by cannabichromene, which, however, increased oleoylethanolamide levels. In vivo, cannabichromene ameliorated DNBS-induced colonic inflammation, as revealed by histology, immunohistochemistry and myeloperoxidase activity. Conclusion and implications: Cannabichromene exerts anti-inflammatory actions in activated macrophages - with tonic CB1 cannabinoid signalling being negatively coupled to this effect - and ameliorates experimental murine colitis.
Article
We have investigated the inhibition of lipopolysaccharide stimulated nitric oxide production in RAW264.7 macrophages by the cannabinoids and the putative cannabinoid CB2-like receptor ligand, palmitoylethanolamide. (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate ((+)-WIN55212) and, to a lesser extent (−)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxy-propyl)cyclohexan-1-ol (CP55940), significantly inhibited lipopolysaccharide stimulated nitric oxide production. The level of inhibition was found to be dependent on the concentration of lipopolysaccharide used to induce nitric oxide production. Palmitoylethanolamide significantly inhibited nitric oxide production induced by lipopolysaccharide. The inhibition of nitric oxide production by (+)-WIN55212 but not palmitoylethanolamide was significantly attenuated in the presence of the cannabinoid CB2 receptor antagonist, N-[(1S)-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528). (+)-WIN55212 produced a pertussis toxin-sensitive parallel rightward shift in the log concentration–response curve for lipopolysaccharide, causing a fivefold increase in the EC50 value for lipopolysaccharide with no change in the Emax value. (−)-WIN55212 had no effect on the log concentration–response curve for lipopolysaccharide. Palmitoylethanolamide did not produce a rightward shift in the lipopolysaccharide concentration–response curve. However, it did produce a pertussis toxin-insensitive reduction in the Emax value. The results suggest that the inhibition of lipopolysaccharide mediated nitric oxide release by (+)-WIN55212 in murine macrophages is mediated by cannabinoid CB2 receptors. In contrast, the inhibition by palmitoylethanolamide does not appear to be mediated by cannabinoid receptors.
Article
Cannabichromene (CBC) is a major non-psychotropic phytocannabinoid that inhibits endocannabinoid inactivation and activates the transient receptor potential ankyrin-1 (TRPA1). Both endocannabinoids and TRPA1 may modulate gastrointestinal motility. Here, we investigated the effect of CBC on mouse intestinal motility in physiological and pathological states. Inflammation was induced in the mouse small intestine by croton oil. Endocannabinoid (anandamide and 2-arachidonoyl glycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry; TRPA1 and cannabinoid receptors were analysed by quantitative RT-PCR; upper gastrointestinal transit, colonic propulsion and whole gut transit were evaluated in vivo; contractility was evaluated in vitro by stimulating the isolated ileum, in an organ bath, with ACh or electrical field stimulation (EFS). Croton oil administration was associated with decreased levels of anandamide (but not 2-arachidonoyl glycerol) and palmitoylethanolamide, up-regulation of TRPA1 and CB₁ receptors and down-regulation of CB₂ receptors. Ex vivo CBC did not change endocannabinoid levels, but it altered the mRNA expression of TRPA1 and cannabinoid receptors. In vivo, CBC did not affect motility in control mice, but normalized croton oil-induced hypermotility. In vitro, CBC reduced preferentially EFS- versus ACh-induced contractions. Both in vitro and in vivo, the inhibitory effect of CBC was not modified by cannabinoid or TRPA1 receptor antagonists. CBC selectively reduces inflammation-induced hypermotility in vivo in a manner that is not dependent on cannabinoid receptors or TRPA1.
