ArticlePDF Available


Whole-body electromyostimulation WB-EMS. is a young and time-effective training technology. Comparing the effect of WB-EMS with conventional resistance training, both methods were reported to be similarly effective on muscle mass, strength and cardiometabolic risk. However, due to its exceptional time efficiency, joint friendliness and individualized setting, WB-EMS may be a good choice for people unable or simply unwilling to conduct intense resistance training protocols. However, recent literature has reported negative side-effects concerning WB-EMS-induced rhabdomyolysis. Indeed, due to the ability to innervate large muscle areas simultaneously with dedicated individual intensity per muscle group, WB-EMS features many factors known to be associated with muscle damage. A recent WB-EMS study applying an initial application to exhaustion to healthy novices confirmed the reported exceptionally high creatine-kinase CK. concentrations. Although the study did not detect any of the reported clinical consequences of this “severe” rhabdomyolysis i.e. ≥50fold increase of resting CK., in less fit subjects who were neither optimally prepared nor supervised, initial WB-EMS to exertion may have more far-reaching consequences. Of importance, a subsequent WB-EMS conditioning phase of 10 weeks completed by a second WB-EMS test application to exhaustion demonstrated CK-peaks in the range of conventional resistance exercise. Thus, in summary a. too intense initial WB-EMS may indeed result in a severe rhabdomyolysis b. thus, initial WB-EMS application to exhaustion must be strictly avoided, and c. frequent WB-EMS application demonstrated a very pronounced repeated bout effect after a short conditioning phase.
QR-Code scannen
und Artikel online
Whole-body electromyostimulation (WB-EMS) is a
young and time eective training technology that
focuses primarily on body composition (i.e. muscle,
bone, fat tissue) and strength-related parameters
(5, 7, 9, 13, 14). However, other health rela ted outcomes
(i.e. cardio-metabolic risk factors) (4) were also re-
ported to be positively aected by WB-EMS. A di-
rect comparison of WB-EMS and the slightly more
time-consuming High Intensity (Resistance) Trai-
ning (H IT) (WB-EMS: 1. 5x20 vs. HI T: 2x30 min/week)
Whole-Body Electromyostimulation –
The Need for Common Sense! Rationale and
Guideline for a Safe and Effective Training
Prof. Dr. Wolfgang Kemmler
Friedrich-Alexander University Erlangen
(FAU), Institute of Medical Physic s
Henkestras se 91
91054 Erlangen, Germany
: wolfgang .kemmler@imp.uni-e
Elektrostimulation, Kreatinkinase, Rhabdomyolyse,
Electrostimulation, Creatine-Kinase, Rhabdomyolysis,
Recommendation WB-EMS
Whole-body electromyostimulation (WB-EMS) is a young
and time-ee ctive trai ning technolog y. Comparing the ee ct of
WB-E MS with conventional resista nce training , both methods
were report ed to be simil arly eective on mu scle mass, stre ngth
and card iometabolic risk . However, due to its exceptiona l time
eciency, joint friend liness and i ndividua lized set ting, W B-EMS
may be a good choice for people unable or simply unwilling t o
conduct inten se resistance t raining prot ocols.
However, recent literat ure has reported negative side -eects
concerning WB-EMS-induced rhabdomyolysis. Indeed, due
to the ability to innervate large muscle areas simultaneously
with ded icated ind ividual i ntensity per mus cle group, WB-E MS
features many fact ors known to be as sociated with mu scle da-
mage. A recent W B-EMS st udy applyi ng an initia l application t o
exhau stion to healthy nov ices conrmed the reported excepti-
onally h igh creatine-kinas e (CK) concentration s. Although the
study did not detect any of the r eported clinic al consequences
of this “severe” rha bdomyolysis (i.e. ≥50fold increa se of resting
CK), in less t su bjects who were neither opt imally pre pared nor
superv ised, init ial WB-EMS t o exertion may have more far-r ea-
ching consequences.
Of importance, a subsequent WB-EMS conditioning phase
of 10 weeks complete d by a second WB-EM S test application t o
exhau stion demonstra ted CK-peaks i n the range of convention al
resistance exercise.
Thus, in summary (a) too inten se initial W B-EMS may indee d
result in a s evere rhabdomyolysis (b) thus, in itial WB-EM S ap-
plicat ion to exhaus tion must be str ictly avoided, a nd (c) frequent
WB-E MS applicati on demonstrated a ver y pronounced repe ated
bout eect af ter a short condit ioning phase.
Ganzkörper-Elektromyostimulation (WB-EMS) erfreut
sich durch Zeit ezienz, Indi vidualisierba rkeit und Eektiv ität
zunehmender Beliebtheit. In jüngster Vergangenheit wurden
nach Erst anwendung von WB-E MS in Einzelf ällen jedoch (ex-
trem) hohe Kreat inkinase (CK)-Werte berichtet, die i n einem
gesundheitlich bedenk lichen Bereich liegen. Bed ingt durch die
ächige si multane Appli kation mit dez idierter An steuerung der
Stimula tionsächen treen f ür WB-EMS du rchaus die meisten
Voraussetzu ngen für eine „e xertional R habdomyolysis“, also ei ne
ausgeprä gte körper traini ngs-induzier te Muskelschä digun g zu.
Tatsächlich zeigte eine kürzlich erschienene Untersuchung
mit gesunden Spor tlern ohne WB -EMS Vorerfahrung n ach aus-
belaste ter, also hochintensiver, WB-EMS -Erstapplika tion eine
117-fache Erhöhung der CK-Konzentrations-Werte im Bereich
einer schweren („severe“) Rh abdomyolyse (≥50-fache Erhöhung
des Ruhe-C K). Obwohl für keinen der 26 St udienteilneh mer die in
der Literatu r berichten negati ven renale und kard ialen Indizien
einer (schweren) Rhabdomyolyse vorlagen , mögen die Konse-
quenzen bei vorges chädigt en, leistun gsschwachen und sc hlecht
vorbereiteten Ind ividuen deutlich dr amatischer ausfa llen.
