ArticlePDF Available

Vigorous deep-sea currents cause global anomaly in sediment accumulation in the Southern Ocean

Authors:

Abstract and Figures

The vigorous current systems in the Southern Ocean play a key role in regulating the Earth’s oceans and climate, with the record of long-term environmental change mostly contained in deep-sea sediments. However, the well-established occurrence of widespread regional disconformities in the abyssal plains of the Southern Ocean attests to extensive erosion of deep-sea sediments during the Quaternary. We show that a wide belt of rapid sedimentation rates (> 5.5 cm/kyr) along the Southeast Indian Ridge (SEIR) is a global anomaly and occurs in a region of low surface productivity bounded by two major disconformity fields associated with the Kerguelen Plateau to the east and the Macquarie Ridge to the west. Our high-resolution numerical ocean circulation model shows that the disconformity fields occur in regions of intense bottom current activity where current speeds reach 0.2 m/s and are favorable for generating intense nepheloid layers. These layers are transported towards and along the SEIR to regions where bottom current velocities drop to < 0.03 m/s and fine particles settle out of suspension consistent with focusing factors significantly greater than 1. We suggest that the anomalous accumulation of sediment along an 8,000 km-long segment of the SEIR represents a giant succession of contourite drifts that is a major extension of the much smaller contourite east of Kerguelen and has occurred since 3–5 Ma based on the age of the oldest crust underlying the deposit. These inferred contourite drifts provide exceptionally valuable drilling targets for high-resolution climatic investigations of the Southern Ocean.
Sedimentation rates versus bottom current speeds in the Southern Ocean. Stereographic projection. A: Long-term average sedimentation rates overlain with Holocene age-model derived sedimentation rates (Table DR1). Contours from Carter et al. (2009): Subtropical Front (STF – dashed red line), Subantarctic Front (SAF – solid black line), Southern Boundary (SB – dashed black line) of the Antarctic Circumpolar Current (ACC). Solid red lines denote plate boundaries. B: Standard deviation of modeled present-day bottom current speeds, which is more representative than mean values because the Southern Ocean experiences large variations in bottom current speed. Conformities (white symbols) and unconformities (green symbols) in Holocene sediment are shown as squares when based on magnetostratigraphic data and as circles in all other cases (see text and the Data Repository1 for details). Major unconformity fields are highlighted by green outlines. Key features labeled: KP – Kerguelen Plateau, AAD – Australian-Antarctic Discordance, EFZ – Eltanin Fracture Zone; AB – Argentine Basin, WSB – Weddell Sea Basin, BB - Bellingshausen Basin. Note that the maximum depth of the AB (6.2 km) exceeds the depth in our model (5.5 km) resulting in the truncation of topography needed to dissipate flow. WSB is outside of the influence of the ACC and its disconformity field is largely the product of ice streams creating powerful erosive turbidity currents (Huang and Jokat, 2016) not captured in our model. C: Focusing factors versus Holocene sedimentation rates for the Southern Ocean (see Data Repository1 and Table DR1).
… 
Content may be subject to copyright.
GEOLOGY
|
Volume 44
|
Number 8
|
www.gsapubs.org 663
Vigorous deep-sea currents cause global anomaly in sediment
accumulation in the Southern Ocean
Adriana Dutkiewicz1, R. Dietmar Müller1, Andrew McC. Hogg2,3, and Paul Spence3,4
1EarthByte Group, School of Geosciences, University of Sydney, Sydney, NSW 2006, Australia
2Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia
3ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW 2052, Australia
4Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
ABSTRACT
The vigorous current systems in the Southern Ocean play a key role in regulating the
Earth’s oceans and climate, with the record of long-term environmental change mostly con-
tained in deep-sea sediments. However, the well-established occurrence of widespread regional
disconformities in the abyssal plains of the Southern Ocean attests to extensive erosion of
deep-sea sediments during the Quaternary. We show that a wide belt of rapid sedimenta-
tion rates (>5.5 cm/k.y.) along the Southeast Indian Ridge (SEIR) is a global anomaly and
occurs in a region of low surface productivity bounded by two major disconformity fields
associated with the Kerguelen Plateau to the east and the Macquarie Ridge to the west. Our
high-resolution numerical ocean circulation model shows that the disconformity fields occur
in regions of intense bottom-current activity where current speeds reach 0.2 m/s and are favor-
able for generating intense nepheloid layers. These layers are transported toward and along
the SEIR to regions where bottom-current velocities drop to <0.03 m/s and fine particles settle
out of suspension, consistent with focusing factors significantly greater than 1. We suggest
that the anomalous accumulation of sediment along an 8000-km-long segment of the SEIR
represents a giant succession of contourite drifts that is a major extension of the much smaller
contourite east of Kerguelen Plateau and has occurred since 3–5 Ma based on the age of the
oldest crust underlying the deposit. These inferred contourite drifts provide exceptionally
valuable drilling targets for high-resolution climatic investigations of the Southern Ocean.
INTRODUCTION
The palimpsest nature of the abyssal seafloor
is nowhere more apparent than in the South-
ern Ocean where the mighty Antarctic Circum-
polar Current (Fig. 1), comprising a series of
braided jets, transports a massive volume of
ocean water eastward at an estimated 137 ± 7
× 106 m3/s (Meredith et al., 2011). Pioneering
magnetostratigraphic analysis of deep-sea sedi-
ment cores (Goodell and Watkins, 1968; Ken-
nett and Watkins, 1976; Ledbetter and Ciesielski,
1986; Osborn et al., 1983; Watkins and Ken-
nett, 1972) provided an unprecedented view of
the dynamic nature of deep-sea currents in the
Southern Ocean and their deleterious effect on
the continuity of the sedimentary record. This
evidence was supported by direct observations
of ocean-bottom bedforms (Kennett and Wat-
kins, 1976; Kolla et al., 1976) and manganese
nodules (Watkins and Kennett, 1977).
Understanding the transport of modern deep-
sea sediment is critical for accurate models of
paleoclimate and the widespread use of the sedi-
mentological record as a proxy for productiv-
ity where the connection between the seafloor
and sea surface is controvertible. The South-
ern Ocean, where diatoms contribute ~75% of
primary production (Crosta et al., 2005) and
dominate biogenic sediments (Goodell et al.,
1973), is a case in point. However, most of the
key studies on large-scale sediment reworking
in the Southern Ocean were conducted when
relatively little was known about the oceanogra-
phy of this region, and even the bathymetry and
tectonic fabric, which underpin the distribution
of deep-sea currents, were lacking detail. Here
we combine a high-resolution numerical model
of bottom currents with sedimentological data to
constrain the redistribution of sediment across
the abyssal plains and adjacent mid-ocean ridges
in the Southern Ocean.
METHODOLOGY
The distribution of Holocene disconformities
is based on our compilation of data on cored sur-
face sediments sampled in the Southern Ocean
that are missing material younger than 11.7 ka.
The data set includes a total of 632 sites with
paleomagnetic and/or micropaleontologic ages
from USNS Eltanin piston cores (Kennett and
Watkins, 1976; Osborn et al., 1983; Watkins and
Kennett, 1972) and ARA Islas Orcadas cores
(Ledbetter and Ciesielski, 1986), and 302 sites
where the surface sediment has been radiocarbon
dated, is constrained by an age model, or is
demonstrably undisturbed (Geibert et al., 2005).
The latter includes the Chase and Burckle (2015)
compilation and additional sites from various
cruises (see the GSA Data Repository1).
Long-term average sedimentation rates (Fig.
1A; Fig. DR1 in the Data Repository) were cal-
culated using global sediment thickness (Whit-
taker et al., 2013; Fig. DR2) and crustal age
(Müller et al., 2016; Fig. DR3). For 63 sites,
we obtained age model–derived sedimentation
rates and focusing factors (y) given as the ratio
of sediment accumulation rate to 230Th-normal-
ized sediment flux (vertical sediment rain rate)
(Dezileau et al., 2000; Francois et al., 2004; see
the Data Repository and Table DR1). Regions
with sediment focusing have y > 1, and those
with sediment winnowing have y < 1 (Dezileau
et al., 2000; Francois et al., 2004).
We use the global ocean-sea ice model (Geo-
physical Fluid Dynamics Laboratory [GFDL]
Modular Ocean Model version 1 [MOM1],
http://mom-ocean.org) to simulate global ocean
circulation at a resolution that results in real-
istic velocities throughout the water column
and is ideal for estimating interaction between
time-dependent bottom currents and ocean
bathymetry. The model is based on the GFDL
CM2.6 fully coupled climate model (Griffies et
al., 2015). GFDL-MOM1 nominally has a 1/10°
horizontal resolution, has 50 vertical levels, and
resolves mesoscale variability over the majority
of the global ocean (see Griffies et al., 2015, their
figure 1). GFDL-MOM1 is equilibrated for 35 yr
with repeated CORE Normal Year atmospheric
Forcing (CORE-NYF) (Griffies et al., 2009).