Article
Plant cannabinoids, like Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), activate/desensitize thermosensitive transient receptor potential (TRP) channels of vanilloid type-1 or -2 (TRPV1 or TRPV2). We investigated whether cannabinoids also activate/desensitize two other 'thermo-TRP's', the TRP channels of vanilloid type-3 or -4 (TRPV3 or TRPV4), and if the TRPV-inactive cannabichromene (CBC) modifies the expression of TRPV1-4 channels in the gastrointestinal tract. TRP activity was assessed by evaluating elevation of [Ca(2+)](i) in rat recombinant TRPV3- and TRPV4-expressing HEK-293 cells. TRP channel mRNA expression was measured by quantitative RT-PCR in the jejunum and ileum of mice treated with vehicle or the pro-inflammatory agent croton oil. (i) CBD and tetrahydrocannabivarin (THCV) stimulated TRPV3-mediated [Ca(2+)](i) with high efficacy (50-70% of the effect of ionomycin) and potency (EC(50∼) 3.7 μm), whereas cannabigerovarin (CBGV) and cannabigerolic acid (CBGA) were significantly more efficacious at desensitizing this channel to the action of carvacrol than at activating it; (ii) cannabidivarin and THCV stimulated TRPV4-mediated [Ca(2+)](i) with moderate-high efficacy (30-60% of the effect of ionomycin) and potency (EC(50) 0.9-6.4 μm), whereas CBGA, CBGV, cannabinol and cannabigerol were significantly more efficacious at desensitizing this channel to the action of 4-α-phorbol 12,13-didecanoate (4α-PDD) than at activating it; (iii) CBC reduced TRPV1β, TRPV3 and TRPV4 mRNA in the jejunum, and TRPV3 and TRPV4 mRNA in the ileum of croton oil-treated mice. Cannabinoids can affect both the activity and the expression of TRPV1-4 channels, with various potential therapeutic applications, including in the gastrointestinal tract.
Article
Cannabidiol (CBD) and Δ(9) -tetrahydrocannabinol (THC) interact with transient receptor potential (TRP) channels and enzymes of the endocannabinoid system. The effects of 11 pure cannabinoids and botanical extracts [botanical drug substance (BDS)] from Cannabis varieties selected to contain a more abundant cannabinoid, on TRPV1, TRPV2, TRPM8, TRPA1, human recombinant diacylglycerol lipase α (DAGLα), rat brain fatty acid amide hydrolase (FAAH), COS cell monoacylglycerol lipase (MAGL), human recombinant N-acylethanolamine acid amide hydrolase (NAAA) and anandamide cellular uptake (ACU) by RBL-2H3 cells, were studied using fluorescence-based calcium assays in transfected cells and radiolabelled substrate-based enzymatic assays. Cannabinol (CBN), cannabichromene (CBC), the acids (CBDA, CBGA, THCA) and propyl homologues (CBDV, CBGV, THCV) of CBD, cannabigerol (CBG) and THC, and tetrahydrocannabivarin acid (THCVA) were also tested. CBD, CBG, CBGV and THCV stimulated and desensitized human TRPV1. CBC, CBD and CBN were potent rat TRPA1 agonists and desensitizers, but THCV-BDS was the most potent compound at this target. CBG-BDS and THCV-BDS were the most potent rat TRPM8 antagonists. All non-acid cannabinoids, except CBC and CBN, potently activated and desensitized rat TRPV2. CBDV and all the acids inhibited DAGLα. Some BDS, but not the pure compounds, inhibited MAGL. CBD was the only compound to inhibit FAAH, whereas the BDS of CBC > CBG > CBGV inhibited NAAA. CBC = CBG > CBD inhibited ACU, as did the BDS of THCVA, CBGV, CBDA and THCA, but the latter extracts were more potent inhibitors. These results are relevant to the analgesic, anti-inflammatory and anti-cancer effects of cannabinoids and Cannabis extracts.
Article
There is considerable evidence indicating that intracellular Ca2+ participates as a second messenger in TLR4-dependent signaling. However, how intracellular free Ca2+ concentrations ([Ca2+]i) is increased in response to LPS and how they affect cytokine production are poorly understood. Here we examined the role of transient receptor potential (TRP), a major Ca2+ permeation pathway in non-excitable cells, in the LPS-induced cytokine production in macrophages. Pharmacologic experiments suggested that TRPV family members, but neither TRPC nor TRPM family members, are involved in the LPS-induced TNFalpha and IL-6 production in RAW264 macrophages. RT-PCR and immunoblot analyses showed that TRPV2 is the sole member of TRPV family expressed in macrophages. ShRNA against TRPV2 inhibited the LPS-induced TNFalpha and IL-6 production as well as IkappaBalpha degradation. Experiments using BAPTA/AM and EGTA, and Ca2+ imaging suggested that the LPS-induced increase in [Ca2+]i involves both the TRPV2-mediated intracellular and extracellular Ca2+ mobilizations. BAPTA/AM abolished LPS-induced TNFalpha and IL-6 production, while EGTA only partially suppressed LPS-induced IL-6 production, but not TNFalpha production. These data indicate that TRPV2 is involved in the LPS-induced Ca2+ mobilization from intracellular Ca2+ store and extracellular Ca2+. In addition to Ca2+ mobilization through the IP3-receptor, TRPV2-mediated intracellular Ca2+ mobilization is involved in NFkappaB-dependent TNFalpha and IL-6 expression, while extracellular Ca2+ entry is involved in NFkappaB-independent IL-6 production.