Eine nachfolgende Untersuchung, welche den Eekt regel-
mäßigen W B-EMS-Trainings ev aluierte, zeig te nach 10-wöchi-
gem Konditionier ungszeitraum und anschließender, wieder-
um ausbelasteter, WB-EMS-Applikation einen ausgeprägten
„repeate d bout eect“ mit CK-Spitzenw erten im unteren B ereich
konventionellen K raftt raini ngs (<1000 IE/l), also in ei nem unbe-
denkl ichen Bereich.
Als Fazit le iten wir ab, d ass (a) unsachgemäße W B-EMS-Er stap-
plikation durchaus negative gesundheitliche Konsequen-
zen haben kann, (b) eine ausbelastende bzw. sehr intensive
WB-E MS-Erstapp likation i n jedem Fall zu unter bleiben hat und
(c) ein rascher G ewöhnungseek t auch hinsichtl ich ausbelaste -
ter WB -EMS-Appli kation auf tritt. L etzteres ist z ur Realis ierung
relevanter E ekte, vergleichba r einem konventionellen K rafttr ai-
ning , nicht zwin gend nötig.
July 2 016
10.5960/dzsm.2 016.24 6
Kemmler W, Froehlich M, von
Stengel S, Kleinöder H. Whole-Body
Electromy ostimulation – The Need for
Common Sense! Rationale and Guideline
for a Safe and Effe ctive Training. Dtsch Z
Sportmed . 2016; 67: 218-221.
Sept ember 2016
Medical Physics, Erlangen-Nürnberg,
Depar tment of Sport s Science,
Kaiserslautern, Germany
Depar tment of Exerc ise Science s,
Cologne, Germany
Kemmler W 1, Froehlich M 2, von Stengel S 1, Kleinöder H 3
Ganzkörper-Elektromyostimulation –
eine Richtlinie zur sicheren und eektiven Anwendung
WB-EMS Guideline
has shown that both methods are similarly eective in increa-
sing body composition, strength (7, 8) and cardio-metabolic
risk (4, 8). However, due to its exceptional time eciency (7),
joint friendliness and individualized setting, WB-EMS may be
a good choice for people unable or simply unwil ling to conduct
intense resistance training protocols. However, in a recent let-
ter to the British Medical Journal, Malnick et al. addressed the
potential risks of WB-EMS and “the need to regulate the use
of whole body electrical stimulation” (11). Indeed recent scien-
tic literature has reported negative side-eects concerning
WB-EMS induced increases in creatine-kinase up to a level of
severe rhabdomyolysis (i.e. >50-fold increases compared with
resting levels) (1, 2, 12).
Summarizing the mechanisms of exertional rhabdomyoly-
sis, in genera l WB-EMS u ndeniably features most of the factors
known t o be associated w ith (resista nce) exercise induc ed mus-
cle damage and very pronounced muscle soreness (10). Espe
cially the outstanding feature to innervate large muscle areas
(12-14 electrodes w ith up to 2,800 cm
) simultaneously, but wit h
dedicated indiv idual intensity p er electrode/muscle group, may
contribute to the problem of WB-EMS induced rhabdomyoly-
sis, at least when applying too high (current) intensity. us,
an adequate WB-EMS application is essential for preventing
rhabdomyolysis and corresponding renal, hepatic and cardiac
In a recent study, we applied a ty pical but borderline ex haus-
tive WB-EMS protocol (20min , bipolar, 85Hz, 350µs, rectang u-
lar, 6s of current, 4s of rest) to 37 healthy WB-EMS novices (6).
And indeed, the CK increase af ter this borderline (too) intense
initial WB-EMS application conrmed the reported excep-
tionally high CK-levels and very pronounced muscle soreness
from 48h-96h (6). In detail, CK-concentration rose 117-fold
(28545±33 611 IU/l) with a peak a fter 72h and was 10 times hig h
er compared with the CK-levels after a marathon run that was
monitored in parallel (2795±883 IU/l after 48h). Although, we
did not detect any of the repor ted clinical consequences of t his
“severe” rhabdomyolysis on renal and cardiac risk factors (15),
in less t and healthy subjects neither optimally prepared
nor supervised, initial WB-EMS to exertion may have more
far-reaching consequences.
Signicantly, a subsequent WB-EMS conditioning phase of
10 weeks (1x20min WB-EMS/week, see above) completed by a
second WB-EMS te st session to exhaustion demonstrat ed a very
pronounced “repeated bout eect ” with indiv idual CK-peaks a ll
below 200 0 IU/l (MV±SD: 906±500 I U/l), i.e. in the lower ra nge of
conventional resista nce exercise trai ning (6, 10). is result
Guideline for Safe and Effective WB-EMS
In General
1. Safe and effective Whole-Body-EMS Training must be advised and ac-
companied by a trained and licensed WB-EMS trainer or scientifically
trained personnel familiar with this field of application.
2. Before the first training session of every beginner, an anamnesis of
possible contraindications based on a list of questions must be taken
and then documented in writing, confirmed by the client‘s signature
and archived. Where relevant anomalies are found, a doctor is to be
consulted and training only be commenced if clearance has been given.
Preparing for Training
1. As with any kind of intensive training, Whole-Body EMS training must
only be carried out in a good physical condition and free of pain. This
includes abstaining from alcohol, drugs, stimulants/muscle relaxants
or stress ahead of the training session. Training must never be carried
out by anybody suffering from an illness with fever.
2. Whole-Body-EMS training leads to very high metabolic stress of the
organism because of very high volume of muscle mass addressed. This
factor has to be taken into account through sufficient food intake that
is as high in carbohydrates as possible. If this is not possible, then at
least a high carbohydrate, but light snack (≈250kcal) should be eaten,
ideally about 2 hours before training.
3. So as to avoid possible renal stress (especially with undiagnosed prob-
lems) through intensive WB-EMS, additional fluids should be consumed
before/during and after training (500ml each).
