ArticlePDF AvailableLiterature Review

Recent Developments in Antimicrobial Polymers: A Review

Authors:

Abstract and Figures

Antimicrobial polymers represent a very promising class of therapeutics with unique characteristics for fighting microbial infections. As the classic antibiotics exhibit an increasingly low capacity to effectively act on microorganisms, new solutions must be developed. The importance of this class of materials emerged from the uncontrolled use of antibiotics, which led to the advent of multidrug-resistant microbes, being nowadays one of the most serious public health problems. This review presents a critical discussion of the latest developments involving the use of different classes of antimicrobial polymers. The synthesis pathways used to afford macromolecules with antimicrobial properties, as well as the relationship between the structure and performance of these materials are discussed.
Content may be subject to copyright.
A preview of the PDF is not available
... Surface sterilization through chemical disinfection, heat, or ionizing radiation is extensively used to eliminate microorganisms, although with short-term action due to recontamination from the steady presence of pathogens (13). Even in well-controlled places, while rigorous cleaning techniques with proper chemicals significantly reduce pathogen levels, they are not enough to avoid microbes entirely. ...
Article
Microorganisms attach on all kinds of surfaces, spreading pathogens that affect human health and alter the properties of products and of the surface itself. These issues motivated the design of a broad set of antimicrobial polymers that have great versatility to be chemically modified, processed, and mixed with other compounds. This review presents an overview of these different strategies, including antimicrobial-release systems and inherently antimicrobial polymers, alongside novel approaches such as smart materials and topographical effects. These polymers can be used in any application affected by microbes, from biomaterials and coatings to food packaging.
... A cross-linking polymer can serve as a matrix to incorporate functional materials to enhance both properties synergistically. Generally, natural polymers incorporate antimicrobial agents and are used as drug carriers [56]. However, using natural polymers as drug carriers is challenging because of their broad molecular weight distributions and batch-to-batch variability [57]. ...
Article
Full-text available
Microorganisms have developed a resistance against some of the most conventional antibiotics. These microorganisms can be self-assembled, forming a microbial biofilm. A microbial biofilm formation is an inherent event on almost any surface, causing countless side effects on human health and the environment. Therefore, multiple scientific proposals have been developed based on renewable sources such as natural polymers. Natural polymers or biopolymers include cellulose, chitosan, starch, collagen, gelatin, hyaluronic acid, alginates, fibrin, and pectin, which are widely found in nature. The biopolymers have displayed many interesting properties, including biocompatibility and biodegradability. Nonetheless, these materials usually have no antimicrobial properties (except for the chitosan) by themselves. Therefore, antimicrobial agents have been incorporated into the natural polymeric matrix, providing an antimicrobial property to the biocomposite. Biocomposites consist of two different materials (one of natural origin) studied as biocompatible and biodegradable drug carriers of antimicrobial agents. In addition, due to the incorporation of antimicrobial agents, biocomposites can inhibit biofilm formation and bacteria proliferation on many surfaces. This review describes this using natural polymers as a platform of antimicrobial agents to form a biocomposite to eliminate or reduce biofilm formation on different surfaces.
... 65,66 Antibiotic-coated polymeric NPs undergo postpolymerization structural changes in response to enzymes, including penicillin G amidase, B-lactamase, and other strains, resulting in sustained drug release. 67 Such an approach revealed enhanced stability, minimal adverse effects, and strain selectivity following adminstration. 68 Thamphiwatana et al. 69 prepared liposomes containing antibiotics, such as doxycycline, that were sensitive to phospholipase A2 (PLA 2 ). ...
Article
Site-specific delivery of antibiotics has always been a high-priority area in pharmaceutical research. Conventionally used antibiotics suffer several limitations, such as low accumulation and penetration in diseased cells/tissues, limited bioavailability of drugs, drug resistance, and off-target toxicity. To overcome these limitations, several strategies have been exploited for delivering antibiotics to the site of infection, such as the use of stimuli-responsive antibiotic delivery systems, which can release antibiotics in a controlled and timely fashion. These stimuli can either be exogenous (light, magnetism, ultrasound, and electrical) or endogenous (pH, redox reactions, and enzymatic). In this review, we present a summary of recent developments in the field of stimuli-based targeted drug delivery systems for the site-specific release of antibiotics. Teaser: This review provides key insights into current challenges and future directions of exogenous and endogenous stimuli-sensitive targeted and on-demand release of therapeutic doses of antibiotics both cost-effectively and safely.
... Antimicrobial polymers can be roughly classified into two kinds of materials: leaching [30][31][32] and non-leaching, contact-active materials. While leaching polymers consist of a polymeric matrix that is used as a carrier material for the active ingredient (e.g., antibiotics, metal ions), non-leaching polymer systems consists of polymers, which are the antimicrobial active ingredient themselves, being cationic and contact-killing. ...