SEDIMENTATION RATES AND
FOCUSING FACTORS
Long-term average sedimentation rates in
the global ocean have a median value of 0.5
cm/k.y. (Fig. DR1). Rates of 6–10 cm/k.y. with
1
GSA Data Repository item 2016216, description
of sedimentological datasets, Table DR1, and Figures
DR1–DR20, is available online at www.geosociety
.org /pubs /ft2016.htm, or on request from editing@
geosociety.org.
GEOLOGY, August 2016; v. 44; no. 8; p. 663–666
|
Data Repository item 2016216
|
doi:10.1130/G38143.1
|
Published online 8 July 2016
© 2016 Geological Society of America. For permission to copy, contact editing@geosociety.org.
664 www.gsapubs.org
|
Volume 44
|
Number 8
|
GEOLOGY
maxima >50 cm/k.y. occur near continental mar-
gins and are prominent along passive margins
and the Bengal and Indus fans (Fig. DR1). A
high sedimentation rate in the equatorial Pacific
(Fig. DR1) is associated with rapid deposition of
biogenic sediment underlying a zone of intense
upwelling (Van Andel et al., 1975). A wide belt
of rapid sedimentation rates (>5.5 cm/k.y.) along
the Southeast Indian Ridge (SEIR) between
75°E and 150°E is a global anomaly (Fig. 1A;
Fig. DR1). This region is far removed from the
influence of high surface productivity (Soppa et
al., 2014) and lithogenous input, experiences low
to moderate vertical sediment flux (Fig. DR4),
and occurs over young oceanic crust (Fig. DR3)
adjacent to an abyssal plain where sedimenta-
tion rates would normally be close to the median
global value. This belt is much more extensive
than the area of sediment accumulation in the
northern North Atlantic (Fig. DR1), which is
linked to multiple contourite drifts (Rebesco
et al., 2014). Overall, the short-term Holocene
age model–derived sedimentation rates in the
Southern Ocean are moderately higher than
the long-term rates (Fig. 1A; Fig. DR5), with
a median difference of 1.7 cm/k.y. (Fig. DR5),
and show a linear relationship with the focusing
factors (Fig. 1C). This reflects a strong depen-
dence of Southern Ocean Holocene sedimenta-
tion rates on lateral sediment redistribution. The
focusing factors along the SEIR sedimentation
rate anomaly are consistently >1 with a mean
of 3 ± 2 (Fig. 2) and generally higher than else-
where in the Southern Ocean (Fig. DR6).
DISCONFORMITIES
Five major fields of Holocene disconfor
-
mities are evident in the Southern Ocean (Fig.
1B) (Dezileau et al., 2000; Kennett and Watkins,
1976; Ledbetter and Ciesielski, 1986; Osborn
et al., 1983; Watkins and Kennett, 1972), with
most occurring at latitudes higher than 50°S
within regions where the sedimentation rate is
very low (<1 cm/k.y.; Fig. DR7) and the water
depth is 3–5 km (Figs. DR8 and DR9). The larg-
est of these fields lies between 120°E and 165°E
and is associated with the SEIR and its triple
junction with Macquarie and Pacific-Antarctic
ridges (Fig. 1B). It occurs partly within the belt
of anomalously high sedimentation rates (Fig.
1A; Fig. DR7) and within a region of mixed
lithologies (Fig. DR10) characterized by rela-
tively low CaCO3 and high SiO2 contents (Figs.
DR11 and DR12). Smaller disconformity fields
occur east of the Kerguelen Plateau and in the
Weddell Sea, Bellingshausen, and Argentine
basins (Fig. 1B) where the sedimentation rates
are likewise low with nearby small pockets of
anomalously high sedimentation rates (Fig. 1;
Fig. DR7).
BOTTOM-WATER CURRENTS
The disconformity fields all overlap with
areas of intense eddy activity where the bottom-
current speeds and standard deviations exceed
0.1 m/s (Figs. 1B and 2) with a maximum of ~0.2
m/s. Bottom currents are steered by major bathy-
metric features (e.g., the Kerguelen Plateau, Fig.
2) due to Earth’s rotation, while smaller-scale
50°S
STF
SAF
SB
ACC
180˚
150˚W
120˚W
90˚W
60˚W
30˚W
30˚E
60˚E
90˚E
120˚E
150˚E
KP
AAD
SE Indian
Ridge
SW Indian
Ridge
Mid-Atlantic
Ridge
Pacific-Antarctic
Ridge
East Pacific
Ridge
Chile Rise
50°S
AB
AB
WSB
BB
Sedimentation rate (cm/k.y.)
0.000 0.015 0.030 0.045 0.060 0.075 0.090
Bottom current speed standard deviation (m/s)
y = 0.35x + 0.78
R = 0.75
0
5
10
15
20
010203040
Focusing factor
Sedimentation rate (cm/k.y.)
C
Figure 1. Sedimentation rates versus bottom current speeds in Southern Ocean. Stereographic projection. A: Long-term average sedimen-
tation rates overlain with Holocene age model–derived sedimentation rates (Table DR1 [see footnote 1]). Contours from Carter et al. (2009):
Subtropical Front (STF, dashed red line), Subantarctic Front (SAF, solid black line), Southern Boundary (SB, dashed black line) of Antarctic
Circumpolar Current (ACC). Solid red lines denote plate boundaries. B: Standard deviation of modeled present-day bottom-current speeds,
which is more representative than mean values because Southern Ocean experiences large variations in bottom-current speed. Conformities
(white symbols) and unconformities (green symbols) in Holocene sediment are shown as squares when based on magnetostratigraphic data
and as circles in all other cases (see text and the Data Repository for details). Major unconformity fields are highlighted by green outlines.
KP—Kerguelen Plateau; AAD—Australian-Antarctic discordance; AB—Argentine Basin; WSB—Weddell Sea Basin; BB—Bellingshausen Basin.
Note that maximum depth of AB (6.2 km) exceeds depth in our model (5.5 km), resulting in truncation of topography needed to dissipate
flow. WSB is outside of influence of ACC and its disconformity field is largely the product of ice streams creating powerful erosive turbidity
currents (Huang and Jokat, 2016) not captured in our model. C: Focusing factors versus Holocene sedimentation rates for Southern Ocean
(see the Data Repository and Table DR1 therein).
GEOLOGY
|
Volume 44
|
Number 8
|
www.gsapubs.org 665
features (e.g., seamounts) may impinge or
enhance current speeds (Rebesco et al., 2014).
We focus on the SEIR because of a clear juxta-
position of extreme differences in sedimenta-
tion rates and the occurrence of distinct fields
of sustained erosion linked to bottom-current
activity (Dezileau et al., 2000; Kennett and Wat-
kins, 1976; Osborn et al., 1983).
Our numerical model (Fig. 2) shows that the
SEIR is bounded by two major regions of high
bottom-current velocities whose occurrence
coincides with areas of seafloor disconformities
and low sedimentation rates (~1 ± 0.5 cm/k.y.;
Fig. 2) and whose movement is confined by the
Kerguelen Plateau to the west (Fig. 2A) and by
the Macquarie Ridge north of the Macquarie
Triple Junction to the east (Fig. 2B; Figs. DR13
and DR14). The general flow direction through
the Fawn Trough and the Kerguelen–St. Paul
Island Passage (Fig. 2A) is northerly and easterly
into the Australian-Antarctic Basin, consistent
with schematic circulation patters of McCart-
ney and Donohue (2007). The eastern sector of
the SEIR experiences severe seafloor erosion
at the Warringa fracture zone boundary of the
Antarctic-Australian Discordance and along
the flanks of all major fracture zones between
the George V and Balleny fracture zones (Fig.
2B). These regions are marked by high bottom-
current velocities (~0.05–0.1 m/s) augmented
by northerly flow due to the leakage of bottom
currents from the southern to the northern side of
the ridge (Fig. 2B) partly explaining the occur-
rence of patches of diatom ooze just north of
these fracture zones (Fig. DR15).
The anomalously high rates of sediment
accumulation along the SEIR are largely due to
lateral transport of sediment from the two areas
of high and variable bottom-current velocities
(Figs. 1B and 2; Fig. DR16) favorable for gen-
erating intense nepheloid layers as much as 2
km thick (McCave, 1986) to regions where low
bottom-current speeds (<0.03 m/s; Fig. 2) allow
fine particles to settle out of suspension (Rebesco
et al., 2014; Stow et al., 2009). This is the case
along most of the ~8000-km-long segment of the
SEIR between the Central Kerguelen Plateau and
the Tasman fracture zone (Fig. 2), which under-
lies areas of low summer surface productivity
with the exception of three short segments (Figs.
DR17–DR20). Transport of sediment within this
region is further supported by focusing factors
>>1 (Fig. 2; Table DR1).
We suggest that the anomalous accumulation
of sediment along the SEIR represents a giant
succession of contourite drifts that is a major
extension of the much smaller contourite east
of Kerguelen Plateau proposed by Dezileau et al.
(2000). Bottom-current velocities in this region
are consistent with velocities of <~0.06 m/s
expected for contourite drifts (Stow et al., 2009).