4. Generally, medical – ideally sport-medicinal – consultation and clarifi-
cation is advisable in the case of any discomfort, physical restrictions,
infections or other internal, cardiological or orthopedic illnesses.
1. Regardless of physical status, sport experience and the user‘s wishes
to that effect, under no circumstances may WB-EMS training to
exhaustion take place during the first training session or trial training.
In the past, this has led to undesired side effects and negative health
consequences and must be avoided at all costs.
2. After moderate initial WB-EMS, the stimulation level or current must
be successively increased and adapted to the individual goals. The
highest level is to be reached only after 8-10 weeks of systematic trai-
ning at the earliest (user‘s subjective effort impression: hard-hard+).
Training to complete exhaustion, especially in the sense of painful, con-
tinuous tetanus during the current phase, must generally be avoided.
3. In addition, the initial training should be conducted with a reduced
effective training period. Advisable is 5min impulse familiarization and
a curtailed training session with moderate stimulus intensity (user‘s
subjective effort impression: a bit hard) and 12min intermittent load
with short impulse phase (~4s). Only then should the training duration
be cautiously increased and never exceed 20min.
4. To ensure sufficient conditioning and to minimize or rule out possible
health impairments, training frequency may not exceed one training
unit per week during the first 8-10 weeks.
5. Even after this conditioning phase, an interval of ≥4 days must be
maintained between training units in order to avoid accumulation of
muscle breakdown products, permit regeneration and adaptation and
thus ensure a successful training outcome.
Safety Aspects During and After Training
1. During the training session, the trainer or the trained and qualified
personnel should concentrate exclusively on the interests of the user(s).
Before, during and after training the trainer verbally and visually
checks the user‘s condition so as to rule out health risks and ensure
effective training. Training is to be stopped immediately if there are any
2. During training, the equipment‘s operating controls must be directly
in reach of the trainer and the user at all times. Operation/adjustment
must be simple, quick and precise.
3. Actually, we generally advise against private use of technology without
support of a qualified and licensed trainer/instructor or correspon-
dingly scientifically trained personnel.
Richtlinien Ganzkörper-EMS
indicates that a short period of careful W B-EMS conditioning
should be mandatorily implemented in order to realize a safe
We conclude that the problem of WB-EMS induced rhab-
domyolysis can be easily prevented with a minimum of com-
mon sense. Firstly, although some groups of highly motivated
WB-EMS novices may request an exertional initial WB-EMS
application, this approach should be strictly avoided. In pa ral-
lel, no clear-thinking instructor would apply an intense eccen-
tric resistance traini ng protocol to muscular failure during the
initial session to a resistance t raining nov ice. Secondly, as wit h
conventional resistance exercise there is no need to focus on
WB-EMS to ex haustion in order to generate relevant eects on
body composition and functional capacity (3, 7). Additionally,
contraindications for WB-EMS should be strictly heeded and
WB-EMS novices adequately informed so as to ensure a safe
and successful WB-EMS application. In order to realize the
latter aim, in a German consensus conference in December
2015, WB-E MS manufact urers (miha-body tec, Gersthofen, Ger -
many), educational institutions (GluckerKolleg, Kornwestheim,
Germa ny), Licensees (P T Lounge Köln, Colog ne, Germany) and
publishing researchers (see below) discussed the topic. Finally
in April 2016, the scientic part of the consortium (Fröhlich,
M.; Kemmler, W.; Kleinöder, H. v. Stengel, S.) has formulated a
general guideline, that we would like to disseminate and pub-
lish here. We are aw are that WB-EMS is a young and innovative
technolog y with considerable f urther potential, thu s extensions
and changes of this guideline may be necessary in the nearest
futu re. However, we think t he general recommendation s listed
may be a rst step to a more safe and eective WB-EMS appli-
Conict of Interest
e authors are aware that some commercial partners may have
had a conict of interest with respect to some issues. However,
the nal responsibility for the generation of this guideline clearly
lies by the authors.
(1) FINSTERER J, STOLLBERGER C. Severe rhabdomyolysis a fter miha-
bodytec(R) electrostimu lation with previous mild hyper-CK-
emia and noncompaction. Int J Cardiol. 2015; 180 : 100-102.
(2) KAS TNER A, BR AUN M, MEYER T. Two Cases of rhabdomyolysis
after training w ith electromyostimulation by 2 young male
professiona l soccer players. Clin J Spor t Med. 2014; 25: 71-73.
whole-body electromyostimulation on body composition
in elderly women at risk for sa rcopenia: the Tra ining and
ElectroStimu lation Trial (TEST-III). Age (Dordr). 2014; 36: 395-
406 . doi:10.1007/s11357-013-9575-2
(4) KEMMLER W, KOHL M, VON STENGEL S. Eects of h igh intensity
resistance tra ining versus whole-body electromyostimu lation
on cardiometabol ic risk factors in untrained midd le aged males.
A randomi zed controlled trial. J Sports Med . 2016; [accepted for
whole-body-electromyostimulation on resting metabolic rate,
anthropometric and neuromuscula r parameters in the elderly.
e Training and ElectroSt imulation Trial (TEST). J Strength
Cond Res. 2010; 24: 1880-1887. doi:10.1519/JSC.0b013e3181ddaeee
Kreatinkinase-Werte nach exzessiver Ganzkörper-
Elektromyostimulation: gesund heitliche Relevanz und
Entwicklung im Train ingsverlauf. Wien Med Wochenschr. 2015;
165: 427-435 . doi:10.1007/s10354 -015- 0394 -1
FRÖHLICH M, KOHL M, VON STENGEL S. Eects of whole-body
electromyostimu lation versus high-intensity resistance exercise
on body composition and st rength: A randomized controlled
study. Evid Based Complement Alter nat Med. 2016; 2016:
VON STENGEL S. Ganzkörper-Elektromyostimulationst versus
HIT-Kra fttrain ing - Eekte auf Körperzusammensetzung und
Muskelkraf t. Dtsch Z Sportmed. 2015; 66: 321-327. doi:10.5960/
(9) K EMMLER W, VON STENGEL S. Whole-body electromyostimulation as
a means to impact muscle mass a nd abdominal body fat in lea n,
sedentary, older female adults: subana lysis of the TEST-III trial.
