Article

Endocrine and cardiovascular rhythms differentially adapt to chronic phase-delay shifts in rats

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Disturbances in regular circadian oscillations can have negative effects on cardiovascular function, but epidemiological data are inconclusive and new data from animal experiments elucidating critical biological mechanisms are needed. To evaluate the consequences of chronic phase shifts of the light/dark (LD) cycle on hormonal and cardiovascular rhythms, two experiments were performed. In Experiment 1, male rats were exposed to either a regular 12:12 LD cycle (CONT) or rotating 8-h phase-delay shifts of LD every second day (SHIFT) for 10 weeks. During this period, blood pressure (BP) was monitored weekly, and daily rhythms of melatonin, corticosterone, leptin and testosterone were evaluated at the end of the experiment. In Experiment 2, female rats were exposed to the identical shifted LD schedule for 12 weeks, and daily rhythms of BP, heart rate (HR) and locomotor activity were recorded using telemetry. Preserved melatonin rhythms were found in the pineal gland, plasma, heart and kidney of SHIFT rats with damped amplitude in the plasma and heart, suggesting that the central oscillator can adapt to chronic phase-delay shifts. In contrast, daily rhythms of corticosterone, testosterone and leptin were eliminated in SHIFT rats. Exposure to phase shifts did not lead to increased body weight and elevated BP. However, a shifted LD schedule substantially decreased the amplitude and suppressed the circadian power of the daily rhythms of BP and HR, implying weakened circadian control of physiological and behavioural processes. The results demonstrate that endocrine and cardiovascular rhythms can differentially adapt to chronic phase-delay shifts, promoting internal desynchronization between central and peripheral oscillators, which in combination with other negative environmental stimuli may result in negative health effects.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... At each time point, sampling was completed within 1 h for all animals. These time points were chosen to encompass night-time melatonin peak, which occurs in the second half of the dark phase in rats (26). Plasma melatonin levels from this experiment have already been reported in our recent paper (14). ...
... Corticosterone, a dominant glucocorticoid in rats, is released from the adrenal cortex in response to the adrenocorticotropic hormone in a circadian manner (38). Corticosterone levels increase during stress and during the circadian-regulated peak at the beginning of the active phase (26). While deregulated LD cycles by exposure to phase shifts (26) or constant light eliminated corticosterone daily rhythms in rats (62), under low intensities of nocturnal light plasma corticosterone remains rhythmic, but may be attenuated or phase shifted, resulting in increased daytime levels (15). ...
... Corticosterone levels increase during stress and during the circadian-regulated peak at the beginning of the active phase (26). While deregulated LD cycles by exposure to phase shifts (26) or constant light eliminated corticosterone daily rhythms in rats (62), under low intensities of nocturnal light plasma corticosterone remains rhythmic, but may be attenuated or phase shifted, resulting in increased daytime levels (15). These effects are also supported by our results, which showed that 2 and 5 weeks of dLAN increased the daytime plasma corticosterone concentrations compared to the control regime. ...
Article
Full-text available
Dim light at night (dLAN) has become a pervasive part of the modern world, and growing evidence shows its association with increased health risks. Though this link is attributed to a disturbed circadian clock, the underlying mechanisms that can explain how circadian disruption from dLAN causes negative health effects remain unclear. Here, we exposed rats to a light–dark cycle (12:12 h) with low-intensity light at night (~2 lx) for 2 and 5 weeks and explored the steady-state pattern of circulating immune cells and renal immune-related markers, which are well controlled by the circadian clock. After 5 weeks, dLAN impaired the daily variation in several types of white blood cells, especially monocytes and T cells. Two-week dLAN caused a reduction in blood monocytes and altered gene expression of macrophage marker Cd68 and monocyte-attracting chemokine Ccl2 in the kidney. Interestingly, dLAN decreased renal 3-nitrotyrosine levels and resulted in up-regulation of the main endogenous antioxidant pathways, indicating a disturbance in the renal redox balance and an activation of compensatory mechanisms. These effects paralleled the altered renal expression of the molecular clock components and increased plasma corticosterone levels. Together, our results show that chronic exposure to dLAN weakened the circadian control of daily variation of circulating immune cells and disturbed renal immune and redox homeostasis. Consequences of this dLAN-disturbed immune balance on the ability of the immune system to cope with other challenges should by clarified in further studies.
... Plasma MEL and MEL in the pineal gland were measured as previously described [24]. MEL from the pineal gland was extracted with methanol and dried extracts were dissolved in 0.1 M Tricine buffer (pH 5.5). ...
... Plasma testosterone concentrations were measured by direct RIA using a (1,2,6,7-3H)-testosterone tracer (NET370250UC; PerkinElmer, specific activity 89.3 Ci/mmol) and a specific antibody, which was generated in rabbits against a testosterone-3-(carboxy-methyl) oxime bovine serum albumin conjugate, and validated in our laboratory [24]. The intra-assay variation coefficient was 6.5% and the detection limit was 1.5 pg of testosterone per tube. ...
Article
Aims: Our study addresses underlying mechanisms of disruption of the circadian timing system by low-intensity artificial light at night (ALAN), which is a growing global problem, associated with serious health consequences. Methods: Rats were exposed to low-intensity (~2 lx) ALAN for 2 weeks. Using in situ hybridization, we assessed 24-h profiles of clock and clock-controlled genes in the suprachiasmatic nuclei (SCN) and other hypothalamic regions, which receive input from the master clock. Moreover, we measured daily rhythms of hormones within the main neuroendocrine axes as well as the detailed daily pattern of feeding and drinking behavior in metabolic cages. Results: ALAN strongly suppressed the molecular clockwork in the SCN, as indicated by the suppressed rhythmicity in the clock (Per1, Per2 and Nr1d1) and clock output (arginine vasopressin) genes. ALAN disturbed rhythmic Per1 expression in the paraventricular and dorsomedial hypothalamic nuclei, which convey the circadian signals from the master clock to endocrine and behavioral rhythms. Disruption of hormonal output pathways was manifested by the suppressed and phase-advanced corticosterone rhythm and lost daily variations in plasma melatonin, testosterone, and vasopressin. Importantly, ALAN altered the daily profile in food and water intake and eliminated the clock-controlled surge of drinking two hours prior to the onset of the rest period, indicating disturbed circadian control of anticipatory thirst and fluid balance during sleep. Conclusion: Our findings highlight compromised time-keeping function of the central clock and multiple circadian outputs, through which ALAN disturbs the temporal organization of physiology and behavior.
... During regular light/dark conditions, 24-h oscillations are very prominent in physiological systems. Physiological changes [1] , responses to stress [2] , behavioural activities [3] and pathophysiological events are characterised by circadian changes [4] . Removal of the main circadian pacemaker, the suprachiasmatic nucleus [5] , or shifts in the regular light/dark environment [4] diminish circadian amplitude [6] , which can lead to loss of stress predictability [7] in the short term manner. ...
... Physiological changes [1] , responses to stress [2] , behavioural activities [3] and pathophysiological events are characterised by circadian changes [4] . Removal of the main circadian pacemaker, the suprachiasmatic nucleus [5] , or shifts in the regular light/dark environment [4] diminish circadian amplitude [6] , which can lead to loss of stress predictability [7] in the short term manner. Over the long term, disturbing the circadian oscillations can change system-level set points and may lead to pathological processes [8][9][10] including cancer development [11] . ...
Preprint
Full-text available
Physiological processes oscillate in time. Circadian oscillations, over approximately 24-h, are very important and among the most studied. To evaluate the presence and significance of 24-h oscillations, physiological time distributed data (TDD) are often set to a cosinor model using a wide range of irregularly updated native apps. If users are familiar with MATLAB, R or other programming languages, users can adjust the parameters of the cosinor model setting based on their needs. Nowadays, many software applications are hosted on remote servers running 24/7. Server-based software applications enable quick analysis of big data sets and run on a wide range of terminal devices using standard web browsers. We created a simple web-based cosinor application, Cosinor.Online. The application code is written in PHP. TDD is handled using a MySQL database and can be copied directly from an Excel file to the webform. Analysis results contain information about setting the 24-h oscillation and a unique ID identifier. The identifier allows users to reopen data and results repeatedly over one month or remove their data from the MySQL database. Our web-based application can be used for a quick and simple inspection of 24-h oscillations of various biological and physiological TDD.
... Several other experiments observing activity of Wistar rats, when exposed to light, corroborated this finding (Molcan, et al., 2019;Opperhuizen, et al., 2017;Zeman, et al., 2016). ...
Article
Highveld mole-rats (Cryptomys hottentotus pretoriae) are social rodents that inhabit networks of subterranean tunnels. In their natural environment, they are rarely exposed to light, and consequently their visual systems have regressed over evolutionary time. However in the laboratory they display nocturnal activity suggesting that they are sensitive to changes in ambient illumination. We examined the robustness of the highveld mole-rat circadian system by assessing its locomotor activity under decreasing light intensities. Mole-rats were subjected to seven consecutive light cycles commencing with a control cycle (overhead fluorescent lighting at 150 lux), followed by decreasing LED lighting (500, 300, 100, 10, and 1 lux) on a 12L:12D photoperiod and finally a constant darkness (DD) cycle. Mole-rats displayed nocturnal activity under the whole range of experimental lighting conditions, with a distinct spike in activity at the end of the dark phase in all cycles. The mole-rats were least active during the control cycle under fluorescent light, locomotor activity increased steadily with decreasing LED light intensities, and the highest activity was exhibited when the light was completely removed. In constant darkness, mole-rats displayed free-running rhythms with periods (tau) ranging from 23.77 – 24.38 h, but was overall very close to 24h at 24.07 h. Our findings confirm that the highveld mole-rat has a higher threshold for light compared to aboveground dwelling rodents, which is congruent with previous neurological findings, and has implications for behavioural rhythms.
... Moreover, prolonged activation of the HPA axis might be associated with high levels of plasma corticosterone in adult male C57BL/6J mice subjected to chronic phase advance shifts (Chen et al., 2021). The loss of corticosterone rhythmicity has also been reported in rats that underwent chronic phase delay and displayed low corticosterone concentration (Zeman et al., 2016). ...