Article
Full-text available
The antibacterial activity of different antibiotic and metal-free thin polymer coatings was investigated. The films comprised quaternary ammonium compounds (QAC) based on a vinyl benzyl chloride (VBC) building block. Two monomeric QAC of different alkyl chain lengths were prepared, and then polymerized by two different polymerization processes to apply them onto Ti surfaces. At first, the polymeric layer was generated directly on the surface by atom transfer radical polymerization (ATRP). For comparison purposes, in a classical route a copolymerization of the QAC-containing monomers with a metal adhesion mediating phosphonate (VBPOH) monomers was carried out and the Ti surfaces were coated via drop coating. The different coatings were characterized by X-ray photoelectron spectroscopy (XPS) illustrating a thickness in the nanomolecular range. The cytocompatibility in vitro was confirmed by both live/dead and WST-1 assay. The antimicrobial activity was evaluated by two different assays (CFU and BTG, resp.,), showing for both coating processes similar results to kill bacteria on contact. These antibacterial coatings present a simple method to protect metallic devices against microbial contamination.
Article
Full-text available
Antimicrobial polymers (AMPs) have emerged as a promising approach to combat multidrug‐resistant pathogens. Developed from binary polymers, which contain cationic and hydrophobic groups, ternary polymers are enhanced by adding neutral hydrophilic monomers to improve their biocompatibility. Cationic groups have attracted significant attention owing to their pivotal role in AMPs. Although many studies have investigated the effect of cationic groups on antimicrobial activity of binary AMPs, there is a lack of comprehensive and systematic evaluation for ternary AMPs. Therefore, a library of 31 statistical amphiphilic ternary polymers containing different cationic groups, including primary amine, guanidine and sulfonium groups was prepared to investigate the impact of cationic groups on antimicrobial activity and biocompatibility. We show that the cationic balance appears to be a critical factor influencing polymers' antibacterial activity and selectivity. Our results reveal that the polymers that have the ratio of the cationic groups ranging between 50–60%, coupled with a cationic/hydrophobic ratio in the range of [1.4‐2] and an appropriate neutral hydrophilic/hydrophobic balance, exhibited the highest selectivity toward mammalian cells. Furthermore, selectivity can be improved with suitable cationic moieties and good neutral hydrophilic candidates. In the present study, a lysine‐mimicking monomer and PEG chain were the best choices for cationic and hydrophilic sources to develop the most selective AMPs, displaying an impressive selectivity for HC50 and IC50 greater than 83 and 21, respectively. This study elucidates a structure‐property‐performance relationship for ternary AMPs, which contributes to the development of AMPs capable of selectively targeting gram‐negative pathogens. This article is protected by copyright. All rights reserved
Article
Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria acquired serious bacterial resistance against antibiotics. Untreated dangerous infections can cause death. We proposed nanofibers (NFs) of Polyvinyl alcohol (PVA)/Chitosan (CS) nanocomposite embedded with Chicory root extract (CRE) as a safe solution. We determined the best extraction solvent and drying method, 70 % ethanol and freeze-drying, respectively. We investigated the optimal electrospinner parameters for a smooth PVA/CS NFs. Finally, we discovered PVA/CS/CRE-50 mg (F4) to be the most effective antibacterial and antioxidant CRE concentration. Interestingly, it was found that ethanolic extract had the highest yield % at 24.7 % with Total Phenolic Contents (TPC) of 4 mg Gallic Acid Equivalent (GAE)/1 g, 80 % antioxidant activity at 25 mg with an IC50 of 4.15 mg/mL and a Minimum Bactericidal Concentration (MBC) of 100 mg against S. aureus and 25 mg against E. coli. Remarkably, F4 NFs had an IC50 33.32 mg/mL, Entrapment Efficiency 64.89 %, Loading Capacity 4.41 %, obeying Noyes-Whitney release model. F4 had an MBC of 2 mg with both bacterial strains, which proved to be potent antibacterial material that surpasses the pure extract 50 times. F4 has also shown an extraordinary antioxidant activity that exceeds PVA/CS NF activity 23 times.
Article
Loss of effective antibiotics through antimicrobial resistance (AMR) is one of the greatest threats to human health. By 2050, the annual death rate resulting from AMR infections is predicted to have climbed from 1.27 million per annum in 2019, up to 10 million per annum. It is therefore imperative to preserve the effectiveness of both existing and future antibiotics, such that they continue to save lives. One way to conserve the use of existing antibiotics and build further contingency against resistant strains is to develop alternatives. Non-biological complex drugs (NBCDs) are an emerging class of therapeutics that show multi-mechanistic antimicrobial activity and hold great promise as next generation antimicrobial agents. We critically outline the focal advancements for each key material class, including antimicrobial polymer materials, carbon nanomaterials, and inorganic nanomaterials, and highlight the potential for the development of antimicrobial resistance against each class. Finally, we outline remaining challenges for their clinical translation, including the need for specific regulatory pathways to be established in order to allow for more efficient clinical approval and adoption of these new technologies.