Clin I nterv Aging. 2013; 8: 1353-1364. doi:10.2147/CIA.S52337
(10) KOCH AJ, PEREIRA R, MACHADO M. e creatine kinase response to
resistance exercise. J Musculoskelet Neurona l Interact. 2014; 14:
68 -7 7.
(11) MA LNICK SD, BA ND Y, ALIN P, MAFFIULET TI NA. It‘s time to regu late the
use of whole body electr ical stimulation. BMJ. 2016; 352: i1693.
(12) VISWESWARAN P, GUNTUPALLI J. Rhabdomyolysis . Crit Care Clin.
199 9; 15: 415- 428. doi:10 .1016/S0749- 0704 (05)70061- 0
electromyostimu lation to ght osteopenia in elderly fema les:
e randomized controlled Training a nd Electrostimulation
Trial (TEST-III). J Osteoporos. 2015; 2015: 643520.
of loaded squat exercise with a nd without application of
superimposed EM S on physical perfor mance. J Sports Sci Med.
2016; 15: 26-3 3.
Rhabdomyolysis: review of the literature. Neuromuscul Disord .
2014; 24: 651-659. doi:10.1016/j.nmd.2014.05.005
... Due to the different electrical conductivity of the skin and tissues, WB-EMS intensity was adjusted individually and separately for each muscle group and the overall intensity during the WB-EMS test situations until the individual tolerated maximum amperage was reached. In contrast to previous studies that recommend a WB-EMS familiarization to achieve higher currents by the participants (Kemmler et al., 2016a(Kemmler et al., , 2018Teschler and Mooren, 2019), in this study, due to the question of the acute influence of EMS, a WB-EMS familiarization was not used. ...
... higher muscle recruitment in various body segments during NW, WB-EMS has a higher impact on NW compared to W. This conclusion is also confirmed by the results of the EMS current intensity analysis. Various studies recommend a WB-EMS familiarization for a higher WB-EMS current intensity toleration by the participants and ultimately higher impact of the WB-EMS (Kemmler et al., 2016a(Kemmler et al., , 2018Teschler and Mooren, 2019). Since none of the study participants has had any experience with EMS so far, we did not do this familiarization to investigate the acute impact of WB-EMS. ...
Full-text available
Electrical muscle stimulation (EMS) is an increasingly popular training method and has become the focus of research in recent years. New EMS devices offer a wide range of mobile applications for whole-body EMS (WB-EMS) training, e.g., the intensification of dynamic low-intensity endurance exercises through WB-EMS. The present study aimed to determine the differences in exercise intensity between WB-EMS-superimposed and conventional walking (EMS-CW), and CON and WB-EMS-superimposed Nordic walking (WB-EMS-NW) during a treadmill test. Eleven participants (52.0 ± years; 85.9 ± 7.4 kg, 182 ± 6 cm, BMI 25.9 ± 2.2 kg/m2) performed a 10 min treadmill test at a given velocity (6.5 km/h) in four different test situations, walking (W) and Nordic walking (NW) in both conventional and WB-EMS superimposed. Oxygen uptake in absolute (VO2) and relative to body weight (rel. VO2), lactate, and the rate of perceived exertion (RPE) were measured before and after the test. WB-EMS intensity was adjusted individually according to the feedback of the participant. The descriptive statistics were given in mean ± SD. For the statistical analyses, one-factorial ANOVA for repeated measures and two-factorial ANOVA [factors include EMS, W/NW, and factor combination (EMS*W/NW)] were performed (α = 0.05). Significant effects were found for EMS and W/NW factors for the outcome variables VO2 (EMS: p = 0.006, r = 0.736; W/NW: p < 0.001, r = 0.870), relative VO2 (EMS: p < 0.001, r = 0.850; W/NW: p < 0.001, r = 0.937), and lactate (EMS: p = 0.003, r = 0.771; w/NW: p = 0.003, r = 0.764) and both the factors produced higher results. However, the difference in VO2 and relative VO2 is within the range of biological variability of ± 12%. The factor combination EMS*W/NW is statistically non-significant for all three variables. WB-EMS resulted in the higher RPE values (p = 0.035, r = 0.613), RPE differences for W/NW and EMS*W/NW were not significant. The current study results indicate that WB-EMS influences the parameters of exercise intensity. The impact on exercise intensity and the clinical relevance of WB-EMS-superimposed walking (WB-EMS-W) exercise is questionable because of the marginal differences in the outcome variables.
... Durch solche negative Erfahrungen gerät das WB-EMS-Training, welches bei korrekter Anwendung eine sichere und effektive Trainingsform darstellt, in die Kritik. Ungeachtet dessen, ist nach Kemmler et al. (2016a) jedoch unbestritten davon auszugehen, dass eine missbräuchliche WB-EMS-Applikation zu Komplikationen, wie einer Rhabdomyolyse (gewebliche Auflösung der quergestreiften Muskulatur, d. h. Zerfall der Muskelfasern), führen kann, die mit schwerwiegenden renalen, hepatischen und kardialen Komplikationen assoziiert ist. ...
... Während des Trainings sind die Bedienelemente des Gerätes für den Trainer und auch für den Trainierenden jederzeit erreichbar und die Regelung muss dabei einfach, schnell und präzise erfolgen können. Innerhalb der hier vorgestellten Handlungsempfehlungen adressierenKemmler et al. (2016a) ausschließlich das betreute WB-EMS-Training. Tatsächlich war es allgemeiner Konsens, dass eine sichere und effektive WB-EMS-Applikation ausschließlich in diesem Setting gewährleistet werden kann. ...