... Exposure to chronic circadian disturbance during the fetal PERiod influences body weight gain, glucose metabolism, and sex hormone levels in a sex-specific fashion To achieve fPER-CCD, pregnant females (F0 generation) were maintained on a 12-h light:12-h dark cycle that was delayed by 8 h once every two days ( Figure 1A). 26,27 F0 females were housed under these conditions from gestation day 0 (G0) to the day of birth (postnatal day 0 [P0]). We and others have used repeated 8-h delays of the LD cycle to disrupt circadian clock gene expression in rodents. ...
Article
Full-text available
Disruption of circadian rhythms during fetal development may predispose mice to developing heart disease later in life. Here, we report that male, but not female, mice that had experienced chronic circadian disturbance (CCD) in utero were more susceptible to pathological cardiac remodeling compared with mice that had developed under normal intrauterine conditions. CCD-treated males showed ventricular chamber dilatation, enhanced myocardial fibrosis, decreased contractility, higher rates of induced tachyarrhythmia, and elevated expression of biomarkers for heart failure and myocardial remodeling. In utero CCD exposure also triggered sex-dependent changes in cardiac gene expression, including upregulation of the secretoglobin gene, Scgb1a1, in males. Importantly, cardiac overexpression of Scgb1a1 was sufficient to induce myocardial hypertrophy in otherwise naive male mice. Our findings reveal that in utero CCD exposure predisposes male mice to pathological remodeling of the heart later in life, likely as a consequence of SCGB1A1 upregulation.
... In addition to traditional pollutants, light pollution, an emerging pollutant that causes circadian disruption, can also affect testosterone concentrations [85][86][87] and oscillating rhythms [86][87][88][89]. A study constructed a circadian disruption rat model by photoperiod changes (2 days of constant light, 2 days of constant darkness, 3 days of 12 h light-dark cycle). ...
Article
Full-text available
Circadian clocks can be traced in nearly all life kingdoms, with the male reproductive system no exception. However, our understanding of the circadian clock in spermatogenesis seems to fall behind other scenarios. The present review aims to summarize the current knowledge about the role and especially the potential mechanisms of clock genes in spermatogenesis regulation. Accumulating studies have revealed rhythmic oscillation in semen parameters and some physiological events of spermatogenesis. Disturbing the clock gene expression by genetic mutations or environmental changes will also notably damage spermatogenesis. On the other hand, the mechanisms of spermatogenetic regulation by clock genes remain largely unclear. Some recent studies, although not revealing the entire mechanisms, indeed attempted to shed light on this issue. Emerging clues hinted that gonadal hormones, retinoic acid signaling, homologous recombination, and the chromatoid body might be involved in the regulation of spermatogenesis by clock genes. Then we highlight the challenges and the promising directions for future studies so as to stimulate attention to this critical field which has not gained adequate concern.
... This increase in serum corticosterone has previously been observed with more drastic shifts such as repeated 12-hr shifts (Sakellaris et al., 1975). Interestingly, chronic phase delay also abolishes the rhythmicity in corticosterone concentration, but induces a lower corticosterone concentration (Zeman et al., 2016). We did not observe hypertrophy in adrenal glands, possibly because a change in tissue volume takes longer to occur (Karin et al., 2020). ...
Article
Full-text available
Altered working and sleeping schedules during the COVID-19 pandemic likely impact our circadian systems. At the molecular level, clock genes form feedback inhibition loops that control 24-hr oscillations throughout the body. Importantly, core clock genes also regulate microglia, the brain resident immune cell, suggesting circadian regulation of neuroimmune function. To assess whether circadian disruption induces neuroimmune and associated behavioral changes, we mimicked chronic jetlag with a chronic phase advance (CPA) model. 32 adult male C57BL/6J mice underwent 6-hr light phase advance shifts every 3 light/dark cycles (CPA) 14 times or were maintained in standard light/dark cycles (control). CPA mice showed higher behavioral despair but not anhedonia in forced swim and sucrose preferences tests, respectively. Changes in behavior were accompanied by altered hippocampal circadian genes in CPA mice. Further, CPA suppressed expression of brain-derived neurotrophic factor (BDNF) and pro-inflammatory cytokine interleukin-1 beta in the hippocampus. Plasma corticosterone concentrations were elevated by CPA, suggesting that CPA may suppress neuroimmune pathways via glucocorticoids. These results demonstrate that chronic circadian disruption alters mood and neuroimmune function, which may have implications for shift working populations such as frontline health workers.
... Plasma testosterone concentrations were measured by direct radioimmunoassay using [1,2,6,7-3 H]testosterone tracer (specific activity 95.5 Ci/mmol; PerkinElmer, USA) and a specific antibody generated in rabbits against a testosterone-3-(carboxy-methyl)oxime bovine serum albumin conjugate, following a previously published protocol (Zeman et al. 2016). ...
Article
Phthalates are chemicals interfering with the function of testosterone and are suspected to play a role in the emergence of neurodevelopmental diseases. This could be due to interference with brain development for which optimal testosterone levels are essential. We investigated the effect of prenatal and early postnatal exposure to a phthalate mixture on the anogenital distance (AGD), plasma testosterone levels and social behavior in rats. Pregnant rats were exposed to a mixture of diethylhexyl, diisononyl and dibutyl phthalate, each at a dose of 4.5 mg/kg/day, from gestational day 15 to postnatal day 4. A social interaction test was performed to assess sociability in the three ontogenetic stages (weaning, puberty, adulthood). AGD was measured in adulthood to assess changes in prenatal testosterone levels. Plasma testosterone levels were measured in adults by a radioimmunoassay. The total frequency and time of socio-cohesive interactions were decreased in phthalate exposed females in weaning, puberty and adulthood. Phthalate exposed males showed a decrease in the frequency of social interactions in weaning only. Shorter anogenital distance was observed in adult males exposed to phthalates. Decreased testosterone levels were observed in the exposed group in both sexes. Our results suggest that early developmental phthalate exposure may play an important role in the hormonal and behavioral changes associated with several neurodevelopmental diseases.
... The plasma was separated by centrifugation (2500 g, 10 min, 4°C) and stored until the melatonin analysis. Melatonin concentrations were quantified with a radioimmunoassay [31] using a melatonin antibody raised in a sheep (Stockgrand Ltd., Guildford, UK) and an [Omethyl-3 H]-labelled melatonin tracer (PerkinElmer, USA, specific activity 3.07 TBq/mmol). All samples were measured in two assays which had inter-assay and intra-assay variation coefficients lower than 10%. ...
Article
Aims: Cardiovascular parameters exhibit significant 24-h variability, which is coordinated by the suprachiasmatic nucleus (SCN), and light/dark cycles control SCN activity. We aimed to study the effects of light at night (ALAN; 1-2 lx) on cardiovascular system control in normotensive rats. Main methods: Heart rate (HR) and blood pressure (BP) were measured by telemetry during five weeks of ALAN exposure. From beat-to-beat telemetry data, we evaluated spontaneous baroreflex sensitivity (sBRS). After 2 (A2) and 5 (A5) weeks of ALAN, plasma melatonin concentrations and the response of BP and HR to norepinephrine administration were measured. The expression of endothelial nitric oxide synthase (eNOS) and endothelin-1 was determined in the aorta. Spontaneous exploratory behaviour was evaluated in an open-field test. Key findings: ALAN significantly suppressed the 24-h variability in the HR, BP, and sBRS after A2, although the parameters were partially restored after A5. The daily variability in the BP response to norepinephrine was reduced after A2 and restored after A5. ALAN increased the BP response to norepinephrine compared to the control after A5. Increased eNOS expression was found in arteries after A2 but not A5. Endothelin-1 expression was not affected by ALAN. Plasma melatonin levels were suppressed after A2 and A5. Spontaneous exploratory behaviour was reduced. Significance: ALAN decreased plasma melatonin and the 24-h variability in the haemodynamic parameters and increased the BP response to norepinephrine. A low intensity ALAN can suppress circadian control of the cardiovascular system with negative consequences on the anticipation of a load.
... Similar adaptations were observed in major cardiovas- cular outputs such as HR and BP (Molcan et al., , 2014(Molcan et al., , 2013). In our previous study, the shifted LD schedule substantially decreased the amplitude and suppressed the circadian power of daily rhythms in BP and HR without elevation of BP ( Zeman et al., 2016). Moreover, gra- dually decreased locomotor activity, reduced 24-h activity rhythm, disrupted fractal activity patterns and disrupted circadian and beha- vioural cycles were found in rats on a simulated shift work protocol ( Hsieh et al., 2014). ...
Article
Physiological variables such as heart rate (HR) and blood pressure (BP) exhibit long-term circadian rhythms, which can be disturbed by shift work. On the other hand, short-term oscillations in HR and BP have a high prognostic value. Therefore, we aimed to determine if the short-term variability, complexity and entropy of HR and BP would be affected by a regular light/dark (LD) cycle and phase delay shifts of the LD cycle, leading to chronodisruption. Telemetry-monitored rats were exposed first to the regular LD cycle and then to shifts in LD for 8 weeks. On the basis of long-term HR and BP recording and evaluation, we found circadian rhythms in HR and BP variability, complexity and entropy under regular LD cycles. Short-term exposure to shifts disturbed circadian rhythms of HR and BP variability, complexity and entropy, indicating chronodisruption. The power of circadian rhythms was suppressed after 8 weeks of phase delay shifts. Long-term exposure to shifts increased variability (p = 0.007), complexity (p < 0.001) and dark-time entropy (p = 0.006) of HR but not BP. This is the first study demonstrating long-term recording and estimation of HR and BP variability, complexity and entropy in conscious rats exposed to irregular lighting conditions. After long-term phase delay shifts, short-term variability of HR was less predictable than in controls. This study suggests that changes in short-term HR and BP oscillations induced by long-term shift work can negatively affect cardiovascular health.
Article
Full-text available
Artificial light at night (ALAN) is considered an environmental risk factor that can interfere with the circadian control of the endocrine system and metabolism. We studied the impact of ALAN during pregnancy on the hormonal and biochemical parameters in rat pups at postnatal (P) days P3, P10, and P20. Control dams (CTRL) were kept in a standard light-dark regime, and ALAN dams were exposed to dim ALAN (<2 lx) during the whole pregnancy. A plasma melatonin rhythm was found in all CTRL groups, whereas in ALAN pups, melatonin was not rhythmic at P3, and its amplitude was lowered at P10; no differences were found between groups at P20. Plasma corticosterone was rhythmic at P20 in both groups, with decreased mesor in ALAN pups. Plasma thyroid hormones exhibited an inconsistent developmental pattern, and vasopressin levels were suppressed at the beginning of the dark phase at P20 in ALAN compared to CTRL. Glucose and cholesterol showed significant daily rhythms in CTRL but not in ALAN offspring at P3. Exposure to ALAN during pregnancy disturbed the development of daily rhythms in measured hormones and metabolites, suggesting that ALAN during pregnancy can act as an endocrine disruptor that can interfere with the normal development of the progeny.