Likewise, sedimentation rates (Figs. 1A and 1C;
Table DR1) are within the low range of <2–10
cm/k.y. expected for open-ocean pelagic contou-
rite drifts (Stow et al., 2002). The distribution of
regional disconformities at the base and within
the drift (Fig. 1B) whose overall geometry is
outlined by anomalously high sedimentation
rates (Fig. 1A) is consistent with our numerical
bottom-current model (Fig. 1B). This suggests
that two SEIR regions (east of the Kerguelen
Plateau and northwest of the Macquarie triple
junction) have undergone long-term sustained
erosion by locally persistent currents resulting
in a gradual and extensive buildup of sediment
along the entire ridge segment between them.
This is supported by focusing factors ranging
from 1.5 to 9 similar to previously mapped val-
ues northeast of Kerguelen Plateau (Dezileau et
al., 2000). The age of the oldest crust subject to
anomalous accumulation of sediment is ca. 3–5
Ma based on the oceanic crustal ages from Mül-
ler et al. (2016) and broadly consistent with the
maximum ages of 2.5 Ma proposed by Kennett
and Watkins (1976) and 4.4. Ma by Osborn et al.
(1983) based on magnetostratigraphy.
CONCLUSIONS
Our combination of a high-resolution numer-
ical ocean circulation model with geological
observations from the seafloor allows us to
A
CKP
SKP
Southeast Indian
Ridge
Australian-Antarctic
Basin
B
AAD
TAS
Southeast Indian
Ridge
Australian-Antarctic
Basin
40˚S
50˚S
60˚S
160˚E140˚E120˚E
80˚E 100˚E
50˚S
60˚S
40˚S
Princess Elizabeth Trough
Fawn Trough
Vlamingh FZ
Geelvinck FZ
Warringa FZ George V FZ Macquarie
Ridge
Balleny FZ
Tasman FZ
Kerguelen-St. Paul
Island Passage
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Bottom current velocity (m/s)
0.00.5 1.01.5 2.02.5 3.03.5 4.04.5 5.05.5 6.0
Sedimentation rate (cm/k.y.)
17.81.0
1.6
0.8
1.0
3.3
8.8
2.6 3.6
9.5
0.7
2.1
1.5
1.3
3.3
1.1
1.3
2.7
2.6
2.6
1.5
2.2
2.9
3.2
0.3
Figure 2. Quiver plot of modeled present-day bottom currents overlying long-term sedimenta-
tion rates and focusing factors (black circles) in the Southeast Indian Ridge region bounded by
the Kerguelen Plateau to the west (A) and Macquarie Ridge to the east (B). Note that currents
with very low velocities appear as white dots. CKP—Central Kerguelen Plateau; SKP—South-
ern Kerguelen Plateau; AAD—Australian-Antarctic Discordance; TAS—Tasmania; FZ—fracture
zone. Equidistant cylindrical projection.
666 www.gsapubs.org
|
Volume 44
|
Number 8
|
GEOLOGY
make a clear connection between two regions
of extremely vigorous bottom currents (east
of the Kerguelen Plateau and northwest of the
Macquarie triple junction) and widespread dis-
conformities. The intervening region along the
SEIR reveals a major global sedimentation rate
anomaly caused by excess sediment buildup in
the absence of high surface productivity. This
anomaly appears both in sedimentation rates
derived from total sediment thickness that are
consistent with Holocene age model–derived
sedimentation rates as well as in focusing factors
>>1 reflecting lateral redistribution of Holocene
sediment. We suggest that an 8000-km-length of
the SEIR crest overlying oceanic crust younger
than 5 Ma is covered by a vast succession of
hitherto unmapped Pliocene–Holocene contou-
rite deposits. Ocean drilling of the inferred con-
tourite drifts would provide a high-resolution
record of Southern Ocean climate change.
ACKNOWLEDGMENTS
We are grateful to all shipboard scientists. We thank
Tristan Salles and Nicky Wright for help with Python
scripting. We thank Nicky Wright, three anonymous
reviewers, and editor Judith Totman Parrish for their
very constructive criticisms. This research was sup-
ported by the University of Sydney Faculty of Science
Seed Grant (Dutkiewicz), the Australian Research
Council (ARC) ITRP grant IH130200012 (Müller),
and ARC Future FT120100842 (Hogg), and ARC
DECRA DE150100223 (Spence) fellowships.
REFERENCES CITED
Carter, L., McCave, I.N., and Williams, M.J.M., 2009,
Circulation and water masses of the Southern
Ocean: A review, in Florindo, F., and Siegert, M.,
eds., Developments in Earth and Environmental
Sciences, Antarctic Climate Evolution, Volume 8:
Amsterdam, Elsevier, p. 85–114.
Chase, Z., and Burckle, L.H., 2015, Compilation of
230Th-normalized opal burial and opal concentra-
tions from Southern Ocean surface sediments:
doi: 10 .1594 /PANGAEA .846117.
Crosta, X., Romero, O., Armand, L.K., and Pichon,
J.-J., 2005, The biogeography of major diatom
taxa in Southern Ocean sediments: 2. Open ocean
related species: Palaeogeography, Palaeoclima-
tology, Palaeoecology, v. 223, p. 66–92, doi: 10
.1016 /j .palaeo .2005 .03 .028.
Dezileau, L., Bareille, G., Reyss, J.L., and Lemoine,
F., 2000, Evidence for strong sediment redistri-
bution by bottom currents along the southeast
Indian ridge: Deep-Sea Research, Part I: Oceano-
graphic Research Papers, v. 47, p. 1899–1936,
doi: 10 .1016 /S0967 -0637 (00)00008 -X.
Francois, R., Frank, M., Rutgers van der Loeff, M.M.,
and Bacon, M.P., 2004, 230Th normalization: An
essential tool for interpreting sedimentary fluxes
during the late Quaternary: Paleoceanography,
v. 19, PA1018, doi: 10 .1029 /2003PA000939.
Geibert, W., Rutgers van der Loeff, M.M., Usbeck, R.,
Gersonde, R., Kuhn, G., and Seeberg-Elverfeldt,
J., 2005, Quantifying the opal belt in the Atlantic
and southeast Pacific sector of the Southern
Ocean by means of 230Th normalization: Global
Biogeochemical Cycles, v. 19, GB4001, doi:
10.1029 /2005GB002465.
Goodell, H.G., and Watkins, N.D., 1968, The paleo-
magnetic stratigraphy of the Southern Ocean: 20°
West to 160° East longitude: Deep Sea Research
and Oceanographic Abstracts, v. 15, p. 89–112,
doi: 10 .1016 /0011 -7471 (68)90030 -2.
Goodell, H.G., Houtz, R., Ewing, M., Hayes, D., Naini,
B., Echols, R.J., Kennett, J.P., and Donahue, J.,
1973, Marine sediments of the southern oceans:
New York, American Geographical Society, Ant-
arctic Map Folio 17, 9 plates.
Griffies, S.M., Biastoch, A., Böning, C., Bryan, F., Da-
nabasoglu, G., Chassignet, E.P., England, M.H.,
Gerdes, R., Haak, H., and Hallberg, R.W., 2009,
Coordinated ocean-ice reference experiments
(COREs): Ocean Modelling, v. 26, p. 1–46, doi:
10 .1016 /j .ocemod .2008 .08 .007.
Griffies, S.M., Winton, M., Anderson, W.G., Benson,
R., Delworth, T.L., Dufour, C.O., Dunne, J.P.,
Goddard, P., Morrison, A.K., and Rosati, A., 2015,
Impacts on ocean heat from transient mesoscale
eddies in a hierarchy of climate models: Journal
of Climate, v. 28, p. 952–977, doi: 10 .1175 /JCLI
-D -14 -00353 .1.
Huang, X., and Jokat, W., 2016, Middle Miocene to
present sediment transport and deposits in the
southeastern Weddell Sea, Antarctica: Global
and Planetary Change, v. 139, p. 211–225, doi:
10 .1016 /j .gloplacha .2016 .03 .002.
Kennett, J.P., and Watkins, N.D., 1976, Regional
deep-sea dynamic processes recorded by late
Cenozoic sediments of the southeastern Indian
Ocean: Geological Society of America Bulletin,
v. 87, p. 321–339, doi: 10 .1130 /0016 -7606 (1976)
87 <321: RDDPRB >2 .0 .CO;2.
Kolla, V., Sullivan, L., Streeter, S.S., and Langseth,
M.G., 1976, Spreading of Antarctic Bottom Water
and its effects on the floor of the Indian Ocean
inferred from bottom-water potential temperature,
turbidity, and sea-floor photography: Marine Ge-
ology, v. 21, p. 171–189, doi: 10 .1016 /0025 -3227
(76) 90058 -X.
Ledbetter, M.T., and Ciesielski, P.F., 1986, Post-Mio-
cene disconformities and paleoceanography in
the Atlantic sector of the Southern Ocean: Pa-
laeogeography, Palaeoclimatology, Palaeoecol-
ogy, v. 52, p. 185–214, doi: 10 .1016 /0031 -0182
(86) 90046 -5.