Der obige Begriff der Muskelstimulation ist insofern irreführend, als dass die Schwelle zur Erregung motorischer Nerven deutlich niedriger liegt, als diejenige des korrespondierenden Muskels. Über die oberflächlich aufliegende Elektrode wird bei der WB-EMS zunächst der Nerv stimuliert, der über die Alpha-Motoneuronen und die motorischen Endplatten eine Muskelkontraktion bewirkt. Lässt man die Vielzahl der Applikationsmöglichkeiten elektrischer Ströme außer Acht und fokussiert sich auf die derzeit etablierte Technologie, so kommen bei der WB-EMS grundsätzlich bipolare (biphasische) Reizströme, im Niederfrequenz- (0–1000 Hz) und (modularen) Mittelfrequenzbereich (>1000 Hz– <1 MHz) zum Einsatz.
... Durch solche negative Erfahrungen gerät das WB-EMS-Training, welches bei korrekter Anwendung eine sichere und effektive Trainingsform darstellt, in die Kritik. Ungeachtet dessen, ist nach Kemmler et al. (2016a) jedoch unbestritten davon auszugehen, dass eine missbräuchliche WB-EMS-Applikation zu Komplikationen, wie einer Rhabdomyolyse (gewebliche Auflösung der quergestreiften Muskulatur, d. h. Zerfall der Muskelfasern), führen kann, die mit schwerwiegenden renalen, hepatischen und kardialen Komplikationen assoziiert ist. ...
... Während des Trainings sind die Bedienelemente des Gerätes für den Trainer und auch für den Trainierenden jederzeit erreichbar und die Regelung muss dabei einfach, schnell und präzise erfolgen können. Innerhalb der hier vorgestellten Handlungsempfehlungen adressierenKemmler et al. (2016a) ausschließlich das betreute WB-EMS-Training. Tatsächlich war es allgemeiner Konsens, dass eine sichere und effektive WB-EMS-Applikation ausschließlich in diesem Setting gewährleistet werden kann. ...
... Durch solche negative Erfahrungen gerät das WB-EMS-Training, welches bei korrekter Anwendung eine sichere und effektive Trainingsform darstellt, in die Kritik. Ungeachtet dessen, ist nach Kemmler et al. (2016a) jedoch unbestritten davon auszugehen, dass eine missbräuchliche WB-EMS-Applikation zu Komplikationen, wie einer Rhabdomyolyse (gewebliche Auflösung der quergestreiften Muskulatur, d. h. Zerfall der Muskelfasern), führen kann, die mit schwerwiegenden renalen, hepatischen und kardialen Komplikationen assoziiert ist. ...
... Während des Trainings sind die Bedienelemente des Gerätes für den Trainer und auch für den Trainierenden jederzeit erreichbar und die Regelung muss dabei einfach, schnell und präzise erfolgen können. Innerhalb der hier vorgestellten Handlungsempfehlungen adressierenKemmler et al. (2016a) ausschließlich das betreute WB-EMS-Training. Tatsächlich war es allgemeiner Konsens, dass eine sichere und effektive WB-EMS-Applikation ausschließlich in diesem Setting gewährleistet werden kann. ...
... For instance, the application of new exercise-assisted technology called electrical muscle stimulation (EMS) has become popular worldwide. Training with whole-body electrical muscle stimulation (EMS-WB) can activate all large muscle groups simultaneously [15,16]. In fact, electrical stimulation is based on stimulating neural fibers with electrical pulses that come from several electrodes and cause muscle contraction. ...
... Studies have shown that exercise with electrical stimulation of the whole body is associated with an increase in lean body mass and the muscular strength [21], and some have reported its effectiveness on body fat mass as well [22]. Overall, although existing evidences have shown promising results on power and strength parameters both in athletes and sarcopenia, the results on body composition are variable [16,[23][24][25]. Thus, the objective of this study is to investigate the influence of a 6-week whole-body electrical muscle stimulation (WB-EMS) training program on the body composition of sedentary women. ...
Full-text available
Background and aims Aerobic exercise has proven positive effects on weight reduction and body composition improvement. During recent years, whole-body electrical muscle stimulation (WB-EMS) training has received attention as a method for time-efficient exercise. So, the purpose of this study was to determine the effect of superimposed whole-body EMS compared to aerobic exercise alone on body composition. Methods Forty sedentary overweight women aged 20–45 years old were randomly allocated to either moderate intensity aerobic exercise (3 days/week) or aerobic exercise (3 days/week) plus WB-EMS (2 days/week) for 6 weeks. WB-EMS was conducted with intermittent stimulation (6 s WB-EMS, 4 s rest; 85 Hz, 350 ms) over 20 min. The main outcome parameters were weight, body fat mass, percent body fat (PBF), lean body mass (LBM), waist and hip circumferences and abdominal and suprailiac skinfold. Results After 6 weeks, both groups showed improvement in weight and body composition parameters based on bioimpedance (BIA) without statistical differences between groups (p > 0.05). Skinfold decreased in abdominal and suprailiac points in both groups (p = 0.000), with significant between-group difference for abdominal skinfold (p = 0.04). Waist and hip circumferences decreased in both groups (p < 0.05), without differences between groups (p = 0.69 and p = 0.43, respectively). Conclusion According to the results of the present study, aerobic exercise improved body composition and WB-EMS added no significant benefits, except for some added improvement in abdominal skinfold.
... Even though it is very effective this training method can also have negative consequences if used incorrectly. In this regard, a guide for timely and appropriate use has been developed (Allen & Goodman 2014;Kemmler et al., 2016). ...
Conference Paper
Full-text available
Electromyostimulation (EMS) represents an artificial muscle stimulation with a well-defined protocol that is precisely designed to reduce discomfort during unnatural muscle activation. The main goal was to find new information on the basis of systematic review of many studies which examined the impact of EMS on athletes vertical jumping performance, as well as to expand the already known conclusions. Electronic databases (Google Scholar, Pub Med, Web of Science and ResearchGate) were searched for the original scientific research projects on the topic of the impact of EMS on athletes' vertical jumping performance. The last search was conducted in June 2020 with a limitation to study published in English. As many as 415 scientific studies were indentified and only 15 of them were selected and then systematically reviewed and analyzed. The results of the research projects with the total sample size of 445 athletes showed that the treatment of global and local EMS, in combination with another types of training, is an effective method for the development of explosive strength, such as vertical jumping. It has been proven that the EMS represents an effective strategy for improving vertical jumping performance, as well as for improving physical performance of athletes in general.