Article
The hypotensive effects of melatonin are based on a negative correlation between melatonin levels and blood pressure in humans. However, there is a positive correlation in nocturnal animals that are often used as experimental models in cardiovascular research, and the hypotensive effects and mechanism of melatonin action are often investigated in rats and mice. In rats, the hypotensive effects of melatonin have been studied in normotensive and spontaneously or experimentally induced hypertensive strains. In experimental animals, blood pressure is often measured indirectly during the light (passive) phase of the day by tail-cuff plethysmography, which has limitations regarding data quality and animal well-being compared to telemetry. Melatonin is administered to rats in drinking water, subcutaneously, intraperitoneally, or microinjected into specific brain areas at different times. Experimental data show that the hypotensive effects of melatonin depend on the experimental animal model, blood pressure measurement technique, and the route, time and duration of melatonin administration. The hypotensive effects of melatonin may be mediated through specific membrane G-coupled receptors located in the heart and arteries. Due to melatonin’s lipophilic nature, its potential hypotensive effects can interfere with various regulatory mechanisms, such as nitric oxide and reactive oxygen species production and activation of the autonomic nervous and circadian systems. Based on the research conducted on rats, the cardiovascular effects of melatonin are modulatory, delayed, and indirect. Does melatonin have blood pressure-lowering effects, and are nocturnal animals suitable for testing the hypotensive effects of melatonin? The hypotensive effects of melatonin depend on the experimental animal model, blood pressure measurement method, route, time and duration of melatonin administration.
Article
Cardiovascular (CV) health is often expressed by changes in heart rate and blood pressure, the physiological record of which may be affected by moving, anaesthesia, handling, time of day and many other factors in rodents. Telemetry measurement minimises these modulations and enables more accurate physiological recording of heart rate and blood pressure than non-invasive methods. Measurement of arterial blood pressure by telemetry requires implanting a catheter tip into the artery. Telemetry enables us to sample physiological parameters with a high frequency continuously for several months. By measuring the pressure in the artery using telemetry, we can visualize pressure changes over a heart cycle as the pressure wave. From the pressure wave, we can subtract systolic, diastolic, mean and pulse pressure. From the beat-to-beat interval (pressure wave) and the RR' interval (electrocardiogram), we can derive the heart rate. From beat-to-beat variability, we can evaluate the autonomic nervous system's activity and spontaneous baroreflex sensitivity and their impact on CV activity. On a long-term scale, circadian variability of CV parameters is evident. Circadian variability is the result of the circadian system's activity, which synchronises and organises many activities in the body, such as autonomic and reflex modulation of the CV system and its response to load over the day. In the presented review, we aimed to discuss telemetry devices, their types, implantation, set-up, limitations, short-term and long-term variability of heart rate and blood pressure in CV research. Data collection by telemetry should be, despite some limitations, standard in modern experimental CV research.
Article
Full-text available
The fundamental change in nocturnal landscapes due to the increasing use of artificial light at night (ALAN) is recognized as being detrimental to the environment and raises important regulatory questions as to whether and how it should be regulated based on the manifold risks to the environment. Here, we present the results of an analysis of the current legal obligations on ALAN in context with a systematic review of adverse effects. The legal analysis includes the relevant aspects of European and German environmental law, specifically nature conservation and immission control. The review represents the results of 303 studies indicating significant disturbances of organisms and landscapes. We discuss the conditions for prohibitions by environmental laws and whether protection gaps persist and, hence, whether specific legislation for light pollution is necessary. While protection is predominantly provided for species with special protection status that reveal avoidance behavior of artificially lit landscapes and associated habitat loss, adverse effects on species and landscapes without special protection status are often unaddressed by existing regulations. Legislative shortcomings are caused by difficulties in proving adverse effect on the population level, detecting lighting malpractice, and applying the law to ALAN-related situations. Measures to reduce ALAN-induced environmental impacts are highlighted. We discuss whether an obligation to implement such measures is favorable for environmental protection and how regulations can be implemented.
Article
Full-text available
Importance: Prospective studies linking shift work to coronary heart disease (CHD) have been inconsistent and limited by short follow-up. Objective: To determine whether rotating night shift work is associated with CHD risk. Design, setting, and participants: Prospective cohort study of 189,158 initially healthy women followed up over 24 years in the Nurses' Health Studies (NHS [1988-2012]: N = 73,623 and NHS2 [1989-2013]: N = 115,535). Exposures: Lifetime history of rotating night shift work (≥3 night shifts per month in addition to day and evening shifts) at baseline (updated every 2 to 4 years in the NHS2). Main outcomes and measures: Incident CHD; ie, nonfatal myocardial infarction, CHD death, angiogram-confirmed angina pectoris, coronary artery bypass graft surgery, stents, and angioplasty. Results: During follow-up, 7303 incident CHD cases occurred in the NHS (mean age at baseline, 54.5 years) and 3519 in the NHS2 (mean age, 34.8 years). In multivariable-adjusted Cox proportional hazards models, increasing years of baseline rotating night shift work was associated with significantly higher CHD risk in both cohorts. In the NHS, the association between duration of shift work and CHD was stronger in the first half of follow-up than in the second half (P=.02 for interaction), suggesting waning risk after cessation of shift work. Longer time since quitting shift work was associated with decreased CHD risk among ever shift workers in the NHS2 (P<.001 for trend). [table: see text] Conclusions and relevance: Among women who worked as registered nurses, longer duration of rotating night shift work was associated with a statistically significant but small absolute increase in CHD risk. Further research is needed to explore whether the association is related to specific work hours and individual characteristics.
Article
Full-text available
The possible involvement of endogenous melatonin in the effects of pleuran (β-glucan isolated from Pleurotus ostreatus), and of black elder (Sambucus nigra) was studied in a model of acute colitis in rats. Pleuran as 0.44% hydrogel drink and black elder as a 4% extract added to food were administered for over 4 weeks. Colitis was then induced by intraluminal instillation of 4% acetic acid and after 48 hours the extent of colonie damage was examined. Melatonin concentrations were measured in the pineal gland, plasma, duodenum and colon. Both pleuran in drinking fluid and black elder extract food supplementation significantly decreased the disposition to colitis. The macroscopic colonie damage score was reduced by 67.4% and 46.5% by pleuran and black elder, respectively. A significant increase of melatonin in the pineal gland was observed in rats given pleuran hydrogel. which paralleled the maximum protective effect of pleuran against colonie inflammation. There were no significant differences in the concentration of melatonin in plasma or in the intestinal wall between control and experimental groups and between vehicle and acetic acid treated rats. Results are discussed in the context of a possible involvement of endogenous melatonin in the protective effect of pleuran. but not of black elder, against colonic inflammation.
Article
Full-text available
Effects of phase delay shifts (PDS) of light in combination with moderately increased salt intake (SL) (2%) or time restriction of food (FR) during the light-time (passive phase) on heart rate (HR), blood pressure (BP) and locomotor activity (LA) in radiotelemetry-measured rats were evaluated. PDS decreased amplitude and spectral power of circadian oscillations of HR, BP and LA. Moderately increased SL did not interfere with the circadian rhythmicity of HR, BP or LA. A prominent decrease in amplitude and spectral power of circadian oscillations was observed if food was available during the lighttime. Combination of PDS with FR split cardiovascular and behavioural parameters. In conclusion, food availability during the light-time in combination with PDS decreased amplitude and spectral power of circadian oscillations of BP, HR and LA more than PDS only. Different response of cardiovascular and behavioural parameters to photic and non-photic stimuli can have consequences for shift workers.
Article
Full-text available
A meta-analysis was conducted to quantitatively evaluate the correlation between night shift work and the risk of colorectal cancer. We searched for publications up to March 2015 using PubMed, Web of Science, Cochrane Library, EMBASE and the Chinese National Knowledge Infrastructure databases, and the references of the retrieved articles and relevant reviews were also checked. OR and 95% CI were used to assess the degree of the correlation between night shift work and risk of colorectal cancer via fixed- or random-effect models. A dose-response meta-analysis was performed as well. The pooled OR estimates of the included studies illustrated that night shift work was correlated with an increased risk of colorectal cancer (OR = 1.318, 95% CI 1.121-1.551). No evidence of publication bias was detected. In the dose-response analysis, the rate of colorectal cancer increased by 11% for every 5 years increased in night shift work (OR = 1.11, 95% CI 1.03-1.20). In conclusion, this meta-analysis indicated that night shift work was associated with an increased risk of colorectal cancer. Further research should be conducted to confirm our findings and clarify the potential biological mechanisms.
Article
Full-text available
Disturbed circadian activity of the sympathetic system may be involved in negative consequences of chronodisruption on the cardiovascular system. We studied daily changes in pressure response to adrenergic stimulation in rats exposed to repeated phase advance shifts (PAS) of light/dark (LD) regimen. Blood pressure (BP), heart rate (HR) and locomotor activity was measured by radiotelemetry in normotensive Wistar rats exposed to repeated PAS (three 8-h shifts per week) lasting for 12 weeks. Norepinephrine was administered subcutaneously in the middle of L and D during week 12 of PAS exposure. In the control LD cycle, cardiovascular parameters exhibited significant daily rhythms with expected higher values during D than L phase. Rats exposed to PAS showed disturbed rhythms without a BP and HR increase. Administration of norepinephrine to control rats revealed daily variability in the cardiovascular response with higher stimulation of BP during L than D. This daily pattern of BP response to norepinephrine was diminished in the PAS group. The damped daily variability in pressure response to norepinephrine and augmented response during the light phase of the day suggest that the increased and desynchronised activity of the sympathetic system may worsen responses of the cardiovascular system to load in individuals exposed to irregular LD conditions.
Article
Full-text available
Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation.