McCartney, M.S., and Donohue, K.A., 2007, A deep
cyclonic gyre in the Australian–Antarctic Basin:
Progress in Oceanography, v. 75, p. 675–750, doi:
10 .1016 /j .pocean .2007 .02 .008.
McCave, I.N., 1986, Local and global aspects of the
bottom nepheloid layers in the world ocean: Neth-
erlands Journal of Sea Research, v. 20, p. 167–
181, doi: 10 .1016 /0077 -7579 (86)90040 -2.
Meredith, M.P., Woodworth, P.L., Chereskin, T.K.,
Marshall, D.P., Allison, L.C., Bigg, G.R., Dono-
hue, K., Heywood, K.J., Hughes, C.W., and
Hibbert, A., 2011, Sustained monitoring of the
Southern Ocean at Drake Passage: Past achieve-
ments and future priorities: Reviews of Geophys-
ics, v. 49, RG4005, doi: 10 .1029 /2010RG000348.
Müller, R.D., et al., 2016, Ocean basin evolution
and global-scale plate reorganization events
since Pangea breakup: Annual Review of Earth
and Planetary Sciences, v. 44, p. 107–138, doi:
10.1146 /annurev -earth -060115 -012211.
Osborn, N.I., Ciesielski, P.F., and Ledbetter, M.T.,
1983, Disconformities and paleoceanography in
the southeast Indian Ocean during the past 5.4
million years: Geological Society of America
Bulletin, v. 94, p. 1345–1358, doi: 10 .1130 /0016
-7606 (1983) 94 <1345: DAPITS>2 .0 .CO;2.
Rebesco, M., Hernández-Molina, F.J., Van Rooij, D.,
and Wåhlin, A., 2014, Contourites and associated
sediments controlled by deep-water circulation
processes: State-of-the-art and future consider-
ations: Marine Geology, v. 352, p. 111–154, doi:
10 .1016 /j .margeo .2014 .03 .011.
Soppa, M.A., Hirata, T., Silva, B., Dinter, T., Peeken,
I., Wiegmann, S., and Bracher, A., 2014, Global
retrieval of diatom abundance based on phyto-
plankton pigments and satellite data: Remote
Sensing, v. 6, p. 10,089–10,106, doi: 10 .3390
/rs61010089.
Stow, D.A.V., Faugères, J.-C., Howe, J.A., Pudsey,
C.J., and Viana, A.R., 2002, Bottom currents,
contourites and deep-sea sediment drifts: Cur-
rent state-of-the-art, in Stow, D.A.V., et al., eds.,
Deep-Water Contourite Systems: Modern Drifts
and Ancient Series, Seismic and Sedimentary
Characteristics: Geological Society of London
Memoir 22, p. 7–20, doi: 10 .1144 /GSL .MEM
.2002 .022 .01 .02.
Stow, D.A.V., Hernández-Molina, F.J., Llave, E.,
Sayago-Gil, M., del Río, V.D., and Branson, A.,
2009, Bedform-velocity matrix: The estimation
of bottom current velocity from bedform obser-
vations: Geology, v. 37, p. 327–330, doi: 10 .1130
/G25259A.1.
Van Andel, T.H., Heath, G.R., and Moore, T.C., 1975,
Cenozoic History and Paleoceanography of the
Central Equatorial Pacific Ocean: A Regional
Synthesis of Deep Sea Drilling Project Data:
Geological Society of America Memoir 143, 223
p., doi: 10 .1130 /MEM143 -p1.
Watkins, N.D., and Kennett, J.P., 1972, Regional
sedimentary disconformities and Upper Ceno
-
zoic changes in bottom water velocities between
Australasia and Antarctica, in Hayes, D.E., ed.,
Antarctica Oceanology II: The Australian–New
Zealand Sector: American Geophysical Union
Antarctic Research 19, p. 273–293, doi: 10 .1029
/AR019p0273.
Watkins, N.D., and Kennett, J.P., 1977, Erosion of
deep-sea sediments in the Southern Ocean be-
tween longitudes 70°E and 190°E and contrasts
in manganese nodule development: Marine Geol-
ogy, v. 23, p. 103–111, doi: 10 .1016 /0025 -3227
(77)90084 -6.
Whittaker, J.M., Goncharov, A., Williams, S.E., Müller,
R.D., and Leitchenkov, G., 2013, Global sediment
thickness data set updated for the Australian-Ant-
arctic Southern Ocean: Geochemistry Geophysics
Geosystems, v. 14, p. 3297–3305, doi: 10 .1002
/ggge .20181.
Manuscript received 25 May 2016
Revised manuscript received 8 June 2016
Manuscript accepted 15 June 2016
Printed in USA
"!
#$%!&%'%!()*+$,'+(-!2016216!
Appendix(DR1.(Description(of(sedimentological(datasets,(Table(DR1,(
Figures(DR1<DR20(
/0123245!6778957:!;4337<=5!;:457!1>2?:>!:<2@:>A!0<!5760@7<=!:;;4@4>:=02<!
0<!=B7!$24=B73<!+;7:<!
%630:<:!&4=C07D0;EFG!(H!&07=@:3!IJ>>73G!%<637D!I;KH!L211G!:<6!*:4>!$87<;7!
F;2337582<60<1!:4=B23M!:630:<:H64=C07D0;EN5A6<7AH764H:4
DATASETS
Holocene sediment ages
+43!4<;2<O23@0=A9;2<O23@0=A!6:=:57=!D:5!5488>7@7<=76!?A!6:=76!5760@7<=!;2375!O32@!
=B7!$24=B73<!+;7:<!<2=!O24<6!0<!=B7!KB:57!:<6!P43;C>7!QRS"TU!6:=:57=H!'B7!5760@7<=!
;2375!:37M!*$RSVS9"!:<6!!"#$%&'()QP0:<;B0!:<6!#7352<67G!RSSW:X!P0:<;B0!:<6!#7352<67G!
RSSW?X!P0:<;B0!:<6!#7352<67G!RSSW;UG!I&SY9ZSY[!Q$C0<<73!7=!:>HG!RS"S:G!?UG!(K""9\Z!
QKB:3>75!:<6!]:03?:<C5G!"VVR:X!KB:3>75!:<6!]:03?:<C5G!"VVR?UG!I&\W9TT"G!I&\W9TRY!
:<6!I&YZ9SRT!Q^:?3:;B7307!7=!:>HG!"V\V:G!?X!^:?3:;B7307!7=!:>HG!"V\V;UG!I&\\9YYS!
Q^:?7A307!7=!:>HG!"VV[:G!?UG!I(S\S[9*KSVG!I&SY9Z"R\!:<6!RSR9"RZZ!Q^:@A!7=!:>HG!
RS"T:G!?G!;G!6UG!*$RSZ\9RG!*$"\R"9[!:<6!*$"TYT9"!QP2<<!7=!:>HG!"VV\:G!?G!;G!6UG!
+$+SV"S_`KSWG!+$+SV"S_`KSVG!+$+SV"S_`K"SG!+$+SV"S_`K"TG!+$+SV"S_`K"VG!
+$+SV"S_`KRZ!:<6!&]\"_*KSY!Q`035B<73!7=!:>HG!RS"R:G!?UG!(K"R9RRT!:<6!I&\W9TRV!
QL2D:36!:<6!*37>>G!"VVW:G!?X!L2D:36!:<6!*37>>G!"VVW;UG!#+I)%9S[G!#+I)%9"WG!#+I)%9
"T!:<6!#+I)%9"[!Q#2EB0C!7=!:>HG!"VV":G!?UG!*$RS\R!:<6!*$"TS[9"!QI:;C7<57<!7=!:>HG!
"VVW:G!?G!;UG!*$YTaS\Z9"G!*$YTaSYV9RG!*$YTaSY[9RG!*$YTaSYW9ZG!*$YTaSTV9R!:<6!
*$YTaST[9"!Q^:@A!7=!:>HG!RS"W:G!?G!;G!6G!7G!OG!1UG!'$*9RIKG!'$*9ZIK!:<6!'$*9R*K!
QI43:A:@:!7=!:>HG!RSSS:G!?UG!''bSTY9"Z9*KW!Q$B7@75B!7=!:>HG!RSSR:G!?UG!(K"Z9RRVG!
I&\\9Y[V!:<6!I&\S9ZSW!Q(257<=B:>!7=!:>HG!"VVT:G!?G!;G!6UG!`KSYZ!Q%>>7<!7=!:>HG!RSST:G!?UG!
&]YVHS"R9#PG!&]YVHSSV9#PG!K237ZSR!:<6!""V9YWS%!Q&2@:;C!7=!:>HG!"VV":G!?G!;G!6G!7UG!
I&SZ9RTVYG!bP*S"9S"9`K"YP!:<6!bP*S"9S"9c*K"YP!QI:66052<!7=!:>HG!RS"R:G!?UG!
*$"Z\S9Z!Q#32?7!:<6!I:;C7<57<G!"VVR:G!?UG!*$"Y\[9"G!*$R[S[9[!:<6!*$T\aRY"9"!