... WB-EMS has been considered a promising technology due to its ability to stimulate up to 12 muscle groups simultaneously 15 . Associated with exercises, WB-EMS can also be effective in terms of time, enabling faster training 16 and considering the current lifestyle, which is one of the main causes of individuals abandoning physical exercise practice. ...
Full-text available
Aim: To contrast the acute effects of whole-body electromyostimulation (WB-EMS) with sham associated with dynamic exercises on cardiovascular, ventilatory, metabolic, and autonomic responses in men with obesity and controls. Methods: A randomized cross-over and double-blind trial with nine eutrophic (23.6 years; 23 ± 1.4 kg/m2) and ten men with obesity (26 ± 4 years; 38 ± 7 kg/m2), who were randomized to receive WB-EMS-Sham or Sham-WB-EMS with 30 min of rest between protocols. WB-EMS protocol (Miha Bodytec®) was applied at the motor level, frequency = 85 Hz, pulse duration = 350 μs, cycle on = 6′; cycle off = 4′. Sham group performed the same exercises with the electric current turned off. Throughout both protocols, subjects executed two dynamic exercises of 5 minutes each (step-up and step down associated with shoulder flexion, and lunge exercise associated with elbow flexion) in the same order. R-R intervals and breath-by-breath respiratory gases analysis were collected during the protocols. Heart rate variability (HRV) indexes were obtained using linear and nonlinear analysis. The level of statistical significance was set at p < 0.05. Results: Regarding both exercises, participants with obesity presented reduced oxygen uptake, higher ventilation, respiratory rate, blood pressure, and Borg scores (p < 0.05) when contrasted with controls, as expected. However, no significant differences were found for HRV indexes between groups (p > 0.05). In addition, WB-EMS did not increase oxygen uptake or altered autonomic modulation when contrasted with sham in both groups (p < 0.05). Conclusion: Obesity has a negative impact on symptoms and functional capacity. However, WB-EMS did not acutely enhance oxygen uptake or HRV during exercise in a population with obesity.
This systematic review and network meta-analysis aimed to evaluate the effectiveness of different electromyostimulation (EMS) training interventions on performance parameters in trained athletes. The research was conducted until may 2021 using the online databases PubMed, Web of Science, Cochrane and SPORTDiscus for studies with the following inclusion criteria: (a) controlled trials, (b) EMS trials with at least one exercise and/or control group, (c) strength and/or jump and/or sprint and/or aerobic capacity parameter as outcome (d) sportive/trained subjects. Standardized mean differences (SMD) with 95% confidence interval (CI) and random effects models were calculated. Thirty-six studies with 1.092 participants were selected and 4 different networks (strength, jump, sprint, aerobic capacity) were built. A ranking of different exercise methods was achieved. The highest effects for pairwise comparisons against the reference control "active control" were found for a combination of resistance training with superimposed EMS and additional jump training (outcome strength: 4.43 SMD [2.15; 6.70 CI]; outcome jump: 3.14 SMD [1.80;4.49]), jump training with superimposed whole-body electromyostimulation (WB-EMS) (outcome sprint: 1.65 SMD [0.67; 2.63 CI] and high intensity bodyweight resistance training with superimposed WB-EMS (outcome aerobic capacity: 0.83 SMD [-0.49; 2.16 CI]. These findings indicate that the choice of EMS-specific factors such as the EMS application mode, the combination with voluntary activation, and the selection of stimulation protocols has an impact on the magnitude of the effects and should therefore be carefully considered, especially in athletes. Superimposed EMS with relatively low volume, high intensity and outcome-specific movement pattern appeared to positively influence adaptations in athletes.
Full-text available
Whole-body electromyostimulation (WB-EMS) induces high-intense stimuli to skeletal muscles with low strain on joints and the autonomic nervous system and may thus be suitable for frail, older people. However, if trained at very high intensities, WB-EMS may damage muscles and kidneys (rhabdomyolysis). This study aimed at investigating the feasibility, safety and preliminary efficacy of WB-EMS in frail, older people. Seven frail (81.3 ± 3.5 years), 11 robust (79.5 ± 3.6 years), 10 young (29.1 ± 6.4 years) participants completed an eight-week WB-EMS training (week 1–4: 1x/week; week 5–8: 1.5x/week) consisting of functional exercises addressing lower extremity strength and balance. Feasibility was assessed using recruitment, adherence, retention, and dropout rates. The satisfaction with WB-EMS was measured using the Physical Activity Enjoyment Scale for older adults (PACES-8). In week 1, 3, and 8 creatine kinase (CK) was assessed immediately before, 48 and 72 h after WB-EMS. Symptoms of rhabdomyolysis (muscle pain, muscle weakness, myoglobinuria) and adverse events were recorded. Functional capacity was assessed at baseline and after 8 weeks using the Short Physical Performance Battery (SPPB), Timed Up-and-Go Test (TUG), Choice Stepping Reaction Time Test (CSRT), 30-second Chair-Stand Test (30-STS), maximum isometric leg strength and handgrip strength. The recruitment rate of frail individuals was 46.2%, adherence 88.3% and the dropout rate 16.7%. All groups indicated a high satisfaction with WB-EMS. CK activity was more pronounced in young individuals with significant changes over time. Within older people CK increased borderline-significantly in the frail group from baseline to week 1 but not afterwards. In robust individuals CK increased significantly from baseline to week 1 and 3. No participant reached CK elevations close to the threshold of ≥5,000 U/l and no symptoms of rhabdomyolysis were observed. With the exception of the TUG (p = 0.173), frail individuals improved in all tests of functional capacity. Compared to the young and robust groups, frail individuals showed the greater improvements in the SPPB, handgrip strength, maximum isokinetic hip-/knee extension and flexion strength. WB-EMS is feasible for frail older people. There were no clinical signs of exertional rhabdomyolysis. WB-EMS proved to be sufficiently intense to induce meaningful changes in functional capacity with frail individuals showing greater improvements for several measures.