Article
The phytocannabinoid, Delta(9)-tetrahydrocannabivarin (THCV), can block cannabinoid CB(1) receptors. This investigation explored its ability to activate CB(2) receptors, there being evidence that combined CB(2) activation/CB(1) blockade would ameliorate certain disorders. We tested the ability of THCV to activate CB(2) receptors by determining whether: (i) it inhibited forskolin-stimulated cyclic AMP production by Chinese hamster ovary (CHO) cells transfected with human CB(2) (hCB(2)) receptors; (ii) it stimulated [(35)S]GTPgammaS binding to hCB(2) CHO cell and mouse spleen membranes; (iii) it attenuated signs of inflammation/hyperalgesia induced in mouse hind paws by intraplantar injection of carrageenan or formalin; and (iv) any such anti-inflammatory or anti-hyperalgesic effects were blocked by a CB(1) or CB(2) receptor antagonist. THCV inhibited cyclic AMP production by hCB(2) CHO cells (EC(50)= 38 nM), but not by hCB(1) or untransfected CHO cells or by hCB(2) CHO cells pre-incubated with pertussis toxin (100 ng.mL(-1)) and stimulated [(35)S]GTPgammaS binding to hCB(2) CHO and mouse spleen membranes. THCV (0.3 or 1 mg.kg(-1) i.p.) decreased carrageenan-induced oedema in a manner that seemed to be CB(2) receptor-mediated and suppressed carrageenan-induced hyperalgesia. THCV (i.p.) also decreased pain behaviour in phase 2 of the formalin test at 1 mg.kg(-1), and in both phases of this test at 5 mg.kg(-1); these effects of THCV appeared to be CB(1) and CB(2) receptor mediated. THCV can activate CB(2) receptors in vitro and decrease signs of inflammation and inflammatory pain in mice partly via CB(1) and/or CB(2) receptor activation.
Article
In the late 1990's, a series of experiments carried out independently in two laboratories led to establish an important connection between the function of the endocannabinoids, which, as exemplified in this special issue, is per se very complex and ubiquitous in animals, and that of the transient receptor potential (TRP) channels, a large family of plasma membrane cation channels involved in several mammalian and non-mammalian physiological and pathological conditions, overlapping only in part with those in which the cannabinoid receptors participate. These experiments were initially based on the observation that the endocannabinoid anandamide and the xenobiotic ligand of TRP channels of V1 type (TRPV1), capsaicin, are somehow chemically similar, both compounds being fatty acid amides, as are also synthetic activators of these channels and inhibitors of anandamide cellular re-uptake. As discussed in this article, the same type of "chemical thoughts" led to the discovery of N-arachidonoyl-dopamine, an endogenous ligand of TRPV1 channels that behaves also an endocannabinoid. The overlap between the ligand recognition properties of some TRP channels and proteins of the endocannabinoid system, namely the cannabinoid receptors and the proteins and enzymes catalyzing anandamide cellular re-uptake and hydrolysis, is being actively explored through the rational design and synthesis of new endocannabinoid-based drugs with multiple mechanisms of action. These aspects are discussed in this review article, together with the possible functional and pharmacological consequences of endocannabinoid-TRP channel interactions.