Qc:;2=!&75!K2@?75!7=!:>HG!RSS\:G!?UH!
d7!;:37O4>>A!37e07D76!:>>!Eltanin'50=75!O32@!d:=C0<5!:<6!`7<<7==!Q"VYRU!=B:=!B:6!?77<!
379:<:>AE76!?A!+5?23<!7=!:>H!Q"V\ZU!:<6!0<!3:37!0<5=:<;75!2O!605;378:<;075!0<!82>:30=A!
:5501<@7<=!D7!457!=B7!+5?23<!7=!:>H!Q"V\ZU!:175!:5!=B7!82>:30=A!@7:5437@7<=5!D737!
@:67!450<1!:!@237!57<50=0e7!@:1<7=2@7=73!:<6!D0=B!0@832e76!?025=3:=013:8B0;!;2<=32>H!
'B737!05!e73A!1226!:1377@7<=!?7=D77<!=B7!P34B<759:17!:5501<@7<=!2O!=B7!@:f230=A!2O!
Eltanin';237!=285!6:=76!?A!@:1<7=25=3:=013:8BA!:<6!?A!54?57g47<=!@237!B01B>A9
3752>e76!@7=B265!QKB:57!:<6!P43;C>7G!RS"TUH!(:37!7h;78=02<5!0<;>467!Eltanin!;2375!)"W9
T!:<6!)RS9"S!DB0;B!D737!e73A!D7>>96:=76!?A!KB:57!7=!:>H!QRSSZU!:<6!;2<=3:60;=76!=B7!
7:3>073!3754>=5!2O!#2267>>!:<6!d:=C0<5!Q"V[\UX!0<!=B757!;:575!=B7!KB:57!7=!:>H!QRSSZU!
6:=75!:37!4576H!
!
R!
Focusing(factors(
(
]2;450<1!O:;=235!D737!;:>;4>:=76!450<1!=B7!50@8>0O076!7g4:=02<!O32@!&7E0>7:4!7=!:>H!
QRSSSUM!
!
𝝍=!
𝑭
𝑭𝒗𝒆𝒓𝒕𝒊𝒄𝒂𝒍
!
!
DB737!Fe73=0;:>!05!=B7!5760@7<=!3:0<!3:=7!Q1a;@RaC:U!O23!:<!:1796:=76!5=3:=013:8B0;!
57;=02<X!F!05!=B7!:;;4@4>:=02<!3:=7!Q1a;@RaC:UX!ψ!05!=B7!O2;450<1!O:;=23!Q&7E0>7:4!7=!:>HG!
RSSSX!]3:<;205!7=!:>HG!"VVZX!]3:<;205!7=!:>HG!RSSWX!$4@:<!:<6!P:;2<G!"V\VUH!'B7!
:;;4@4>:=02<!3:=75!D737!;:>;4>:=76!O32@!>0<7:3!5760@7<=:=02<!571@7<=5!O32@!D7>>5!0<!
DB0;B!=B7!:17!@267>!05!6730e76!O32@!"WK!6:=0<1G!2hA17<!052=2875!23!:!;2@?0<:=02<!2O!
2hA17<!052=2875!:<6!?025=3:=013:8BA!:<6a23!"WK!6:=0<1!Q577!':?>7!&("!O23!>05=!2O!;2375U!
:<6!63A!?4>C!67<50=A!O23!:!10e7<!5:@8>7H!&3A!?4>C!67<50=075!D737!;:>;4>:=76!450<1!C<2D<!
K:K+Z!;2<=7<=!:<6!=B7!?75=9O0=!57;2<6923673!82>A<2@0:>!37>:=02<5B08!2O!]327>0;B!7=!:>H!
Q"VV"UM!
!
𝑩𝑫=𝟓.𝟑𝟏𝟑!×!𝟏𝟎!𝟓!×!(𝑪𝒂𝑪𝑶𝟑)𝟐!+𝟗.𝟑𝟒𝟔!×!𝟏𝟎!𝟒×!𝑪𝒂𝑪𝑶𝟑+!𝟎.𝟑𝟑𝟔𝟕!
!
!DB737!BD!05!63A!?4>C!67<50=A!Q1a;@ZUH!,<!=B7!:?57<;7!2O!K:K+Z!@7:5437@7<=5!O23!:!5@:>>!
<4@?73!2O!;2375!Q577!':?>7!&("UG!:!@7:<!63A!?4>C!67<50=A!2O!SHW!1!;@9Z!O23!50>0;7245!
5760@7<=!Q#70?73=!7=!:>HG!RSSTU!D:5!4576H!%>>!e:>475!2O!Fe73=0;:>!Q0H7HG!230Th-normalized
sediment flux) D737!2?=:0<76!O32@!37O737<;75!;0=76!0<!':?>7!&("H!%5!@25=!2O!=B7!;2375!
;2<=:0<!@4>=08>7!@7:5437@7<=5!2O!K:K+Z!:<6!;2337582<60<1!230Th-normalized sediment
flux over the interval of interest, our focusing factors are averages over those intervals.!
(
)33235!O23!O2;450<1!O:;=235!:37!e73A!60OO0;4>=!=2!75=0@:=7!:<6!:37!3:37>A!37823=76H!]23!
7h:@8>7G!e:>475!10e7<!0<!&7E0>7:4!7=!:>H!QRSSSU!:<6!]3:<C!7=!:>H!Q"VVVU!:37!10e7<!D0=B24=!
733235!:>=B241B!]3:<C!7=!:>H!Q"VVVU!541175=5!=B:=!ψ!05!@7:<0<1O4>!0O!0=!05!501<0O0;:<=>A!
5@:>>73!Q0H7HG!i!TSjU!23!137:=73!Q0H7HG!k!TSjU!=B:<!"H!]23!;237!I&\\9YYZG!-4!Q"VVWU!10e75!
:<!73323!3:<17!2O! ±!SHZ!O23!O2;450<1!O:;=235!2O!VHT!:<6!ZHRH!&7580=7!4<;73=:0<=075G!
]3:<;205!7=!:>H!QRSSWU!:3147!=B:=!O2;450<1!O:;=235!:37!1226!832h075!O23!5760@7<=!O2;450<1H!
( (
!
Z!
Table(DR1.!^2;:=02<G!D:=73!678=BG!5760@7<=:=02<!3:=75!:<6!O2;450<1!O:;=235!Q:e73:17!
2e73!=B7!0<=73e:>!2O!0<=7375=U!O23!;2375!O32@!=B7!$24=B73<!+;7:<H!$760@7<=:=02<!3:=75!
:<6!O2;450<1!O:;=235!:37!O23!=B7!L2>2;7<7!Q67O0<76!:5!S9"Z!C:!?A!&7>E0>7:4!7=!:>H!QRSSZU!
:<6!:88>076!B737!O23!;2@8:3:?0>0=A!37:52<5U!7h;78=!0<!=B7!;:57!2O!-4!Q"VVWU!6:=:!DB737!
=B7!e:>475!3783757<=!=B7!873026!S9"\!C:H!/:>475!0<!?2>6!:37!O32@!;0=76!37O737<;75G!:>>!
2=B73!e:>475!D737!;:>;4>:=76!450<1!:17!@267>5!:<6!RZS'B9<23@:>0E76!@:55!O>4h75!O32@!
;0=76!37O737<;75H!FK:K+Z!@7:5437@7<=!<2=!:e:0>:?>7H!$77!5488>7@7<=:3A!=7h=!O23!67=:0>H!
Core%
Lat.%
Long.%
Water%
Depth%
(m)%
%
Sedimentation%rate%
(cm/kyr)%
Focusing%factor%
Reference%
*##'+))))))))))
'%$,-.)
'##%,(&)
&.(+)
()
(,%)
/0123456670)73)16,)8(..-9)
*##'&:)
'%;,<+)
'##%,(()
&;;&)
#,&)
#,+)
/0123456670)73)16,)8(..-9)
*##';:)
'$.,-()
'##&,;<)
%.(-)
()
#,()
/0123456670)73)16,)8(..-9)
*##'#(:)
'$%,<;)
'##%,.<)
&;#<)
#)
.,;)
/0123456670)73)16,)8(..-9)
*#&'#$)))))))
'%<,--)
'#(%,.+)
&&--)
#.)
%,<)
/0123456670)73)16,)8(..-9)
*#&'#;)))))))
'%;,<+)
'#(&,-%)
+-.&)
$,%)
%,+)
/0123456670)73)16,)8(..-9)
*#%'&)))
'%-,.()
'--,;$)
&-#.)
%)
%,<)
/0123456670)73)16,)8(..-9)
*#%'%))))))))
'%<,.()
'--,-<)
&+.;)
(,%)
+,;)
/0123456670)73)16,)8(..-9)
*#%'$))))))))
'%-,-;)
'#.#,+()
&%#;)
()
#,<)
/0123456670)73)16,)8(..-9)
*#%'#()
'%<,$<)
'#.<,<.)