Article
Implantation of biomedical devices is followed by immune response to the implant, as well as occasionally bacterial, yeast and/or fungal infections. In this context, new implant materials and coatings that deal with medical device‐associated complications are required. Antibacterial and anti‐inflammatory materials are also required for wound healing applications, especially in diabetic patients with chronic wounds. In this work, we present hyaluronic acid (HA) hydrogels with triple activity: antimicrobial, immunomodulatory and miRNA delivery agent. We demonstrate that polyarginine with a degree of polymerization of 30 (PAR30), which was previously shown to have a prolonged antibacterial activity, decreases inflammatory response of LPS‐stimulated macrophages. In addition, PAR30 accelerated fibroblast migration in macrophage/fibroblast co‐culture system, suggesting a positive effect on wound healing. Furthermore, PAR30 allowed to load miRNA into HA hydrogels, and then to deliver them into the cells. To our knowledge, this study is the first describing miRNA‐loaded hydrogels with antibacterial effect and anti‐inflammatory features. Such system can become a tool for the treatment of infected wounds, e.g. diabetic ulcers, as well as for foreign body response modulation. This article is protected by copyright. All rights reserved
Article
A series of new nonionic antimicrobial polymers with polyvinyl alcohol (PVA) backbone grafted with indole units and different hydrophobic alkyl or ether groups were synthesized by facile esterification. The chemical...
Chapter
Inspired by natural functional polymers, which are often very well‐defined and bear high‐level of information, scientists have undertaken to develop synthetic replicas based on polymer bioconjugates, that can be harnessed for diverse applications. In this regard, excellent strategies that provide the necessary scope for the synthesis and utility of polymer bioconjugates have been developed. Detailed evaluation to determine the influence of chemical factors that impact polymers' synthesis, alongside physical aspects necessary for their utility have been carried out. In this chapter, we discuss the current methodologies that allow for controlled synthesis of polymer bioconjugates, as their application in the biomedical field.
Article
Full-text available
Electrospun nanofibers were prepared from blends of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA). The fibers were stabilized by heat curing at 140 °C via anhydride and ketone formation and crosslinking esterification. The antimicrobial effect was assessed using strains of Escherichia coli and Staphylococcus aureus by tracking their capacity to form colonies and their metabolic impairment upon contact with PAA/PVA membranes. Membranes containing > 35 wt. % PAA displayed significant antibacterial activity, which was particularly high for the gram-positive S. aureus. All membranes were negatively charged, with surface ζ-potential in the (-34.5)-(-45.6) mV range, but the electrostatic interaction with the negatively charged cells was not the reason for the antimicrobial effect. Neither pH reduction nor the passing of non-crosslinked polymers to the solution affected microbial growth. The antibacterial activity was attributed to the chelation of the divalent cations stabilizing the outer cell membrane. The effect on gram-positive bacteria was attributed to the destabilization of the peptidoglycan layer. The sequestration of divalent cations was demonstrated with experiments in which calcium and a chelating agent were added to the cultures in contact with membranes. The damage to bacterial cells was tracked by measuring their surface charge and the evolution of intracellular calcium during the early stages after contact with PAA/PVA membranes.
Chapter
Full-text available
Currently, the packaging sector is a major consumer in the most industries. Plastic packaging is being increasingly used in medical products and healthcare as well as in the beverages and packaged foods .
Article
Full-text available
To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance.
Article
Full-text available
Reactive oxygen species (ROS) play important roles in cell signaling pathways, while increased production of ROS may disrupt cellular homeostasis, giving rise to oxidative stress and a series of diseases. Utilizing these cell-generated species as triggers for selective tuning polymer structures and properties represents a promising methodology for disease diagnosis and treatment. Recently, significant progress has been made in fabricating biomaterials including nanoparticles and macroscopic networks to interact with this dynamic physiological condition. These ROS-responsive platforms have shown potential in a range of biomedical applications, such as cancer targeted drug delivery systems, cell therapy platforms for inflammation related disease, and so on.
Article
Full-text available
Surgical site infection (SSI) remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycol)fumarate) / sodium methacrylate (OPF/SMA) charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 μg drug per mg hydrogel) and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.
Chapter
Invasive fungal infections have continued to expand in recent years due to increasing populations of patients at high risk because of their immunocompromised conditions such as cancer, bone marrow or solid-organ transplantation, HIV infection, or chronic corticosteroid administration (Fisher-Hoch and Hutwagner 1995; Fridkin and Jarvis 1996). With this increase in severe systemic fungal infections, there has been a heightened need to develop new, more potent antifungal agents to treat these life-threatening fungal diseases. Some of the agents that have been developed for this purpose are toxic to the host. Others have only been administered orally since they are too difficult to solubilize for parenteral administration. These factors have limited the clinical use of some drugs and have spurred research in the development of novel drug delivery systems to improve antifungal drug efficacy.