Article
Full-text available
Cardiovascular parameters, such as blood pressure and heart rate, exhibit both circadian and ultradian rhythms which are important for the adequate functioning of the system. For a better understanding of possible negative effects of chronodisruption on the cardiovascular system we studied circadian and ultradian rhythms of blood pressure and heart rate in rats exposed to repeated 8 h phase advance shifts of photoperiod. The experiment lasted 12 weeks, with three shifts per week. Spectral power as a function of frequency for both circadian and harmonic ultradian rhythms was expressed as the circadian-ultradian power ratio. The circadian rhythms of blood pressure, heart rate and locomotor activity were recorded during the control light:dark (LD) regimen with higher values during the D in comparison with the L. Phase advance shifts resulted in a diminished circadian-ultradian power ratio for blood pressure, heart rate and locomotor activity indicating suppressed circadian control of these traits greater in heart rate than blood pressure. In conclusion, rats kept under irregular LD conditions have suppressed circadian control of heart rate, blood pressure and locomotor activity and rely more on an acute response to the LD regime. Their ability to anticipate regular loads can be weakened and in this way chronodisruption can contribute to the pathogenesis of cardiovascular diseases.
Article
Full-text available
Background: Night shift work is associated with cancer among men, but the biologic mechanism is unclear. We investigated whether male night shift workers showed changes in levels of melatonin and cortisol, potential biomarkers of cancer risk. Methods: Urine was collected from 185 night shift and 158 day shift-working male healthcare providers, aged 22 to 55 years, throughout work and sleep periods, and assayed for 6-sulfatoxymelatonin and cortisol. Morning serum was collected within 90 minutes of completing the night and assayed for cortisol. Results: Night shift workers had significantly lower 6-sulfatoxymelatonin levels during daytime sleep, nighttime work, and nighttime sleep on off-nights (57%, 62%, and 40% lower, respectively), relative to the day shift workers during nighttime sleep (P < 0.0001); urinary cortisol in night shift workers was 16% higher during daytime sleep and 13% lower during nighttime sleep on off-nights (P < 0.05). Morning serum cortisol post-work and post-sleep in night shift workers were 24% and 43% lower, respectively, than post-sleep levels among day shift workers (P < 0.0001). Within-subject comparisons among the night shift workers revealed significantly lower melatonin levels and significantly higher urinary cortisol levels during daytime sleep and nighttime work, relative to nighttime sleep (P < 0.01); morning serum cortisol levels post-work were lower than those post-sleep. Conclusions: Night shift workers have substantially lower 6-sulfatoxymelatonin during night work and daytime sleep, and levels remain low when night shift workers sleep at night. Chronic reduction in melatonin among night shift workers may be an important carcinogenic mechanism. Cortisol secretion patterns may be impacted by night shift work, which could affect cancer risk. Impact: Shift work could be an important risk factor for many types of cancer.
Article
Full-text available
To synthesise the association of shift work with major vascular events as reported in the literature. Systematic searches of major bibliographic databases, contact with experts in the field, and review of reference lists of primary articles, review papers, and guidelines. Observational studies that reported risk ratios for vascular morbidity, vascular mortality, or all cause mortality in relation to shift work were included; control groups could be non-shift ("day") workers or the general population. Study quality was assessed with the Downs and Black scale for observational studies. The three primary outcomes were myocardial infarction, ischaemic stroke, and any coronary event. Heterogeneity was measured with the I(2) statistic and computed random effects models. 34 studies in 2,011,935 people were identified. Shift work was associated with myocardial infarction (risk ratio 1.23, 95% confidence interval 1.15 to 1.31; I(2)=0) and ischaemic stroke (1.05, 1.01 to 1.09; I(2)=0). Coronary events were also increased (risk ratio 1.24, 1.10 to 1.39), albeit with significant heterogeneity across studies (I(2)=85%). Pooled risk ratios were significant for both unadjusted analyses and analyses adjusted for risk factors. All shift work schedules with the exception of evening shifts were associated with a statistically higher risk of coronary events. Shift work was not associated with increased rates of mortality (whether vascular cause specific or overall). Presence or absence of adjustment for smoking and socioeconomic status was not a source of heterogeneity in the primary studies. 6598 myocardial infarctions, 17,359 coronary events, and 1854 ischaemic strokes occurred. On the basis of the Canadian prevalence of shift work of 32.8%, the population attributable risks related to shift work were 7.0% for myocardial infarction, 7.3% for all coronary events, and 1.6% for ischaemic stroke. Shift work is associated with vascular events, which may have implications for public policy and occupational medicine.
Article
Full-text available
We studied locomotor activity rhythms of C57/Bl6 mice under a chronic jet lag (CJL) protocol (ChrA(6/2) ), which consisted of 6-hour phase advances of the light-dark schedule (LD) every 2 days. Through periodogram analysis, we found 2 components of the activity rhythm: a short-period component (21.01 ± 0.04 h) that was entrained by the LD schedule and a long-period component (24.68 ± 0.26 h). We developed a mathematical model comprising 2 coupled circadian oscillators that was tested experimentally with different CJL schedules. Our simulations suggested that under CJL, the system behaves as if it were under a zeitgeber with a period determined by (24 - [phase shift size/days between shifts]). Desynchronization within the system arises according to whether this effective zeitgeber is inside or outside the range of entrainment of the oscillators. In this sense, ChrA(6/2) is interpreted as a (24 - 6/2 = 21 h) zeitgeber, and simulations predicted the behavior of mice under other CJL schedules with an effective 21-hour zeitgeber. Animals studied under an asymmetric T = 21 h zeitgeber (carried out by a 3-hour shortening of every dark phase) showed 2 activity components as observed under ChrA(6/2): an entrained short-period (21.01 ± 0.03 h) and a long-period component (23.93 ± 0.31 h). Internal desynchronization was lost when mice were subjected to 9-hour advances every 3 days, a possibility also contemplated by the simulations. Simulations also predicted that desynchronization should be less prevalent under delaying than under advancing CJL. Indeed, most mice subjected to 6-hour delay shifts every 2 days (an effective 27-hour zeitgeber) displayed a single entrained activity component (26.92 ± 0.11 h). Our results demonstrate that the disruption provoked by CJL schedules is not dependent on the phase-shift magnitude or the frequency of the shifts separately but on the combination of both, through its ratio and additionally on their absolute values. In this study, we present a novel model of forced desynchronization in mice under a specific CJL schedule; in addition, our model provides theoretical tools for the evaluation of circadian disruption under CJL conditions that are currently used in circadian research.
Article
Full-text available
The neuroendocrine and metabolic effects of leptin have been extensively researched since the discovery, and the later identification, of the leptin gene mutated within the ob/ob mouse. Leptin is required for optimal health in a number of physiological systems (e.g. fertility, bone density, body weight regulation). Despite the extensive leptin literature and many observations of leptin's cyclical pattern over the 24-hour day, few studies have specifically examined how the circadian rhythm of leptin may be essential to leptin signaling and health. Here we present data indicating that a rhythmic leptin profile (e.g. 1 peak every 24 hours) leads to excessive weight gain during desynchronized feeding whereas non-rhythmic leptin provided in a continuous manner does not lead to excessive body weight gain under similar feeding conditions. This study suggests that feeding time can interact with leptin's endogenous rhythm to influence metabolic signals, specifically leading to excessive body weight gains during 'wrongly' timed feeding.
Article
Full-text available
Circadian (daily) rhythms are present in almost all plants and animals. In mammals, a brain clock located in the hypothalamic suprachiasmatic nucleus maintains synchrony between environmental light/dark cycles and physiology and behavior. Over the past 100 y, especially with the advent of electric lighting, modern society has resulted in a round-the-clock lifestyle, in which natural connections between rest/activity cycles and environmental light/dark cycles have been degraded or even broken. Instances in which rapid changes to sleep patterns are necessary, such as transmeridian air travel, demonstrate negative effects of acute circadian disruption on physiology and behavior. However, the ramifications of chronic disruption of the circadian clock for mental and physical health are not yet fully understood. By housing mice in 20-h light/dark cycles, incongruous with their endogenous ∼24-h circadian period, we were able to model the effects of chronic circadian disruption noninvasively. Housing in these conditions results in accelerated weight gain and obesity, as well as changes in metabolic hormones. In the brain, circadian-disrupted mice exhibit a loss of dendritic length and decreased complexity of neurons in the prelimbic prefrontal cortex, a brain region important in executive function and emotional control. Disrupted animals show decreases in cognitive flexibility and changes in emotionality consistent with the changes seen in neural architecture. How our findings translate to humans living and working in chronic circadian disruption is unknown, but we believe that this model can provide a foundation to understand how environmental disruption of circadian rhythms impacts the brain, behavior, and physiology.
Article
Full-text available
Circadian clocks are endogenous oscillators driving daily rhythms in physiology and behavior. Synchronization of these timers to environmental light-dark cycles ('entrainment') is crucial for an organism's fitness. Little is known about which oscillator qualities determine entrainment, i.e., entrainment range, phase and amplitude. In a systematic theoretical and experimental study, we uncovered these qualities for circadian oscillators in the suprachiasmatic nucleus (SCN-the master clock in mammals) and the lung (a peripheral clock): (i) the ratio between stimulus (zeitgeber) strength and oscillator amplitude and (ii) the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity. These principles explain our experimental findings that lung clocks entrain to extreme zeitgeber cycles, whereas SCN clocks do not. We confirmed our theoretical predictions by showing that pharmacological inhibition of coupling in the SCN leads to larger ranges of entrainment. These differences between master and the peripheral clocks suggest that coupling-induced rigidity in the SCN filters environmental noise to create a robust circadian system. Molecular Systems Biology 6: 438; published online 30 November 2010; doi:10.1038/msb.2010.92
Article
Full-text available
Under synchronized conditions daily rhythms run in precise phase relationships. Long lasting shift-work disturbs circadian rhythms and causes metabolism dysfunction. As a result of frequent shifts of the light (L):dark (D) cycle the circadian system has to adjust to a new regimen repeatedly, and organism can never achieve complete adjustment of all circadian rhythms. Nuclear receptor PPARα is supposed to be a functional interface between circadian clock and metabolism, and its interconnection with rev-erbα and pdk4 was proven. The aim of this study was to elucidate responsiveness of the circadian system to the LD cycle mimicking the rotating shift-work with 8-h phase delay every second day. Expression of key clock genes and clock controlled metabolic genes rev-erbα, pparα, and pdk4 was analyzed in the liver and heart of rats by real time PCR. Control Wistar rats were exposed to the regular LD cycle 12:12. The second group was exposed to the LD regimen mimicking shift-work with 8-h phase delays during period of 10 weeks. Sampling was performed in 4-h intervals during 24-h cycle. Clock gene expression in the heart and liver of shifted rats was rhythmic and phase delayed by 8-9 h compared to control. Expression of metabolic genes was influenced more in the liver than in the heart. Results indicate that frequent shifts of LD cycle may interfere with control of lipid metabolism.