Article
Obesity is a severe health problem in the modernized world and understanding the central nervous mechanisms underlying food-seeking behaviour and reward are at the forefront of medical research. Cannabinoid receptors have proven an efficient target to suppress hunger and weight gain by their pharmacological inactivation. A standard fasted protocol and a novel long-term home-cage observation system with free-feeding animals were used to assess the feeding behaviour of mice treated with the CB1 antagonist AM251. Similarly, the effects of the phytocannabinoid Delta9-tetrahydrocannabivarin (Delta9-THCV), which behaves like a CB1 antagonist, were also determined in free-feeding animals. AM251 suppressed food intake and weight gain in fasted and non-fasted animals. The suppression of food intake by AM251 (10 mg.kg-1) endured for a period of 6-8 h when administered acutely, and was continuous when injected for four consecutive days. Pure Delta9-THCV also induced hypophagia and weight reduction at doses as low as 3 mg.kg-1. No rebound was observed on the following day with all drug groups returning to normal activity and feeding regimes. However, a Delta9-THCV-rich cannabis-extract failed to suppress food intake and weight gain, possibly due to residual Delta9-tetrahydrocannabinol (Delta9-THC) in the extract. This Delta9-THC effect was overcome by the co-administration of cannabidiol. The data strongly suggest (i) the long-term home-cage observation system is a sensitive and obesity-relevant tool, and (ii) the phytocannabinoid Delta9-THCV is a novel compound with hypophagic properties and a potential treatment for obesity
Article
Other than the potentially therapeutic bronchodilatory influences of marihuana, very little is known of its biologic effects on the lung. To evaluate this problem, alveolar macrophages were harvested from rats by bronchopulmonary lavage and incubated in vitro with Staphylococcus albus and marihuana smoke of standardized 2.2-percent tetrahydrocannabinol content in graded amounts. After three hours, control alveolar macrophages inactivated 78.0 +/- 5.0 percent of the staphylococcal challenge. There was a dose-dependent depression of alveolar macrophage bactericidal activity, with 66.7 +/- 7.1 percent, 23.7 +/- 7.0 percent, 20.5 +/- 7.0 percent, and 11.4 +/- 7.6 percent of the bacteria killed following exposures to 2 ml, 4 ml, 6 ml, or 8 ml of marihuana smoke, respectively. Differential filtration of marihuana smoke revealed that the alveolar macrophage cytotoxin was present in the gas phase of the smoke and was water-soluble. Studies on purified tetrahydrocannabinol and on tetrahydrocannoabinol-extracted marihuana revealed that the impairment in alveolar macrophage function was not related to the psychomimetic or bronchodilatory components of marihuana.
Article
There are at least six pharmacologically effective components of cannabis. Their effects on mice include a lowering of body temperature, catalepsy, analgesia and an extension of barbiturate sleeping time, with doses from 25 to 200 mg/kg.
Arachidonic acid ethanolamide (anandamide) is a brain constituent that binds to the brain cannabinoid receptor (CB1). It produces many of the pharmacological effects caused by delta 9-tetrahydrocannabinol (delta 9-THC) in mice. Anandamide parallels delta 9-THC in its specific interaction with the cannabinoid receptor and in inhibition of adenylate cyclase. Two additional fatty acid ethanolamides that bind to the cannabinoid receptor, homo-gamma-linolenylethanolamide and docostetraenylethanolamide, have been identified in the brain. We believe that the anandamides are involved in the coordination of movement and short term memory. Depression of ambulation in an open field and the analgetic response to anandamide are not fully developed until adulthood, possibly due to an age-related increase in the CB1 receptor concentration. This observation has clinical implications in pediatrics. A second cannabinoid receptor (CB2) is present in the spleen. A monoglyceride, 2-arachidonyl-glycerol which binds to both CB1 and CB2 in transfected cells and inhibits andenylate cyclase in spleen cells was found in the gut. Its role is apparently associated with the immune system. These fatty acids amides and esters represent a new family of chemical modulators in the body.