Objective to provide evidence for the effects of whole-body electromyostimulation (WB-EMS) on health-related outcomes compared to the effects of minimal or non-intervention for older people in the short/medium/long term. Data sources seven databases (MEDLINE, Embase, CENTRAL, CINAHL, Scopus, SPORTDiscuss and Web of Science) were electronically searched in April 2020 and updated in March 2021. Study selection included studies were randomized controlled trials (RCTs) involving WB-EMS that assessed effects on health-related outcomes, risks and adverse events in older people (>60 years). Data extraction the following data were obtained: author and publication year, follow-up, detailed information of older characteristics, current parameters/intensity and outcomes. Data synthesis a random effects model was used with effect size reported as SMD. Statistical heterogeneity was assessed using the I² test. Results 13 RCTs met the eligibility criteria. Meta-analysis found: large effects of WB-EMS on reducing sarcopenia Z-score (ES: 1.44[-2.02: 0.87] p= <.01) and improving isometric strength leg extensors (ES:0.81[0.41:1.21] p= <.01) at medium and long-term, respectively. Moderate effects of WB-EMS on improving handgrip strength (ES:0.58[0.23:0.92] p= <.01) and habitual gait speed (ES:0.69[0.31:1.07] p= <.01) at medium-term and improving appendicular skeletal muscle mass (ES:0.69[0.30:1.09] p= <.01) at long-term. Non-significant effect of WB-EMS on waist circumference (p = .17) and triglycerides (p = .20) at medium-term. Non-significant effects of WB-EMS on improving creatine kinase concentrations, C-reactive protein, and interleukin 6 at medium-term. Conclusions This review provides further evidence for significant, moderate to large effect sizes of WB-EMS on sarcopenia, muscle mass and strength parameters, but not on waist circumference and triglycerides. Systematic review registration PROSPERO database no. CRD42019134100.
Full-text available
Background: Time-efficient exercise protocols may encourage subjects to exercise more frequently and could thus be excellent tools for health promotion. The aim of this study was to compare the effectiveness of the time-efficient methods HIT and/versus WB-EMS on cardio-metabolic risk factors in untrained middle-aged males. Methods: Untrained, healthy males (30-50 years) were randomly allocated either to 16-weeks of WB-EMS with 3 applications of 20 min/2 weeks, or 16 weeks of high intensity (resistance) training (HIT) performing 2 sessions/week. Both methods addressed all the main muscle groups. Metabolic-Syndrome Z-Score (MetS-Z-Score), abdominal body fat and total cholesterol/HDL-cholesterol (TC/HDL-C) were defined as the study endpoints. Results: HIT and WB-EMS were similar (p≤.096) effective to improve the MetS-Z-Score (HIT: p=.031 vs. WB-EMS: p=.001) and abdominal body fat (HIT:-4.5±8.1%, p=.014 vs. WB-EMS-4.0±5.2%, p=.002) in this cohort. No significant changes (HIT:-2.7±7.4, p=. 216 vs. WB-EMS:-2.2±10.2 p=.441) or group-differences (p=.931) within and between the groups were determined for TC/HDL-C. Conclusion: WB-EMS and HIT-RT is equally effective, attractive, feasible and time-efficient methods for combatting cardio-metabolic risk factors in untrained middle-aged males. WB-EMS can be considered as an effective option, particularly for subjects with low time resources unwilling or unable to conduct exhausting HIT protocols. The paper's primary contribution is finding that both exercise methods, high intensity resistance training (HIT) as defined as " single-set-to-failure protocol with intensifying strategies " and whole-body electromyostimulation (WB-EMS) are equally effective, attractive and feasible approaches for tackling cardio-metabolic risk factors in untrained middle-aged males with limited time resources.
Full-text available
High-intensity (resistance) exercise (HIT) and whole-body electromyostimulation (WB-EMS) are both approaches to realize time-efficient favorable changes of body composition and strength. The purpose of this study was to determine the effectiveness of WB-EMS compared with the gold standard reference HIT, for improving body composition and muscle strength in middle-aged men. Forty-eight healthy untrained men, 30–50 years old, were randomly allocated to either HIT (2 sessions/week) or a WB-EMS group (3 sessions/2 weeks) that exercised for 16 weeks. HIT was applied as “single-set-to-failure protocol,” while WB-EMS was conducted with intermittent stimulation (6 s WB-EMS, 4 s rest; 85 Hz, 350 ms) over 20 minutes. The main outcome parameters were lean body mass (LBM) as determined via dual-energy X-ray absorptiometry and maximum dynamic leg-extensor strength (isokinetic leg-press). LBM changes of both groups (HIT 1.25 ± 1.44% versus WB-EMS 0.93 ± 1.15 %) were significant ( p = . 001 ); however, no significant group differences were detected ( p = . 395 ). Leg-extensor strength also increased in both groups (HIT 12.7 ± 14.7 %, p = . 002 , versus WB-EMS 7.3 ± 10.3 %, p = . 012 ) with no significant ( p = . 215 ) between-group difference. Corresponding changes were also determined for body fat and back-extensor strength. Conclusion . In summary, WB-EMS can be considered as a time-efficient but pricy option to HIT-resistance exercise for people aiming at the improvement of general strength and body composition.