Article
Full-text available
This article updates the ethical standards and methods for the conduct of high-quality animal and human biological rhythm research, which should be especially useful for new investigators of the rhythms of life. The editors of Chronobiology International adhere to and endorse the Code of Conduct and Best Practice Guidelines of the Committee On Publication Ethics (COPE), which encourages communication of such updates at regular intervals in the journal. The journal accepts papers representing original work, no part of which was previously submitted for publication elsewhere, except as brief abstracts, as well as in-depth reviews. The majority of research papers published in Chronobiology International entails animal and human investigations. The editors and readers of the journal expect authors of submitted manuscripts to have made an important contribution to the research of biological rhythms and related phenomena using ethical methods/procedures and unbiased, accurate, and honest reporting of findings. Authors of scientific papers are required to declare all potential conflicts of interest. The journal and its editors endorse compliance of investigators to the Guide for the Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research of the National Research Council, relating to the conduct of ethical research on laboratory and other animals, and the principles of the Declaration of Helsinki of the World Medical Association, relating to the conduct of ethical research on human beings. The peer review of manuscripts by Chronobiology International thus includes judgment as to whether or not the protocols and methods conform to ethical standards. Authors are expected to show mastery of the basic methods and procedures of biological rhythm research and proper statistical assessment of data, including the appropriate application of time series data analyses, as briefly reviewed in this article. The journal editors strive to consistently achieve high standards for the research of original and review papers reported in Chronobiology International, and current examples of expectations are presented herein.
Article
Full-text available
Shift work or night work is associated with hypertension, metabolic syndrome, cancer, and other diseases. The cause for these pathologies is proposed to be the dissociation between the temporal signals from the biological clock and the sleep/activity schedule of the night worker. We investigated the mechanisms promoting metabolic desynchrony in a model for night work in rats, based on daily 8-h activity schedules during the resting phase. We demonstrate that the major alterations leading to internal desynchrony induced by this working protocol, flattened glucose and locomotor rhythms and the development of abdominal obesity, were caused by food intake during the rest phase. Shifting food intake to the normal activity phase prevented body weight increase and reverted metabolic and rhythmic disturbances of the shift work animals to control ranges. These observations demonstrate that feeding habits may prevent or induce internal desynchrony and obesity.
Article
Full-text available
Background: Melatonin shows potential oncostatic action, and light exposure during night suppresses melatonin production. There is little information, however, about the direct effect of night work on the risk of cancer. We investigated the effect of night work in breast cancer. Methods: We examined the relationship between breast cancer and working on rotating night shifts during 10 years of follow-up in 78 562 women from the Nurses' Health Study. Information was ascertained in 1988 about the total number of years during which the nurses had worked rotating night shifts with at least three nights per month. From June 1988 through May 1998, we documented 2441 incident breast cancer cases. Logistic regression models were used to calculate relative risks (RRs) and 95% confidence intervals (CIs), adjusted for confounding variables and breast cancer risk factors. All statistical tests were two-sided. Results: We observed a moderate increase in breast cancer risk among the women who worked 1-14 years or 15-29 years on rotating night shifts (multivariate adjusted RR = 1.08 [95% CI = 0.99 to 1.18] and RR = 1.08 [95% CI = 0.90 to 1.30], respectively). The risk was further increased among women who worked 30 or more years on the night shift (RR = 1.36; 95% CI = 1.04 to 1.78). The test for trend was statistically significant (P =.02). Conclusions: Women who work on rotating night shifts with at least three nights per month, in addition to days and evenings in that month, appear to have a moderately increased risk of breast cancer after extended periods of working rotating night shifts.
Article
Full-text available
G-protein coupled receptors for the pineal hormone melatonin have been partially cloned from rats. However, insufficient information about their cDNA sequences has hindered studies of their distribution and physiological responses to melatonin using rats as an animal model. We have cloned cDNAs of two rat membrane melatonin receptor subtypes, melatonin receptor 1a (MT1) and melatonin receptor 1b (MT2), using a rapid amplification of cDNA end (RACE) method. The rat MT1 and MT2 cDNAs encode proteins of 353 and 364 amino acids, respectively, and show 78–93% identities with the human and mouse counterparts. Stable expression of either rat MT1 or MT2 in NIH3T3 cells resulted in high affinity 2-[125I]-iodomelatonin (125I-Mel) binding (K d = 73.2 ± 9.0 and 73.7 ± 2.9 pM, respectively), and exhibited a similar rank order of inhibition of specific 125I-Mel binding by five ligands (2-iodomelatonin > melatonin > 6-hydroxymelatonin > luzindole > N-acetyl-5-hydroxytryptamine). RT-PCR analysis showed that MT1 is highly expressed in the hypothalamus, lung, kidney, adrenal gland, stomach, and ovary, while MT2 is highly expressed in the hippocampus, kidney, and ovary. We also performed multi-cell RT-PCR to examine the expression of mRNAs encoding MT1 and MT2 in adult GnRH neurons. MT1 was weakly expressed in male GnRH neurons, and was less expressed in the female neurons. MT2 expression was undetectable in GnRH neurons from either sex. This study delineates the gene structures, fundamental properties, and distribution of both rat melatonin receptor subtypes, and may offer opportunities to assess the physiological significance of melatonin in rats.
Article
Full-text available
Melatonin plays a role in blood pressure (BP) control. The aim of this study was to determine whether melatonin concentrations and melatonin receptor levels are altered in L-NAME-treated, NO-deficient hypertensive rats. Two groups of male adult Wistar rats were investigated: rats (n=36) treated with NO-synthase inhibitor L-NAME (40 mg kg(-1)) and age-matched controls (n=36). BP was measured weekly by tail-cuff plethysmography. After 4 weeks, L-NAME administration increased BP (178+/-1 vs. control 118+/-1 mm Hg). At the end of treatment, rats were killed in regular 4 h intervals over a 24-h period. Melatonin concentrations in the plasma, pineal gland, heart and kidney and melatonin receptor (MT(1)) density in the aorta were determined. A significant daily rhythm of melatonin concentrations was found in the blood, pineal gland, kidney and heart of both control and hypertensive rats. Peak nighttime pineal melatonin concentrations were higher in L-NAME-treated rats than in controls (3.38+/-0.48 vs. 1.75+/-0.33 ng per pineal gland). No differences between both groups were found in melatonin concentrations in blood, kidney and heart or in the MT(1) receptor density in the aorta. Our results suggest that L-NAME treatment enhances melatonin production in the pineal gland, potentially by decreasing an inhibitory effect of NO on melatonin production in the pineal gland. However, the enhanced pineal melatonin formation was insufficient to increase melatonin concentrations in circulation, heart and kidney of L-NAME-treated rats, indicating an increased use of melatonin in hypertensive animals.
Article
Full-text available
There is considerable epidemiological evidence that shift work is associated with increased risk for obesity, diabetes, and cardiovascular disease, perhaps the result of physiologic maladaptation to chronically sleeping and eating at abnormal circadian times. To begin to understand underlying mechanisms, we determined the effects of such misalignment between behavioral cycles (fasting/feeding and sleep/wake cycles) and endogenous circadian cycles on metabolic, autonomic, and endocrine predictors of obesity, diabetes, and cardiovascular risk. Ten adults (5 female) underwent a 10-day laboratory protocol, wherein subjects ate and slept at all phases of the circadian cycle-achieved by scheduling a recurring 28-h "day." Subjects ate 4 isocaloric meals each 28-h "day." For 8 days, plasma leptin, insulin, glucose, and cortisol were measured hourly, urinary catecholamines 2 hourly (totaling approximately 1,000 assays/subject), and blood pressure, heart rate, cardiac vagal modulation, oxygen consumption, respiratory exchange ratio, and polysomnographic sleep daily. Core body temperature was recorded continuously for 10 days to assess circadian phase. Circadian misalignment, when subjects ate and slept approximately 12 h out of phase from their habitual times, systematically decreased leptin (-17%, P < 0.001), increased glucose (+6%, P < 0.001) despite increased insulin (+22%, P = 0.006), completely reversed the daily cortisol rhythm (P < 0.001), increased mean arterial pressure (+3%, P = 0.001), and reduced sleep efficiency (-20%, P < 0.002). Notably, circadian misalignment caused 3 of 8 subjects (with sufficient available data) to exhibit postprandial glucose responses in the range typical of a prediabetic state. These findings demonstrate the adverse cardiometabolic implications of circadian misalignment, as occurs acutely with jet lag and chronically with shift work.
Article
Full-text available
In a study of the internal desynchronization of circadian rhythms in 12 shift workers, 4 of them, aged 25-34 years, agreed to be sampled every 2 h during their night shift (0000 hours to 0800 hours). They were oil refinery operators with a fast rotating shift system (every 3-4 days). We found marked changes in the secretory profiles of melatonin, prolactin and testosterone. Melatonin had higher peak-values resulting in a four-times higher amplitude than in controls. With respect to prolactin and testosterone, peak and trough times were erratic and the serum concentrations were significantly decreased in shift workers. Serum cortisol presented a decreased rhythm amplitude together with higher concentrations at 0000 hours in shift workers. This study clearly shows that fast rotating shift-work modifies peak or trough values and rhythm amplitudes of melatonin, prolactin, testosterone and cortisol without any apparent phase shift of these hormones. Whether the large rhythm amplitude of melatonin may be considered as a marker of tolerance to shift work, as reported for body temperature and hand grip strength, since it would help the subjects to maintain their internal synchronization, needs further investigation.
Article
Full-text available
We describe a non-profit software package for the computerized analysis of ambulatory blood pressure monitoring (ABPM) recordings, in order to make it available to researchers in cardiovascular physiology, pharmacology and medicine. The first program, ABPM-FIT, can load data from several ABPM devices directly as they are stored on disk, making complicated data conversion steps unnecessary. The program performs conventional linear analyses of ABPM data automatically by calculation of mean, SD, load (the percentage of data above a chosen limit), and highest and lowest readings in user-defisned day and night periods. In addition, the area under the parameter-time curve (AUC) and the weighted mean (AUC/time) is calculated for all parameters monitored. In a second step, ABPM-FIT performs a rhythm analysis by fitting partial Fourier series to the data. Only those hormonics are included which significantly reduce the residual variance of the fit. The parameters of these functions (mesor, amplitudes, acrophases), values derived from the composed curves (maximum and minimum, AUC) and their slopes (e.g. maximal increase and decrease) are calculated automatically and, if desired, saved on disk. The second program, CV-SORT, loads groups of result files saved by ABPM-FIT, allows the extraction of parameters of interest for further analyses and creates spreadsheets containing the selected values from groups of patients. In addition, CV-SORT performs simple statistics, and calculates group mean circadian blood pressure and heart rate profiles from individual Fourier curves, with SD, confidence intervals or percentiles. The features of both programs are shown in exemplary analyses of ABPM recordings.