&%;()
#)
.,$)
/0123456670)73)16,)8(..-9)
*#%'(<))
'%$,.()
'#&-,<()
++(<)
()
#)
/0123456670)73)16,)8(..-9)
*#;';))))))
'$#,.<)
'#+&,+%)
&&+%)
()
.,;)
/0123456670)73)16,)8(..-9)
*#-'$:)
'$#,-+)
'#.;,-$)
%.$&)
#)
.,$)
/0123456670)73)16,)8(..-9)
*#-';))))
'$(,#$)
'#.-,.-)
%.%#)
(,%)
#)
/0123456670)73)16,)8(..-9)
*(.'#+))))))))))
'%%,..)
'#.&,-%)
+<-%)
#)
#,$)
/0123456670)73)16,)8(..-9)
*(#'(.:)
'$.,(%)
'#(.,#;)
&;.#)
+,+)
#,$)
/0123456670)73)16,)8(..-9)
*(+'#&)
'$+,<()
'#.<,<%)
&-%;)
#)
.,%)
/0123456670)73)16,)8(..-9)
*(+'#;:))
'$.,(()
'##&,$+)
%.($)
()
.,-)
/0123456670)73)16,)8(..-9)
*(+'#<)))
'%<,-<)
'##%,..)
%(;()
()
.,-)
/0123456670)73)16,)8(..-9)
*(%'#$)
'%$,#%)
'#%$,(()
+$(#)
(,%)
#,%)
/0123456670)73)16,)8(..-9)
*(;'(+)))
'%-,$()
#%%,(&)
+#<()
&+,%)
#;,<)
/0123456670)73)16,)8(..-9)
*++'#-)
'%-,<$)
'##-,$$)
&+<-)
(,%)
#,()
/0123456670)73)16,)8(..-9)
*+$'+$)
'$.,+-)
#%;,%+)
(<#$)
+,<)
#)
/0123456670)73)16,)8(..-9)
=><';#)
'%<,.%)
#%%,;+)
+((&)
(,$)
#,$)
/0123456670)73)16,)8(..-9)
?@#$'##%)
'%%,$<)
#&#,(<)
+#&;)
(,&)
.,<)
/0123456670)73)16,)8(..-9)
?@#$'#(#)
'%.,$;)
#$&,+<)
+$#&)
%,#)
#,%)
/0123456670)73)16,)8(..-9)
?@#;'<<:))
'%;,.+)
';&,&<)
&.$+)
#,+)
.,()
/0123456670)73)16,)8(..-9)
?@#;'-.:)
'$.,#+)
';&,-+)
&%$<)
.,$)
.,&)
/0123456670)73)16,)8(..-9)
?@#<';+:)
'$#,%+)
';+,(<)
&%$<)
#,<)
#,&)
/0123456670)73)16,)8(..-9)
?@#<'-+)
'%-,&<)
'$&,;<)
+<+&)
#,$)
.,-)
/0123456670)73)16,)8(..-9)
@A)-&'#.())
'&+,%.)
;-,<.)
+(.%)
%,-)
3.3%
A7B5671C)73)16,)8(...9)
@A)-&'#.&))
'&$,%.)
<<,#.)
+&$.)
#(,%)
8.8%
A7B5671C)73)16,)8(...9)
@A)<<';$-))
'&$,#.)
-.,#.)
+&(.)
&,#)
2.6%
A7B5671C)73)16,)8(...9)
@A)<<';;.))
'&$,..)
-$,%.)
+(-.)
$,<)
3.6%
A7B5671C)73)16,)8(...9)
@A)<&'%(;))
'&+,%.)
%#,(.)
+($-)
27%
10%
A7B5671C)73)16,)8(...9D)E01FGH5I)73)16,)8#--+9)
@A)<<';;+))
'%(,%%)
#.-,%.)
(&$.)
(;,&)
9.5%
JC)8#--&9)
@A)<&'%%())
'%&,-.)
;+,<.)
#;<.)
((,#)
5%
A7B5671C)73)16,)8(...9)
!"#;;('<)
'%%,&$)
#,#$)
&#+;)
#,+)
0.6%
E01FK)73)16,)8#---9D)E01FK)8(..(L9))
!
W!
Core%
Lat.%
Long.%
Water%
Depth%
(m)%
%
Sedimentation%rate%
(cm/kyr)%
Focusing%factor%
Data%Reference%
!"#;$<'<)
'%(,%-)
&,&<)
+(--)
#+,;%)
4.6%
E01FK)73)16,)8#---9D)@1GK7FI7F)8#--$9)
!"#;%$'%)
'&<,-.)
$,;#)
+<(<)
;,%)
0.7%
E01FK)73)16,)8#---9D)E01FK)1F2)@1GK7FI7F)8(..(19)
!"#;%&'#)
'&$,;;)
;,$#)
(%#-)
#,;)
1.2%
E01FK)73)16,)8#---9D)E01FK)8(..(19)
!"(.<('#)
'&+,(()
##,;&)
&$#.)
(,$)
2%
E01FK)73)16,)8#---9D)E01FK)1F2)@1GK7FI7F)8(..(L9)
!"(&-<'#)
'&&,#%)
'#&,(+)
+;<+)
$,+)
5.7%
E01FK)73)16,)8#---9D)@1GK7FI7F)73)16,)8(..#19)
!"(&--'%)
'&$,%#)
'#%,++)
+#;%)
(,-)
2.2%
E01FK)73)16,)8#---9D)@1GK7FI7F)73)16,)8(..#L9)
*&-'(-)
'%;,#.)
-&,-$)
&(+;)
(,&)
.,;)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&<'+)
'&#,.()
#..,.#)
+-+.)
#,&)
(,#)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*%.'<)
'%.,-+)
#.&,-#)
+((;)
-,&)
#,%)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&%'(;)
'&+,+#)
#.%,%%)
+;;$)
#,$)
#,+)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&%'(-)
'&&,<<)
#.$,%()
+<$+)
(,$)
+,+)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&-'$)
'%#,.#)
#.-,--)
++($)
(,+)
#,#)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&-'<)
'%%,.;)
##.,.()
+$-+)
%,-)
#,+)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&%'$&)
'%(,&<)
##&,.-)
+<(+)
<,#)
(,;)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&%'$+)
'%+,&&)
##&,($)
+-#%)
<,()
(,$)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&%';-)
'&%,.$)
##&,+;)
&.;-)
#,-)
(,$)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&%';&)
'&;,%%)
##&,&&)
+;&&)
#,&)
#,%)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&%';#)
'&<,.+)
##&,&-)
+$%<)
(,#)
(,()
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&-'<)
'%%,.;)
##.,.()
+$-+)
%,-)
#,+)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&<'#+)
'(<,+#)
-+,+.)
++<.)
%,-)
<,<)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&<'##)
'(-,&.)
-;,+()
+&$()
#,;)
#,.)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&<'(;)
'+<,++)
;-,%&)
+(<%)
(,-)
(,-)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*&<'(()
'+-,%&)
<%,(%)
++;<)
+,;)
+,()
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*%.'#+)
'$.,..)
#.%,..)
&(.-)
(,#)
.,+)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
*%.'#;)
'$(,..)
#(.,.+)
&.<#)
%,#)
#,.)
JC)8#--&9)1F2)07M707FG7I)3N7075F)
)
(
CaCO3(and(bSiO2(content(of(surface(sediments!
!
+43!@:85!2O!K:K+Z!:<6!?$0+R!873;7<=:175!0<!543O:;7!5760@7<=5!:37!?:576!2<!;2@?0<76!
6:=:57=5!O32@!KB:57!:<6!P43;C>7!QRS"TUG!%3;B73!Q"VV[UG!%3;B73!Q"VVVU!:<6!P2B3@:<<!
Q"VVVUH!!
(
(
!
T!
(
(
Figure(DR1.!!^2<19=73@!:e73:17!5760@7<=:=02<!3:=75!0<!=B7!D23>6l5!2;7:<!;:>;4>:=76(
450<1!=B7!1>2?:>!5760@7<=!=B0;C<755!6:=:57=!2O!dB0==:C73!7=!:>H!QRS"ZU!0<;23823:=0<1!=B7!
6:=:57=!2O!&0e0<5!QRSSWUG!DB0;B!3783757<=!@0<0@4@!5760@7<=!=B0;C<755!75=0@:=75G!:<6!
=B7!:17!1306!2O!IJ>>73!7=!:>H!QRS"[UH!(76!>0<75!0<60;:=7!8>:=7!?24<6:3075H!$77!:>52!]015H!
&(R!:<6!&(ZH!I2>>D7067!832f7;=02<H!
!
!
!
[!
!
!
Figure(DR2.!!I0<0@4@!5760@7<=!=B0;C<755!75=0@:=75!?:576!2<!=B7!1>2?:>!5760@7<=!
=B0;C<755!6:=:57=!2O!dB0==:C73!7=!:>H!QRS"ZU!0<;23823:=0<1!=B7!6:=:57=!2O!&0e0<5!QRSSWUH!