Full-text available
Purpose: High Intensity (resistance exercise) Training (HIT) and Whole-Body Electromyostimulation (WB-EMS) may be the most promising approaches to generate favorable changes of body composition and strength with optimum time-efficiency. In this study, we compared the effect of WB-EMS on Body composition and muscle strength with the “golden standard” HIT over 16 weeks. ››Methods: 30-50 year-old men (n=48) were randomly allocated to a HIT (n=24) with 2 sessions/week of a “single-set-to-failure-protocol” or a WB-EMS-group that exercised 3 sessions in two weeks, using intermittent stimulation (6 sec - 4 sec rest; 85 Hz, 350 ms) over 20 min. An Intention to treat analysis was calculated with Lean Body Mass (LBM) defined as primary endpoint, and appendicular skeletal muscle mass (ASMM), Maximum dynamic leg-extensor and isometric back-extensor strength as secondary endpoints. ››Results: Net exercise time/session was 30.3±2.3 for HIT vs. 20±0 min for WB-EMS (p<.001). LBM (HIT: 1.24±1.40% vs. WB-EMS: 0.91±1.12%) and ASMM (1.92±1.51% vs. WB-EMS: 1.52±1.48%) significantly increased (p≤.003), with no significant group differences (LBM: p=.406 and ASMM: p=.341). In parallel, changes of maximum dynamic leg strength (HIT: 13.5±13.9%, p=.001 vs. WBEMS: 8.0±10.2%, p=.008) and maximum isometric back strength (10.4±9.0%, p<.001 vs. 11.7±9.9%; p<.001) were comparable (p=.332 and p=.609) between groups. Discussion: In conclusion, compared to HIT, WB-EMS can be considered as an even more time-efficient but pricey option for subjects who aim to improve their body composition and general strength.
Full-text available
Whole-body electromyostimulation (WB-EMS) has been shown to be effective in increasing muscle strength and mass in elderly women. Because of the interaction of muscles and bones, these adaptions might be related to changes in bone parameters. 76 community-living osteopenic women 70 years and older were randomly assigned to either a WB-EMS group () or a control group (CG: ). The WB-EMS group performed 3 sessions every 14 days for one year while the CG performed gymnastics containing identical exercises without EMS. Primary study endpoints were bone mineral density (BMD) at lumbar spine (LS) and total hip (thip) as assessed by DXA. After 54 weeks of intervention, borderline nonsignificant intergroup differences were determined for LS-BMD (WB-EMS: % versus CG %, ) but not for thip-BMD (WB-EMS: % versus CG: %, ). With respect to secondary endpoints, there was a gain in lean body mass (LBM) of 1.5% () and an increase in grip strength of 8.4% () in the WB-EMS group compared to CG. WB-EMS effects on bone are less pronounced than previously reported effects on muscle mass. However, for subjects unable or unwilling to perform intense exercise programs, WB-EMS may be an option for maintaining BMD at the LS.
Full-text available
Resistance exercise can result in localized damage to muscle tissue. This damage may be observed in sarcolemma, basal lamina, as well as, in the contractile elements and the cytoskeleton. Usually the damage is accompanied by release of enzymes such as creatine kinase (CK) and lactate dehydrogenase, myoglobin and other proteins into the blood. Serum CK has been proposed as one of the best indirect indicators of muscle damage due to its ease of identification and the relatively low cost of assays to quantify it. Thus, CK has been used as an indicator of the training intensity and a diagnostic marker of overtraining. However, some issues complicate CK's use in this manner. There is great interindividual variability in serum CK, which complicates the assignment of reliable reference values for athletes. Furthermore, factors such as training level, muscle groups involved, and gender can influence CK levels to a greater extent than differences in exercise volume completed. This review will detail the process by which resistance exercise induces a rise in circulating CK, illuminate the various factors that affect the CK response to resistance exercise, and discuss the relative usefulness of CK as a marker of training status, in light of these factors.
Transcutaneous electrical stimulation (ES) of human nerves and muscles has long been used as a non-pharmacological treatment for pain relief,1 and for rehabilitation after disuse. Whole body ES has recently emerged as an alternative form of physical exercise for improving fitness and health in healthy people. Despite limited scientific evidence on the safety and effectiveness of this form of exercise, several ES company sponsored fitness centres have …
The aim of the present study was to investigate the effects of a multiple set squat exercise training intervention with superimposed electromyostimulation (EMS) on strength and power, sprint and jump performance. Twenty athletes from different disciplines participated and were divided into two groups: strength training (S) or strength training with superimposed EMS (S+E). Both groups completed the same training program twice a week over a six week period consisting of four sets of the 10 repetition maximum of back squats. Additionally, the S+E group had EMS superimposed to the squat exercise with simultaneous stimulation of leg and trunk muscles. EMS intensity was adjusted to 70% of individual pain threshold to ensure dynamic movement. Strength and power of different muscle groups, sprint, and vertical jump performance were assessed one week before (pre), one week after (post) and three weeks (re) following the training period. Both groups showed improvements in leg press strength and power, countermovement and squat jump performance and pendulum sprint (p < 0.05), with no changes for linear sprint. Differences between groups were only evident at the leg curl machine with greater improvements for the S+E group (p < 0.05). Common squat exercise training and squat exercise with superimposed EMS improves maximum strength and power, as well as jumping abilities in athletes from different disciplines. The greater improvements in strength performance of leg curl muscles caused by superimposed EMS with improvements in strength of antagonistic hamstrings in the S+E group are suggesting the potential of EMS to unloaded (antagonistic) muscle groups.
: We report 2 cases of enormously elevated creatine kinase (CK) activity after training with electromyostimulation (EMS) by 2 young male professional soccer players. In one of them, a single training session with EMS caused exercise-induced rhabdomyolysis with a maximal CK activity of 240 000 U/L. These cases illustrate that unaccustomed EMS exercise may be harmful and can cause rhabdomyolysis even in highly trained athletes and even after 1 single session. Thus, EMS has to be conducted carefully especially by individuals who are known to frequently show notable increases in CK activity even after modest training stimuli. We suggest that EMS should not be applied as sole training stimulus and should not be conducted by strength training beginners. Furthermore, we recommend controlling plasma CK activity and urine color for beginners with EMS when they report strong muscle ache. Athletes with signs of rhabdomyolysis after EMS should be brought to hospital for monitoring of renal function and possible further treatment.