Article
Full-text available
In humans there is a circadian rhythm of leptin concentrations in plasma with a minimum in the early morning and a maximum in the middle of the night. By taking blood samples from adult male rats every 3 hr for 24 hr, we determined that a circadian rhythm of plasma leptin concentrations also occurs in the rat with a peak at 0130h and a minimum at 0730h. To determine if this rhythm is controlled by nocturnally released hormones, we evaluated the effect of hormones known to be released at night in humans, some of which are also known to be released at night in rats. In humans, prolactin (PRL), growth hormone (GH), and melatonin are known to be released at night, and adrenocorticotropic hormone (ACTH) release is inhibited. In these experiments, conscious rats were injected intravenously with 0.5 ml diluent or the substance to be evaluated just after removal of the first blood sample (0.3 ml), and additional blood samples (0.3 ml) were drawn every 10 min thereafter for 2 hr. The injection of highly purified sheep PRL (500 microg) produced a rapid increase in plasma leptin that persisted for the duration of the experiment. Lower doses were ineffective. To determine the effect of blockade of PRL secretion on leptin secretion, alpha bromoergocryptine (1.5 mg), a dopamine-2-receptor agonist that rapidly inhibits PRL release, was injected. It produced a rapid decline in plasma leptin within 10 min, and the decline persisted for 120 min. The minimal effective dose of GH to lower plasma leptin was 1 mg/rat. Insulin-like growth factor (IGF-1) (10 microg), but not IGF-2 (10 microg), also significantly decreased plasma leptin. Melatonin, known to be nocturnally released in humans and rats, was injected at a dose of 1 mg/rat during daytime (1100h) or nighttime (2300h). It did not alter leptin release significantly. Dexamethasone (DEX), a potent glucocorticoid, was ineffective at a 0. 1-mg dose but produced a delayed, significant increase in leptin, manifest 100-120 min after injection of a 1 mg dose. Since glucocorticoids decrease at night in humans at the time of the maximum plasma concentrations of leptin, we hypothesize that this increase in leptin from a relatively high dose of DEX would mimic the response to the release of corticosterone following stress in the rat and that glucocorticoids are not responsible for the circadian rhythm of leptin concentration. Therefore, we conclude that an increase in PRL secretion during the night may be responsible, at least in part, for the nocturnal elevation of leptin concentrations observed in rats and humans.
Article
In humans there is a circadian rhythm of leptin concentrations in plasma with a minimum in the early morning and a maximum in the middle of the night. By taking blood samples from adult male rats every 3 hr for 24 hr, we determined that a circadian rhythm of plasma leptin concentrations also occurs in the rat with a peak at 0130h and a minimum at 0730h. To determine if this rhythm is controlled by nocturnally released hormones, we evaluated the effect of hormones known to be released at night in humans, some of which are also known to be released at night in rats. In humans, prolactin (PRL), growth hormone (GH), and melatonin are known to be released at night, and adrenocorticotropic hormone (ACTH) release is inhibited. In these experiments, conscious rats were injected intravenously with 0.5 ml diluent or the substance to be evaluated just after removal of the first blood sample (0.3 ml), and additional blood samples (0.3 ml) were drawn every 10 min thereafter for 2 hr. The injection of highly purified sheep PRL (500 μg) produced a rapid increase in plasma leptin that persisted for the duration of the experiment. Lower doses were ineffective. To determine the effect of blockade of PRL secretion on leptin secretion, α bromoergocryptine (1.5 mg), a dopamine-2-receptor agonist that rapidly inhibits PRL release, was injected. It produced a rapid decline in plasma leptin within 10 min, and the decline persisted for 120 min. The minimal effective dose of GH to lower plasma leptin was 1 mg/rat. Insulin-like growth factor (IGF-1) (10 μg), but not IGF-2 (10 μg), also significantly decreased plasma leptin. Melatonin, known to be nocturnally released in humans and rats, was injected at a dose of 1 mg/rat during daytime (1100h) or nighttime (2300h). It did not alter leptin release significantly. Dexamethasone (DEX), a potent glucocorticoid, was ineffective at a 0.1-mg dose but produced a delayed, significant increase in leptin, manifest 100–120 min after injection of a 1 mg dose. Since glucocorticoids decrease at night in humans at the time of the maximum plasma concentrations of leptin, we hypothesize that this increase in leptin from a relatively high dose of DEX would mimic the response to the release of corticosterone following stress in the rat and that glucocorticoids are not responsible for the circadian rhythm of leptin concentration. Therefore, we conclude that an increase in PRL secretion during the night may be responsible, at least in part, for the nocturnal elevation of leptin concentrations observed in rats and humans.
Article
Objectives Nightshift work has been associated with cancer among men, but the mechanism underlying this association is not clear. We investigated whether male nightshift workers demonstrated changes in the normal circadian levels and secretion patterns of melatonin, cortisol and sex hormones that may be directly related to cancer risk. Methods Participants were 185 male nightshift workers (NSW) and 158 male dayshift workers (DSW) employed as healthcare providers, aged 22–55. Urine samples were collected throughout work and sleep periods and assayed for various hormone metabolites. Results Compared to DSW during their nighttime sleep, NSW had significantly lower levels of 6-sulfatoxymelatonin during daytime sleep, nighttime work, and nighttime sleep on their off-nights (57%, 62% and 40% lower, respectively). Urinary cortisol levels in the NSW were 16% higher during daytime sleep and 13% lower during nighttime sleep on off-nights, compared to DSW during nighttime sleep. While cortisol levels between NSW during night work and DSW during night sleep were not significantly different, metabolites of cortisol (e.g. cortisone, tetrahydrocortisol) were significantly increased among NSW. No significant differences were observed in testosterone or dihydrotestosterone levels between nightshift workers during their day sleep or night sleep compared to dayshift workers during nighttime sleep. Conclusions Male sex hormones have been implicated in prostate carcinogenesis, however, results of this study indicate that the impact of nightshift work on cancer risk may occur through other mechanisms. Substantially reduced 6-sulfatoxymelatonin levels during night work, daytime sleep and even night sleep on off-nights among night shift workers were observed, and given the oncostatic properties of melatonin, this chronic reduction in melatonin among nightshift workers may represent an important carcinogenic mechanism. Corticosteroid secretion and metabolism was also found to be impacted by night shift work, which could have implications for cancer risk through its effects on immune function.
Article
Fibrosis is a common occurrence following organ injury and failure. To date, there is no effective treatment for this condition. Melatonin targets numerous molecular pathways, a consequence of its antioxidant and anti-inflammatory actions that reduce excessive fibrosis. Herein, we review the multiple protective effects of melatonin against fibrosis. There exist four major phases of the fibrogenic response including primary injury to the organ, activation of effector cells, the elaboration of extracellular matrix and dynamic deposition. Melatonin regulates each of these phases. Additionally, melatonin reduces fibrosis levels in numerous organs. Melatonin exhibits its anti-fibrosis effects in heart, liver, lung, kidney, and other organs. In addition, adhesions which occur following surgical procedures are also inhibited by melatonin. The information reviewed here should be significant to understanding the protective role of melatonin against fibrosis, contribute to the design of further experimental studies related to melatonin and the fibrotic response and shed light on a potential treatment for fibrosis. This article is protected by copyright. All rights reserved.
Article
The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to synchronize the tissue-specific rhythms of the peripheral clocks with the environmental day/night changes via neural, humoral and/or behavioral connections. The feeding rhythm is considered an important Zeitgeber for peripheral clocks, as daytime feeding reverses (clock) gene rhythms in the periphery, but not in the SCN. In this study, we investigated the necessity of a daily feeding rhythm for maintaining gene expression rhythms in epididymal white adipose tissue (eWAT). We showed that 7 of 9 rhythmic metabolic/adipokine genes, but not clock genes, lost their rhythmicity upon exposure to 6-meals-a-day feeding. Previously, we showed comparable effects of adrenalectomy on eWAT; therefore, subsequently we investigated the effect of simultaneous disruption of these humoral and behavioral signaling pathways, by exposing adrenalectomized animals to 6-meals-a-day feeding. Interestingly, under these conditions, all the clock genes and 10 of 11 rhythmic metabolic/adipokine genes lost their rhythmicity. These data indicate that adrenal hormones and feeding rhythm are indispensable for maintaining daily rhythms in metabolic/adipokine gene, but not clock gene, expression in eWAT. In contrast, at least one of these two signals should be present in order for eWAT clock gene rhythms to be maintained.
Article
Routine exposure to artificial light at night (ALAN) in work, home, and community settings is linked with increased risk of breast and prostate cancer (BC, PC) in normally sighted women and men, the hypothesized biological rhythm mechanisms being frequent nocturnal melatonin synthesis suppression, circadian time structure (CTS) desynchronization, and sleep/wake cycle disruption with sleep deprivation. ALAN-induced perturbation of the CTS melatonin synchronizer signal is communicated maternally at the very onset of life and after birth via breast or artificial formula feedings. Nighttime use of personal computers, mobile phones, electronic tablets, televisions, and the like - now epidemic in adolescents and adults and highly prevalent in pre-school and school-aged children - is a new source of ALAN. However, ALAN exposure occurs concomitantly with almost complete absence of daytime sunlight, whose blue-violet (446-484 nm ) spectrum synchronizes the CTS and whose UV-B (290-315 nm ) spectrum stimulates vitamin D synthesis. Under natural conditions and clear skies, day/night and annual cycles of UV-B irradiation drive corresponding periodicities in vitamin D synthesis and numerous bioprocesses regulated by active metabolites augment and strengthen the biological time structure. Vitamin D insufficiency and deficiency are widespread in children and adults in developed and developing countries as a consequence of inadequate sunlight exposure. Past epidemiologic studies have focused either on exposure to too little daytime UV-B or too much ALAN, respectively, on vitamin D deficiency/insufficiency or melatonin suppression in relation to risk of cancer and other, e.g., psychiatric, hypertensive, cardiac, and vascular, so-called, diseases of civilization. The observed elevated incidence of medical conditions the two are alleged to influence through many complementary bioprocesses of cells, tissues, and organs led us to examine effects of the totality of the artificial light environment in which humans reside today. Never have chronobiologic or epidemiologic investigations comprehensively researched the potentially deleterious consequences of the combination of suppressed vitamin D plus melatonin synthesis due to life in todays man-made artificial light environment, which in our opinion is long overdue.