(76!>0<75!0<60;:=7!8>:=7!?24<6:3075H!$=737213:8B0;!832f7;=02<H!
!
!
Y!
!
!
Figure(DR3.!!%17!2O!2;7:<!;345=!O32@!IJ>>73!7=!:>H!QRS"[UH!P>:;C!>0<75!0<60;:=7!8>:=7!
?24<6:3075!D0=B!54?:730:>!823=02<5!2O!;2<=0<7<=5!5B2D<!0<!>01B=!137A!:<6!54?@73176!
;2<=0<7<=:>!;345=!0<!@7604@!137AH!$=737213:8B0;!832f7;=02<H!
!
!
\!
!
(
(
Figure(DR4.('B9<23@:>0E76!5760@7<=!O>4h!Q;03;>75U!O32@!KB:57!:<6!P43;C>7G!QRS"TU!2e73!
>2<19=73@!:e73:17!5760@7<=:=02<!3:=75!:5!0<!]01437!&("H!(76!>0<75!0<60;:=7!8>:=7!
?24<6:3075H!$=737213:8B0;!832f7;=02<H!
!
V!
!
!
Figure(DR5.!&0OO737<;7!0<!5760@7<=:=02<!3:=7!;:>;4>:=76!450<1!>2<19=73@!:e73:17!
5760@7<=:=02<!3:=7!Q577!]01H!&("!;:8=02<!O23!67=:0>U!@0<45!L2>2;7<7!5760@7<=:=02<!3:=7!
;:>;4>:=76!450<1!:179@267>5!O23!;2375!>05=76!0<!':?>7!&("H!'B7!@760:<!60OO737<;7!05!"HY!
;@aCA3G!D0=B!:!@7:<!60OO737<;7!2O!W!;@aCA3!37O>7;=0<1!=B7!0<O>47<;7!2O!24=>0735!647!=2!
B01B!L2>2;7<7!5760@7<=:=02<!3:=75!:=!52@7!>2;:=02<5!Q577!]01H!"%UH!
!
!
"S!
!
!
Figure(DR6.(]2;450<1!O:;=235!Q;2>2376!;03;>75U!2e73>A0<1!>2<19=73@!5760@7<=:=02<!3:=75!
0<!=B7!$24=B73<!+;7:<H!]2;450<1!O:;=235!:>2<1!=B7!$24=B7:5=!,<60:<!(0617!Q$),(U!:37!
;2<505=7<=>A!:<6!501<0O0;:<=>A!137:=73!=B:<!"H!,<!=B7!P7>>0<15B:457<!P:50<!QPPU!=B7!
@:f230=A!2O!O2;450<1!O:;=235!3:<17!?7=D77<!SHT!:<6!"HT!D0=B!2<>A!Z!e:>475!k!TH!&:=:!0<!
2=B73!8:3=5!2O!=B7!$24=B73<!+;7:<!:37!37>:=0e7>A!58:357H!P>:;C!24=>0<75!0<60;:=7!C<2D<!
>:317!;2<=2430=7!678250=5!O32@!(7?75;2!7=!:>H!QRS"WU!:e:0>:?>7!:=!
B==8MaaDDDH@:30<737102<5H231aH!(76!>0<75!67<2=7!8>:=7!?24<6:3075H!$=737213:8B0;!
832f7;=02<H!(
!
""!
!
!
Figure(DR7.(^2<19=73@!:e73:17!5760@7<=:=02<!3:=75!2e73>:0<!?A!;2<O23@0=075!QDB0=7!
5g4:375!:<6!DB0=7!;03;>75U!:<6!4<;2<O23@0=075!Q?>:;C!5g4:375!:<6!?>:;C!;03;>75U!0<!
543O:;7!5760@7<=!2O!P34B<75!:17H!$g4:375!3783757<=!@:1<7=25=3:=013:8B0;!6:=:!O32@!
d:=C0<5!:<6!`7<<7==!Q"VYRUG!`7<<7==!:<6!d:=C0<5!Q"VY[UG!+5?23<!7=!:>H!Q"V\ZU!:<6!
^76?7==73!:<6!K07507>5C0!Q"V\[UH!K03;>75!3783757<=!L2>2;7<7!5760@7<=!6:=76!?A!"WK!:<6!
4<605=43?76!543O:;7!5760@7<=!O32@!=B7!KB:57!7=!:>H!QRS"TU!;2@80>:=02<!:5!D7>>!:5!
:660=02<:>!6:=:!O32@!e:30245!5243;75!Q577!57;=02<!2<!6:=:57=5!0<!=B05!&:=:!(78250=23AUH!
P>:;C!>0<75!67<2=7!8>:=7!?24<6:3075H!$=737213:8B0;!832f7;=02<H(
!
!
"R!
!
(
Figure(DR8.(P:=BA@7=3A!2e73>:0<!?A!;2<O23@0=075!QDB0=7!5g4:375!:<6!DB0=7!;03;>75U!:<6!
4<;2<O23@0=075!Q?>:;C!5g4:375!:<6!?>:;C!;03;>75U!0<!543O:;7!5760@7<=!2O!P34B<75!:17H!$77!
;:8=02<!0<!]01H!&(Y!O23!67=:0>H!P>:;C!>0<75!D0=B!DB0=7!24=>0<75!67<2=7!8>:=7!?24<6:3075H!
P:=BA@7=3A!05!O32@!=B7!)'+*+"!)!"!%3;9I0<4=7!#>2?:>!(7>07O!I267>!Q%@:<=7!:<6!
):C0<5G!RSSVUH!$=737213:8B0;!832f7;=02<H!(
(
(
!
"Z!
(
(
Figure(DR9.(]37g47<;A!2O!P34<B75!:17!4<;2<O23@0=A!2;;4337<;7!e73545!678=B!O23!=B7!
$24=B73<!+;7:<H!$77!;:8=02<!O23!]01437!&(Y!O23!67=:0>H!
!
"W!
!
(
Figure(DR10.($7:O>223!>0=B2>21075!O32@!&4=C07D0;E!7=!:>H!!QRS"TU!2e73>:0<!?A!
;2<O23@0=075!QDB0=7!5g4:375!:<6!DB0=7!;03;>75U!:<6!4<;2<O23@0=075!Q?>:;C!5g4:375!:<6!
?>:;C!;03;>75U!0<!543O:;7!5760@7<=!2O!P34B<75!:17!Q577!]01H!&(Y!;:8=02<!O23!67=:0>UH!!
$=737213:8B0;!832f7;=02<H!
!
!
"T!
!
Figure(DR11.(#306676!@:8!2O!K:K+Z!;2<;7<=3:=02<5!0<!543O:;7!5760@7<=5!450<1!
;2@?0<76!6:=:!O32@!%3;B73!Q"VVVUG!P2B3@:<<!Q"VVVU!:<6!KB:57!:<6!P43;C>7!QRS"TU!
2e73>:0<!?A!;2<O23@0=075!QDB0=7!5g4:375!:<6!DB0=7!;03;>75U!:<6!4<;2<O23@0=075!Q?>:;C!
5g4:375!:<6!?>:;C!;03;>75U!0<!543O:;7!5760@7<=!2O!P34B<75!:17!Q577!]01H!&(Y!;:8=02<!O23!
67=:0>UH!(76!>0<75!67<2=7!8>:=7!?24<6:3075H!#30660<1!D:5!62<7!450<1!:<!:<052=3280;!
58>0<7!D0=B!=7<502<!2O!SHTH!$=737213:8B0;!832f7;=02<H!
!
!
!
!
!
"[!
!
Figure(DR12.(#306676!@:8!2O!?$0+R!;2<;7<=3:=02<5!0<!543O:;7!5760@7<=5!450<1!
;2@?0<76!6:=:!O32@!%3;B73!Q"VVVUG!P2B3@:<<!Q"VVVU!:<6!KB:57!:<6!P43;C>7!QRS"TU!
2e73>:0<!?A!;2<O23@0=075!QDB0=7!5g4:375!:<6!DB0=7!;03;>75U!:<6!4<;2<O23@0=075!Q?>:;C!
5g4:375!:<6!?>:;C!;03;>75U!0<!543O:;7!5760@7<=!2O!P34B<75!:17!Q577!]01H!&(Y!;:8=02<!O23!
67=:0>UH!(76!>0<75!67<2=7!8>:=7!?24<6:3075H!#30660<1!D:5!62<7!450<1!:<!:<052=3280;!
58>0<7!D0=B!=7<502<!2O!SHTH!$=737213:8B0;!832f7;=02<H!
!
"Y!
!
!
(
Figure(DR13.(m40e73!8>2=!2e73>A0<1!?:=BA@7=3A!;2<=2435!O23!=B7!D75=73<!57;=23!2O!=B7!
$24=B7:5=!,<60:<!(0617H!K`*!n!K7<=3:>!`73147>7<!*>:=7:4G!$`*!n!$24=B73<!`73147>7<!
*>:=7:4H!)g40605=:<=!;A>0<630;:>!832f7;=02<H!
(
(
(
!
"\!