Article
At the interface between the innate and adaptive immune systems lies the high-output isoform of nitric oxide synthase (NOS2 or iNOS). This remarkable molecular machine requires at least 17 binding reactions to assemble a functional dimer. Sustained catalysis results from the ability of NOS2 to attach calmodulin without dependence on elevated Ca2+. Expression of NOS2 in macrophages is controlled by cytokines and microbial products, primarily by transcriptional induction. NOS2 has been documented in macrophages from human, horse, cow, goat, sheep, rat, mouse, and chicken. Human NOS2 is most readily observed in monocytes or macrophages from patients with infectious or inflammatory diseases. Sustained production of NO endows macrophages with cytostatic or cytotoxic activity against viruses, bacteria, fungi, protozoa, helminths, and tumor cells. The antimicrobial and cytotoxic actions of NO are enhanced by other macrophage products such as acid, glutathione, cysteine, hydrogen peroxide, or superoxide. Although the high-output NO pathway probably evolved to protect the host from infection, suppressive effects on lymphocyte proliferation and damage to other normal host cells confer upon NOS2 the same protective/destructive duality inherent in every other major component of the immune response.
Article
Inflammation causes the induction of cyclooxygenase-2 (Cox-2), leading to the release of prostanoids, which sensitize peripheral nociceptor terminals and produce localized pain hypersensitivity. Peripheral inflammation also generates pain hypersensitivity in neighbouring uninjured tissue (secondary hyperalgesia), because of increased neuronal excitability in the spinal cord (central sensitization), and a syndrome comprising diffuse muscle and joint pain, fever, lethargy and anorexia. Here we show that Cox-2 may be involved in these central nervous system (CNS) responses, by finding a widespread induction of Cox-2 expression in spinal cord neurons and in other regions of the CNS, elevating prostaglandin E2 (PGE2) levels in the cerebrospinal fluid. The major inducer of central Cox-2 upregulation is interleukin-1beta in the CNS, and as basal phospholipase A2 activity in the CNS does not change with peripheral inflammation, Cox-2 levels must regulate central prostanoid production. Intraspinal administration of an interleukin-converting enzyme or Cox-2 inhibitor decreases inflammation-induced central PGE2 levels and mechanical hyperalgesia. Thus, preventing central prostanoid production by inhibiting the interleukin-1beta-mediated induction of Cox-2 in neurons or by inhibiting central Cox-2 activity reduces centrally generated inflammatory pain hypersensitivity.
Article
Sepsis is a condition that results from a harmful or damaging host response to infection. Many of the components of the innate immune response that are normally concerned with host defences against infection can, under some circumstances, cause cell and tissue damage and hence multiple organ failure, the clinical hallmark of sepsis. Because of the high mortality of sepsis in the face of standard treatment, many efforts have been made to improve understanding of the dysregulation of the host response in sepsis. As a result, much has been learnt of the basic principles governing bacterial-host interactions, and new opportunities for therapeutic intervention have been revealed.
Article
The marijuana plant (Cannabis sativa) and preparations derived from it have been used for medicinal purposes for thousands of years. It is likely that the therapeutic benefits of smoked marijuana are due to some combination of its more than 60 cannabinoids and 200-250 non-cannabinoid constituents. Several marijuana constituents, the carboxylic acid metabolites of tetrahydrocannabinol, and synthetic analogs are free of cannabimimetic central nervous system activity, do not produce behavioral changes in humans, and are effective antiinflammatory and analgesic agents. One cannabinoid acid in particular, ajulemic acid, has been studied extensively in in vitro systems and animal models of inflammation and immune responses. This commentary reviews a portion of the work done by investigators interested in separating the medicinal properties of marijuana from its psychoactive effects. Understanding the mechanisms of the therapeutic effects of nonpsychoactive cannabinoids should lead to development of safe effective treatment for several diseases, and may render moot the debate about "medical marijuana".
Article
Bacterial lipopolysaccharide (LPS), the major structural component of the outer wall of Gram-negative bacteria, is a potent activator of macrophages. Activated macrophages produce a variety of inflammatory cytokines. Excessive production of cytokines in response to LPS is regarded as the cause of septic shock. On the other hand, macrophages exposed to suboptimal doses of LPS are rendered tolerant to subsequent exposure to LPS and manifest a profoundly altered response to LPS. Increasing evidence suggests that monocytic cells from patients with sepsis and septic shock survivors have characteristics of LPS tolerance. Thus, an understanding of the molecular mechanisms underlying activation and deactivation of macrophages in response to LPS is important for the development of therapeutics for septic shock and the treatment of septic shock survivors. Over the past several years, significant progress has been made in identifying and characterizing several key molecules and signal pathways involved in the regulation of macrophage functions by LPS. In this paper, we summarize the current findings of the functions of the LPS receptor complex, which is composed of CD14, Toll-like receptor 4 (TLR4), and myeloid differentiation protein-2 (MD-2), and the signal pathways of this LPS receptor complex with regard to both activation and deactivation of macrophages by LPS. In addition, recent therapeutic approaches for septic shock targeting the LPS receptor complex are described.