Article
Daily variations of metabolism, physiology and behaviour are controlled by a network of coupled circadian clocks, comprising a master clock in the suprachiasmatic nuclei of the hypothalamus and a multitude of secondary clocks in the brain and peripheral organs. Light cues synchronize the master clock that conveys temporal cues to other body clocks via neuronal and hormonal signals. Feeding at unusual times can reset the phase of most peripheral clocks. While the neuroendocrine aspect of circadian regulation has been underappreciated, this review aims at showing that the role of hormonal rhythms as internal time-givers is the rule rather than the exception. Adrenal glucocorticoids, pineal melatonin and adipocyte-derived leptin participate in internal synchronization (coupling) within the multi-oscillatory network. Furthermore, pancreatic insulin is involved in food synchronization of peripheral clocks, while stomach ghrelin provides temporal signals modulating behavioural anticipation of mealtime. Circadian desynchronization induced by shift work or chronic jet lag has harmful effects on metabolic regulation, thus favouring diabetes and obesity. Circadian deregulation of hormonal rhythms may participate in internal desynchronization and associated increase in metabolic risks. Conversely, adequate timing of endocrine therapies can promote phase-adjustment of the master clock (e.g. via melatonin agonists) and peripheral clocks (e.g. via glucocorticoid agonists). © 2015 John Wiley & Sons Ltd.
Article
Les rythmes circadiens dépendent d’un réseau complexe d’horloges centrales et périphériques, de synchronisateurs environnementaux, d’afférences et efférences nerveuses et endocrines, bref d’un système circadien multi-oscillant complexe. Chez les mammifères, le chef, d’orchestre de ce réseau est l’horloge présente dans les noyaux suprachiasmatiques de l’hypothamus (SCN). Les SCN génèrent des rythmes circadiens d’environ 24 h mais sont entraînables à 24 h précise (remis à l’heure) par divers synchroniseurs. Le synchroniseur le plus puissant est le cycle jour/nuit. Chez les mammifères, à partir des SCN, les informations circadiennes sont transportées par voies nerveuses en particulier à la pinéale. Dans cette glande, le message nerveux est traduit en un message hormonal : la sécrétion rythmique de mélatonine. La mélatonine distribue donc un signal circadien hormonal dans tout l’organisme via la circulation générale. Comme il y a des récepteurs pour la mélatonine dans les SCN, il est possible, à partir de mélatonine exogène, d’agir sur les SCN. Au cours de la dernière décennie, un certain nombre d’agonistes ont été développés et mis sur le marché. Ces médicaments ciblent les SCN ou agissent indirectement à d’autres niveaux du réseau circadien pour rétablir une bonne synchronisation interne de nos fonctions.
Article
Melatonin was previously shown to reduce blood pressure and left ventricular remodeling in several models of experimental heart damage. This study investigated whether melatonin prevents left ventricular (LV) remodeling and improves survival in isoproterenol-induced heart failure. In the first experiment, four groups of 3-month old male Wistar rats (12 per group) were treated for two weeks as follows: controls, rats treated with melatonin (10mg/kg/day) (M), rats treated with isoproterenol (5mg/kg/day intraperitoneally the second week) (Iso), rats treated with melatonin (two weeks) and isoproterenol (the second week) in corresponding doses (IsoM). In the second experiment, 30 rats were treated with isoproterenol and 30 rats with isoproterenol plus melatonin for a period of 28 days and their mortality was investigated. Isoproterenol induced heart failure with hypertrophy of the left and right ventricles (LV, RV), lowered systolic blood pressure (SBP) and elevated pulmonary congestion. Fibrotic rebuilding was accompanied by alterations of tubulin level in the LV and oxidative stress development. Melatonin failed to reduce the weight of the LV or RV; however, it curtailed the weight of the lungs and attenuated the decline in SBP. Moreover, melatonin decreased the level of oxidative stress and of insoluble and total collagen and partly prevented the beta-tubulin alteration in the LV. Most importantly, melatonin reduced mortality and prolonged the average survival time. In conclusion, melatonin exerts cardioprotective effects and improves outcome in a model of isoproterenol-induced heart damage. The anti-remodeling effect of melatonin may be of potential benefit in patients with heart failure. This article is protected by copyright. All rights reserved.
Article
The circadian system is primarily entrained by the ambient light environment and is fundamentally linked to metabolism. Mounting evidence suggests a causal relationship among aberrant light exposure, shift work, and metabolic disease. Previous research has demonstrated deleterious metabolic phenotypes elicited by chronic (>4 weeks) exposure to dim light at night (DLAN) (∼5 lux). However, the metabolic effects of short-term (<2 weeks) exposure to DLAN are unspecified. We hypothesized that metabolic alterations would arise in response to just 2 weeks of DLAN. Specifically, we predicted that mice exposed to dim light would gain more body mass, alter whole body metabolism, and display altered body temperature (Tb) and activity rhythms compared to mice maintained in dark nights. Our data largely support these predictions; DLAN mice gained significantly more mass, reduced whole body energy expenditure, increased carbohydrate over fat oxidation, and altered temperature circadian rhythms. Importantly, these alterations occurred despite similar activity locomotor levels (and rhythms) and total food intake between groups. Peripheral clocks are potently entrained by body temperature rhythms, and the deregulation of body temperature we observed may contribute to metabolic problems due to “internal desynchrony” between the central circadian oscillator and temperature sensitive peripheral clocks. We conclude that even relatively short-term exposure to low levels of nighttime light can influence metabolism to increase mass gain.
Article
As the prevalence of shift work is increasing, it is important to elucidate the impact that shift work has on health. Because of the alternating work schedules present in rotating shift work and working at night, shift workers are in a chronic state of circadian disruption. Animal models of circadian disruption are useful because they offer more experimental control than the largely correlational human shift work studies. The effects of chronic circadian disruption on food preference, glucose tolerance, corticosterone secretion, and performance in a stress-inducing task were investigated in female Long-Evans rats. A 64-day photoperiod shifting paradigm was used to induce circadian disruption. Surprisingly, neither the photoperiod shifted animals, nor the control animals demonstrated a preference for either an unhealthy or healthy diet. Nor was there a difference between the groups in weight gained during photoperiod shifting. However, the photoperiod shifted rats gained significantly more weight than control animals, without eating more food during discriminative fear conditioning to context (DFCTC). Surprisingly, chronic photoperiod shifting appeared to facilitate retention in the DFCTC task. The photoperiod shifted animals also had increased serum glucose values during fasting and after a glucose challenge test. The photoperiod shifted animals only had elevated corticosterone during the final two phases of photoperiod shifting. This study demonstrates that chronic photoperiod shifting elicits weight gain when exposed to a stressful event and impairs glucose tolerance in the same individual.
Article
Exposure to shiftwork has been associated with multiple health disorders and cognitive impairments in humans. We tested if we could replicate metabolic and cognitive consequences of shiftwork, as reported in humans, in a rat model comparable to 5 wks of non-rotating night shifts. The following hypotheses were addressed: (i) shiftwork enhances body-weight gain, which would indicate metabolic effects; and (ii) shiftwork negatively affects learning of a simple goal-directed behavior, i.e., the association of lever pressing with food reward (instrumental learning), which would indicate cognitive effects. We used a novel method of forced locomotion to model work during the animals' normal resting period. We first show that Wistar rats, indeed, are active throughout a shiftwork protocol. In contrast with previous findings, the shiftwork protocol attenuated the normal weight gain to 76 ± 8 g in 5 wks as compared to 123 ± 15 g in the control group. The discrepancy with previous work may be explained by the concurrent observation that with our shiftwork protocol rats did not adjust their between-work circadian activity pattern. They maintained a normal level of activity during the "off-work" periods. In the control experiment, rats were kept active during the dark period, normally dominated by activity. This demonstrated that forced activity, per se, did not affect body-weight gain (mean ± SEM: 85 ± 11 g over 5 wks as compared to 84 ± 11 g in the control group). Rats were trained on an instrumental learning paradigm during the fifth week of the protocol. All groups showed equivalent increases in lever pressing from the first (3.8 ± .7) to the sixth (21.3 ± 2.4) session, and needed a similar amount of sessions (5.1 ± .3) to reach a learning criterion (≥ 27 out of 30 lever presses). These results suggest that while on prolonged non-rotating shiftwork, not fully reversing the circadian rhythm might actually be beneficial to prevent body-weight gain and cognitive impairments.
Article
Cardiovascular diseases remain a major public health problem. The involvement of several occupational factors has recently been discussed, notably the organization of work schedules, e.g. shift work. To analyse the progress of knowledge on the relationship between cardiovascular risk factors and shift work. A review of English-language literature dealing with the link between cardiovascular factors and shift workers (published during 2000-2010) was conducted. Studies published in the past 10 years tend to document an impact of shift work on blood pressure, lipid profile (triglyceride levels), metabolic syndrome and, possibly, body mass index. However, the consequences on glucose metabolism are unclear. These results are not yet firmly established, but are supported by strong hypotheses. Some advice could reasonably be proposed to guide the clinical practitioner.
Article
Circadian rhythms, generated in the suprachiasmatic nucleus (SCN), are synchronized to the ambient light/dark (LD) cycle. Long-term disruptions in circadian rhythms are associated with many health problems. However, the underlying mechanisms for such pathologies are not well understood. In the present study, we utilized a chronic jet lag paradigm consisting of weekly 6 h phase shifts in the LD cycle to investigate the circadian responses in behavior and in the functioning of the SCN following long-term circadian perturbation, and to explore the duration and direction dependent changes of the SCN using rats subjected to weekly phase advances or delays. Wheel-running activity was monitored over four weekly phase advances. The nocturnal activity pattern was re-established by the end of each shift, and the rate for recovering the nocturnality appeared to accelerate following multiple shifts. SCN function was assessed by the expressions of the protein product of clock gene PER1 and of two putative SCN output signals, arginine vasopressin (AVP) and prokineticin2 (Pk2). At the end of the 4th weekly advance, the amplitude of the PER1 rhythm in the SCN decreased, and this reduction was more prominent in the dorsomedial SCN than in the ventrolateral SCN. The levels of AVP and Pk2 expression were also attenuated in the SCN and in targets of its efferent projections. Comparing rats subjected to four or eight shifts of either delay or advance, the results revealed that the responses of the SCN depended on both duration and direction of the shifts, such that the level of PER1 expression further decreased at the end of the 8th compared to the 4th phase advance, but did not change significantly following phase delays. Taken together, the results suggest that rhythm perturbation could compromise the time-keeping function of the SCN, which could contribute to the associated health issues.
