Conference PaperPDF Available

Kannpos-Kannada Parts of Speech Tagger Using Conditional Random Fields

Authors:

Abstract

Parts Of Speech (POS) tagging is one of the basic text processing tasks of Natural Language Processing (NLP). It is a great challenge to develop POS tagger for Indian Languages, especially Kannada due to its rich morphological and highly agglutinative nature. A Kannada POS tagger has been developed using Conditional Random Fields (CRFs), a supervised machine learning technique and it is discussed in this paper. The results presented are based on experiments conducted on a large corpus consisting of 80,000 words, where 64,000 is used for training and 16,000 is used for testing. These words are collected from Kannada Wikipedia and annotated with POS tags. The tagset from Technology Development for Indian Languages (TDIL) containing 36 tags are used to assign the POS. The n-gram CRF model gave a maximum accuracy of 92.94 %. This work is the extension of “Parts of Speech (POS) Tagger for Kannada Using Conditional Random Fields (CRFs).
A preview of the PDF is not available

Supplementary resource (1)

ResearchGate has not been able to resolve any citations for this publication.
ResearchGate has not been able to resolve any references for this publication.