Article
Cannabis is under clinical investigation to assess its potential for medicinal use, but the question arises as to whether there is any advantage in using cannabis extracts compared with isolated Delta9-trans-tetrahydrocannabinol (Delta9THC), the major psychoactive component. We have compared the effect of a standardized cannabis extract (SCE) with pure Delta9THC, at matched concentrations of Delta9THC, and also with a Delta9THC-free extract (Delta9THC-free SCE), using two cannabinoid-sensitive models, a mouse model of multiple sclerosis (MS), and an in-vitro rat brain slice model of epilepsy. Whilst SCE inhibited spasticity in the mouse model of MS to a comparable level, it caused a more rapid onset of muscle relaxation, and a reduction in the time to maximum effect compared with Delta9THC alone. The Delta9THC-free extract or cannabidiol (CBD) caused no inhibition of spasticity. However, in the in-vitro epilepsy model, in which sustained epileptiform seizures were induced by the muscarinic receptor agonist oxotremorine-M in immature rat piriform cortical brain slices, SCE was a more potent and again more rapidly-acting anticonvulsant than isolated Delta9THC, but in this model, the Delta9THC-free extract also exhibited anticonvulsant activity. Cannabidiol did not inhibit seizures, nor did it modulate the activity of Delta9THC in this model. Therefore, as far as some actions of cannabis were concerned (e.g. antispasticity), Delta9THC was the active constituent, which might be modified by the presence of other components. However, for other effects (e.g. anticonvulsant properties) Delta9THC, although active, might not be necessary for the observed effect. Above all, these results demonstrated that not all of the therapeutic actions of cannabis herb might be due to the Delta9THC content.
Article
Lung macrophages provide a first line of host defense against inhaled pathogens and their function is impaired in the lungs of inhaled substance abusers. In order to investigate the mechanism for this impairment, alveolar macrophages (AM) were recovered from nonsmokers (NS), regular tobacco smokers (TS), marijuana smokers (MS), or crack cocaine smokers (CS), and evaluated for their production of nitric oxide (NO) and the role of NO as an antimicrobial effector molecule. AM from NS and TS efficiently killed Staphylococcus aureus and their antibacterial activity correlated closely with the production of nitrite and the expression of mRNA encoding for inducible nitric oxide synthase (iNOS). In contrast, AM collected from MS and CS exhibited limited antimicrobial activity that was not affected by an inhibitor of iNOS, or associated with expression of iNOS. Treatment with either granulocyte/macrophage colony-stimulating factor (GM-CSF) or interferon-gamma restored the ability of these cells to produce NO and to kill bacteria. These findings confirm a significant role for NO as an antibacterial effector molecule used by normal human AM and suggest that this host defense mechanism is suppressed by habitual exposure to inhaled marijuana or crack cocaine in vivo.
Article
Since the discovery of the cannabinoid receptors and their endogenous ligands, significant advances have been made in studying the physiological function of the endocannabinoid system. The presence of cannabinoid receptors on cells of the immune system and anecdotal and historical evidence suggesting that cannabis use has potent immuno-modulatory effects, has led to research directed at understanding the function and role of these receptors within the context of immunological cellular function. Studies from chronic cannabis smokers have provided much of the evidence for immunomodulatory effects of cannabis in humans, and animal and in vitro studies of immune cells such as T cells and macrophages have also provided important evidence. Cannabinoids can modulate both the function and secretion of cytokines from immune cells. Therefore, cannabinoids may be considered for treatment of inflammatory disease. This review article will highlight recent research on cannabinoids and how they interact with the immune system and also their potential use as therapeutic agents for a number of inflammatory disorders.