Article
In this review we first present the anatomical pathways used by the suprachiasmatic nuclei to enforce its rhythmicity onto the body, especially its energy homeostatic system. The experimental data show that by activating the orexin system at the start of the active phase, the biological clock not only ensures that we wake up on time, but also that our glucose metabolism and cardiovascular system are prepared for increased activity. The drawback of such a highly integrated system, however, becomes visible when our daily lives are not fully synchronized with the environment. Thus, in addition to increased physical activity and decreased intake of high-energy food, also a well-lighted and fully resonating biological clock may help to withstand the increasing "diabetogenic" pressure of today's 24/7 society.
Article
The environmental light-dark (LD) cycle entrains the circadian clock located in the suprachiasmatic nucleus (SCN) of mammals. Recent studies of genetically impaired animals with clock gene mutations have revealed associations between metabolic disorders and the circadian clock. However, whether such disordered phenotypes are due to a loss of circadian clock function within specific metabolically relevant tissues, or the result of disrupted circadian behavioral activities governed by the SCN remains unknown. The present study examines the effect of disrupted LD cycles that might perturb the circadian clock in the SCN and peripheral organs on a high-fat/high-sucrose diet-induced obesity in genetically intact mice. The behavioral patterns of the mice were disturbed under an ultradian 3 h light-3 h dark cycle (LD 3:3) due to light-induced direct suppression of the behavior (masking effect). Obesity with hyperglycemia was significantly enhanced and levels of hemoglobin A1c were significantly higher under LD 3:3 compared with LD 12:12. These findings provide a link between metabolic disorders and the "environmental mutation" in genetically intact animals.
Article
Accurate continuous chronic measurements of blood pressure from conscious laboratory rats are critical to many experimental protocols but have been difficult or impossible to acquire. A system consisting of an implantable radio-telemetry device, receiver, and computer-based data acquisition system that allows such measurements to be easily obtained has been developed. This system is capable of monitoring and recording arterial pressure (waveform, systolic, diastolic, and mean), heart rate, and activity from rats weighing greater than 175 gm for periods in excess of 6 months. Chronic patency has been achieved through a patented design which includes an antithrombogenic film and a gel membrane located at the catheter tip. Validation of telemetered measurements via carotid catheter has demonstrated the accuracy to be better than +/- 5 mmHg in 85% (N = 20) tested at 3 weeks post implantation, 86% (N = 15) tested at 8 weeks, and 78% (N = 9) at 12 weeks. Incidence of loss of patency was 2.3% (N = 44). This system has a demonstrated ability to obtain accurate continuous chronic measurements of arterial pressure free of the stressors associated with conventional systems.
Article
The circadian rhythm in rat pineal N-acetyltransferase (NAT) activity, which drives the rhythm in melatonin production, is controlled by a pacemaker located in the su prachiasmatic nucleus of the hypothalamus. As the NAT rhythm has two well-defined phase markers—namely, the time of the evening activity rise and of the morning decline—it is suitable for studies of the entrainment of the pacemaker by environmental light. Phase delays of the NAT rhythm proceed more rapidly than phase advances. One day after a brief light pulse applied before midnight, or after a delay in evening lights-off, or a delay of a light-dark (LD) cycle, phase delays of the evening NAT rise result in almost corresponding delays of the morning NAT decline. Consequently, the NAT rhythm is phase-shifted, but its pattern does not change. One day after a brief light pulse applied past midnight, or after bringing forward morning lights-on, or after an advance of an LD cycle, the morning NAT decline is phase- advanced, but the evening rise is not phase-advanced at all or may even be phase-delayed. Consequently, the phase relationship between the evening NAT activity onset and the mom ing offset may be compressed considerably, and it may take several transient cycles before phase advances of the morning NAT decline are followed by corresponding advances of the evening NAT rise. Due to the phase-delaying effect of evening light on the NAT rise and to the phase-advancing effect of morning light on the NAT decline, the phase relationship be tween the NAT rise and the decline is compressed on long days and decompressed on short days.
Article
Testosterone concentrations in the seminal plasma of cocks ranged from 0.46 to 5.05 ng/ml and were substantially lower than in blood plasma. No significant variation was noted in seminal plasma testosterone concentrations during the light phase of the day, whereas the concentration in blood declined over this period. Spermatozoal concentration and seminal testosterone decreased in the third sample of the semen collected sequentially at 3 h intervals. Testosterone concentrations in seminal plasma (1.57 +/- 0.17 ng/ml) and in the semen from the ductus deferens (1.34 +/- 0.24 ng/ml) were not significantly different.
Article
This brief resume summarizes the evidence which shows that melatonin is a significant free radical scavenger and antioxidant at both physiological and pharmacological concentrations in vivo. Surgical removal of the pineal gland, a procedure which lowers endogenous melatonin levels in the blood, exaggerates molecular damage due to free radicals during an oxidative challenge. Likewise, providing supplemental melatonin during periods of massive free radical production greatly lowers the resulting tissue damage and dysfunction. In the current review, these findings are considered in terms of neurodegenerative diseases, cancer, ischemia/reperfusion injury and aging. Besides being a highly effective direct free radical scavenger and indirect antioxidant, melatonin has several features that make it of clinical interest. Thus, melatonin is readily absorbed when it is administered via any route, it crosses all morphophysiological barriers, e.g., blood-brain barrier and placenta, with ease, it seems to enter all parts of every cell where it prevents oxidative damage, it preserves mitochondrial function, and it has low toxicity. While blood melatonin levels are normally low, tissue levels of the indoleamine can be considerably higher and at some sites, e.g., in bone marrow cells and bile, melatonin concentrations exceed those in the blood by several orders of magnitude. What constitutes a physiological level of melatonin must be redefined in terms of the bodily fluid, tissue and subcellular compartment being examined.
Article
In mammals, all overt circadian rhythms are thought to be coordinated by a central pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN) [1]. The phase of this pacemaker is entrained by photic cues via the retino-hypothalamic tract. Circadian clocks probably rely on a feedback loop in the expression of certain clock genes (reviewed in [2,3]). Surprisingly, however, such molecular oscillators are not only operative in pacemaker cells, such as SCN neurons, but also in many peripheral tissues and even in cell lines kept in vitro [4-7]. For example, a serum shock can induce circadian gene expression in cultured Rat-1 fibroblasts [5]. This treatment also results in a rapid surge of expression of the clock genes Per1 and Per2, similar to that observed in the SCNs of animals receiving a light pulse [8-10]. Serum induction of Per1 and Per2 transcription does not require ongoing protein synthesis [5] and must therefore be accomplished by direct signaling pathways. Here, we show that cAMP, protein kinase C, glucocorticoid hormones and Ca2+ can all trigger a transient surge of Per1 transcription and elicit rhythmic gene expression in Rat-1 cells. We thus suspect that the SCN pacemaker may exploit multiple chemical cues to synchronize peripheral oscillators in vivo.
Article
At present it is not clear which factors are responsible for the diurnal pattern of plasma leptin levels, although the timing of food intake and circulating hormones such as glucocorticoids and insulin have both been proposed as independent determinants. In this study we show that ablation of the biological clock by thermal lesions of the hypothalamic suprachiasmatic nucleus (SCN) completely eliminates the diurnal pattern of plasma leptin levels. By contrast, removal of the diurnal corticosterone signal by adrenalectomy and corticosterone replacement did not affect diurnal plasma leptin levels. More importantly, removal of the nocturnal feeding signal by submitting the animals to a regular feeding schedule of six meals per day did not abolish the diurnal plasma leptin levels. However, both SCN lesions and the regular feeding schedule did cause an increase in the 24-h mean plasma leptin levels. As neither rhythmic feeding, insulin, or corticosterone signals can completely explain the diurnal plasma leptin rhythm, we conclude that biological clock control of the sympathetic input to the adipocyte is essential for regulation of the daily rhythm in leptin release.
Article
During sleep, our biological clock prepares us for the forthcoming period of activity by controlling the release of hormones and the activity of the autonomic nervous system. Here, we review the history of the study of circadian rhythms and highlight recent observations indicating that the same mechanisms that govern our central clock might be at work in the cells of peripheral organs. Peripheral clocks are proposed to synchronize the activity of the organ, enhancing the functional message of the central clock. We speculate that peripheral visceral information is then fed back to the same brain areas that are directly controlled by the central clock. Both clock mechanisms are proposed to have a complementary function in the organization of behaviour and hormone secretion.
Article
The incidence of most adverse cardiovascular events appears to follow a circadian pattern, reaching a peak in the morning shortly after wakening and arising. The activities of many physiologic parameters, including hemodynamic, hematologic and humoral factors, also fluctuate in a cyclical manner over the 24h. It has been suggested that, during the post-awakening hours, the phases of these cycles synchronize to create an environment that predisposes to atherosclerotic plaque rupture and thrombosis in susceptible individuals, thereby accounting for the heightened cardiovascular risk at this time of day. Blood pressure and heart rate are part of this physiologic process, following a clear circadian rhythm characterized by a fall during sleep and a sharp rise upon awakening. This so-called 'morning surge' in blood pressure may act as a trigger for cardiovascular events, including myocardial infarction and stroke. The clinical implication of these observations is that antihypertensive therapy should provide blood pressure control over the entire interval between doses. For agents taken once daily in the morning, the time of trough plasma drug level (and lowest pharmacodynamic effect) will often coincide with the early morning surge in blood pressure and heart rate. For these reasons, chronotherapeutic formulations of drugs and intrinsically long-acting antihypertensive agents provide the most logical approach to the treatment of hypertensive patients since they provide 24 h blood pressure control from a single daily dose as well as attenuating the early morning rise in blood pressure (and in some instances heart rate).