Article
Δ9-tetrahydrocannabivarin (THCV) displaced [3H]CP55940 from specific binding sites on mouse brain and CHO-hCB2 cell membranes (Ki=75.4 and 62.8 nM, respectively). THCV (1 μM) also antagonized CP55940-induced stimulation of [35S]GTPγS binding to these membranes (apparent KB=93.1 and 10.1 nM, respectively). In the mouse vas deferens, the ability of Δ9-tetrahydrocannabinol (THC) to inhibit electrically evoked contractions was antagonized by THCV, its apparent KB-value (96.7 nM) approximating the apparent KB-values for its antagonism of CP55940- and R-(+)-WIN55212-induced stimulation of [35S]GTPγS binding to mouse brain membranes. THCV also antagonized R-(+)-WIN55212, anandamide, methanandamide and CP55940 in the vas deferens, but with lower apparent KB-values (1.5, 1.2, 4.6 and 10.3 nM, respectively). THCV (100 nM) did not oppose clonidine, capsaicin or (−)-7-hydroxy-cannabidiol-dimethylheptyl-induced inhibition of electrically evoked contractions of the vas deferens. Contractile responses of the vas deferens to phenylephrine hydrochloride or β,γ-methylene-ATP were not reduced by 1 μM THCV or R-(+)-WIN55212, suggesting that THCV interacts with R-(+)-WIN55212 at prejunctional sites. At 32 μM, THCV did reduce contractile responses to phenylephrine hydrochloride and β,γ-methylene-ATP, and above 3 μM it inhibited electrically evoked contractions of the vas deferens in an SR141716A-independent manner. In conclusion, THCV behaves as a competitive CB1 and CB2 receptor antagonist. In the vas deferens, it antagonized several cannabinoids more potently than THC and was also more potent against CP55940 and R-(+)-WIN55212 in this tissue than in brain membranes. The bases of these agonist- and tissue-dependent effects remain to be established. British Journal of Pharmacology (2005) 146, 917–926. doi:10.1038/sj.bjp.0706414
Article
To follow up in vitro evidence that Delta(9)-tetrahydrocannabivarin extracted from cannabis (eDelta(9)-THCV) is a CB(1) receptor antagonist by establishing whether synthetic Delta(9)-tetrahydrocannabivarin (O-4394) and Delta(8)-tetrahydrocannabivarin (O-4395) behave as CB(1) antagonists in vivo. O-4394 and O-4395 were compared with eDelta(9)-THCV as displacers of [(3)H]-CP55940 from specific CB(1) binding sites on mouse brain membranes and as antagonists of CP55940 in [(35)S]GTPgammaS binding assays performed with mouse brain membranes and of R-(+)-WIN55212 in mouse isolated vasa deferentia. Their ability to antagonize in vivo effects of 3 or 10 mg kg(-1) (i.v.) Delta(9)-tetrahydrocannabinol in mice was then investigated. O-4394 and O-4395 exhibited similar potencies to eDelta(9)-THCV as displacers of [(3)H]-CP55940 (K (i)=46.6 and 64.4 nM, respectively) and as antagonists of CP55940 in the [(35)S]GTPgammaS binding assay (apparent K (B)=82.1 and 125.9 nM, respectively) and R-(+)-WIN55212 in the vas deferens (apparent K (B)=4.8 and 3.9 nM respectively). At i.v. doses of 0.1, 0.3, 1.0 and/or 3 mg kg(-1) O-4394 and O-4395 attenuated Delta(9)-tetrahydrocannabinol-induced anti-nociception (tail-flick test) and hypothermia (rectal temperature). O-4395 but not O-4394 also antagonized Delta(9)-tetrahydrocannabinol-induced ring immobility. By themselves, O-4395 and O-4394 induced ring immobility at 3 or 10 mg kg(-1) (i.v.) and antinociception at doses above 10 mg kg(-1) (i.v.). O-4395 also induced hypothermia at 3 mg kg(-1) (i.v.) and above. O-4394 and O-4395 exhibit similar in vitro potencies to eDelta(9)-THCV as CB(1) receptor ligands and as antagonists of cannabinoid receptor agonists and can antagonize Delta(9)-tetrahydrocannabinol in vivo.