(
Figure(DR14.(m40e73!8>2=!2e73>A0<1!?:=BA@7=3A!;2<=2435!O23!=B7!7:5=73<!57;=23!2O!=B7!
$24=B7:5=!,<60:<!(0617H!)g40605=:<=!;A>0<630;:>!832f7;=02<H!
(
!
"V!
(
(
Figure(DR15.($7:O>223!>0=B2>21A!O32@!&4=C07D0;E!QRS"TU!O23!=B7!$24=B7:5=!,<60:<!(0617!
37102<!2O!=B7!$24=B73<!+;7:<H!)g40605=:<=!;A>0<630;:>!832f7;=02<H!
(
!
RS!
(
(
Figure(DR16.(^2<19=73@!:e73:17!5760@7<=:=02<!3:=75!0<!=B7!$24=B73<!+;7:<!2e73>:0<!
D0=B!L2>2;7<7!:179@267>!6730e76!5760@7<=:=02<!3:=75H!)h;755!678250=02<!2O!37;7<=!
5760@7<=5!:>2<1!:!@0692;7:<!30617!05!7h8375576!:5!?:<65!2O!:<2@:>245>A!B01B!
5760@7<=:=02<!3:=75!DB7<!;2@84=76!?A!60e060<1!=B7!=2=:>!5760@7<=!=B0;C<755!?A!;345=:>!
:17G!D0=B!3:=75!67;37:50<1!:D:A!O32@!=B7!@0692;7:<!30617!;375=!:5!=B7!:17!2O!=B7!;345=!
0<;37:575H!P>:;C9DB0=7!>0<75!0<60;:=7!8>:=7!?24<6:3075H!(76!:332D5!0<60;:=7!17<73:>0E76!
?2==2@!;4337<=!6037;=02<5!?:576!2<!g40e73!8>2=5!0<!]015!&("Z!:<6!"WH!)g40605=:<=!
;A>0<630;:>!832f7;=02<H!
(
!
R"!
!
!
Figure(DR17.!%45=3:>!54@@73!:e73:17!2O!60:=2@!;B>2328BA>>!;2<;7<=3:=02<5!O23!=B7!
873026!RSSZ9RS"Z!Q$288:!7=!:>HG!RS"WU!2e73>:0<!?A!;2<O23@0=075!QDB0=7!5g4:375!:<6!
DB0=7!;03;>75U!:<6!4<;2<O23@0=075!Q?>:;C!5g4:375!:<6!?>:;C!;03;>75U!0<!543O:;7!5760@7<=!
2O!P34B<75!:17!Q577!]01H!&(Y!;:8=02<!O23!67=:0>UH!(76!>0<75!D0=B!DB0=7!24=>0<75!67<2=7!
8>:=7!?24<6:3075H!$=737213:8B0;!832f7;=02<H!
!
!
RR!
!
(
Figure(DR18.((%45=3:>!54@@73!:e73:17!2O!<:<28BA=28>:<C2<!830@:3A!83264;=02<!O23!
=B7!873026!"VV\9RSSY!Qo0=E!7=!:>HG!RS"SU!2e73>:0<!?A!;2<O23@0=075!QDB0=7!5g4:375!:<6!
DB0=7!;03;>75U!:<6!4<;2<O23@0=075!Q?>:;C!5g4:375!:<6!?>:;C!;03;>75U!0<!543O:;7!5760@7<=!
2O!P34B<75!:17!Q577!]01H!&(Y!;:8=02<!O23!67=:0>UH!(76!>0<75!D0=B!DB0=7!24=>0<75!67<2=7!
8>:=7!?24<6:3075H!$=737213:8B0;!832f7;=02<H!
(
!
RZ!
(
(
Figure(DR19.(%45=3:>!54@@73!:e73:17!2O!60:=2@!;B>2328BA>>!;2<;7<=3:=02<5!O23!=B7!
873026!RSSZ9RS"Z!Q$288:!7=!:>HG!RS"WU!2e73>:0<!?A!;2<O23@0=075!QDB0=7!5g4:375!:<6!
DB0=7!;03;>75U!:<6!4<;2<O23@0=075!Q?>:;C!5g4:375!:<6!?>:;C!;03;>75U!0<!543O:;7!5760@7<=!
2O!P34B<75!:17!Q577!]01H!&(Y!;:8=02<!O23!67=:0>UH!P>:;C9DB0=7!>0<75!67<2=7!8>:=7!
?24<6:3075H!)g40605=:<=!;A>0<630;:>!832f7;=02<H(
(
(
(
(
(
(
(
!
RW!
!
(
Figure(DR20.(%45=3:>!54@@73!:e73:17!2O!<:<28BA=28>:<C2<!830@:3A!83264;=02<!O23!
=B7!873026!"VV\9RSSY!Qo0=E!7=!:>HG!RS"SU!2e73>:0<!?A!;2<O23@0=075!QDB0=7!5g4:375!:<6!
DB0=7!;03;>75U!:<6!4<;2<O23@0=075!Q?>:;C!5g4:375!:<6!?>:;C!;03;>75U!0<!543O:;7!5760@7<=!
2O!P34B<75!:17!Q577!]01H!&(Y!;:8=02<!O23!67=:0>UH!(76!>0<75!67<2=7!@0692;7:<!306175H!#3:A!
;03;>75!:37!:3=7O:;=5!0<!=B7!83264;=0e0=A!1306H!P>:;C9DB0=7!>0<75!0<60;:=7!8>:=7!?24<6:3075H!
)g40605=:<=!;A>0<630;:>!832f7;=02<H(
(
(
(
(
(
!
(
!
RT!
References:(
!
%>>7<G!KH!$HG!*0C7G!cHG!*4657AG!KH!cHG!:<6!^7e7<=73G!%HG!RSST:G!$4?@0>>7<<0:>!e:30:=02<5!0<!
2;7:<!;2<60=02<5!6430<1!671>:;0:=02<!?:576!2<!60:=2@!:557@?>:175!O32@!=B7!
524=BD75=!%=>:<=0;M!*:>72;7:<213:8BAG!eH!RSG!<2H!RG!8H!*%RS"RG!!
9G!RSST?G!Q':?>7!"U!%17!67=73@0<:=02<!2O!5760@7<=!;237!`KSYZG!
"SH"TVWa*%b#%)%H\ZYS\TH!
%@:<=7G!KHG!:<6!):C0<5G!PH!dHG!RSSVG!)'+*+"!"!%3;9I0<4=7!#>2?:>!(7>07O!I267>M!
*32;764375G!&:=:!$243;75!:<6!%<:>A505G!b:=02<:>!#728BA50;:>!&:=:!K7<=73G!b+%%G!
b+%%!'7;B<0;:>!I7@23:<64@!b)$&,$!b#&K9RWG!b+%%!'7;B<0;:>!I7@23:<64@!
b)$&,$!b#&K9RWH!
%3;B73G!&H!)HG!"VV[G!%<!:=>:5!2O!=B7!605=30?4=02<!2O!;:>;04@!;:3?2<:=7!0<!5760@7<=5!2O!=B7!
6778!57:M!#>2?:>!P02172;B7@0;:>!KA;>75G!eH!"SG!<2H!"G!8H!"TV9"YWG!!
%3;B73G!&H!)HG!"VVVG!+8:>G!g4:3=E!:<6!;:>;04@!;:3?2<:=7!;2<=7<=!0<!543O:;7!5760@7<=5!2O!
=B7!2;7:<!O>223G!"SH"TVWa*%b#%)%HT[S"YH!
P0:<;B0G!KHG!:<6!#7352<67G!(HG!RSSW:G!Q%887<60h!':?>7!"U!%17!67=73@0<:=02<!2O!5760@7<=!
;237!*$"[TW9RG!"SH"TVWa*%b#%)%HY"RVT"H!
P0:<;B0G!KHG!:<6!#7352<67G!(HG!RSSW?G!Q%887<60h!':?>7!"U!%17!67=73@0<:=02<!2O!5760@7<=!
;237!*$RSVS9"G!"SH"TVWa*%b#%)%HY"RVTRH!
P0:<;B0G!KHG!:<6!#7352<67G!(HG!RSSW;G!K>0@:=7!7e2>4=02<!:=!=B7!>:5=!671>:;0:=02<M!=B7!32>7!2O!
=B7!$24=B73<!+;7:<M!):3=B!:<6!*>:<7=:3A!$;07<;7!^7==735G!eH!RR\G!<2H!ZG!8H!WSY9
WRWG!!
P2B3@:<<G!#HG!"VVVG!#72;B7@05=3A!2O!543O:;7!5760@7<=5!O32@!=B7!$24=B!%=>:<=0;G!
"SH"TVWa*%b#%)%HTWVT[H!
P2<<G!dH!cHG!#0<17>7G!]H!.HG!#32?7G!LHG!I:;C7<57<G!%HG!:<6!]J==7373G!&H!`HG!"VV\:G!%17!@267>!
2O!5760@7<=!;237!*$"TYT9"G!"SH"TVWa*%b#%)%HTST[RH!
9G!"VV\?G!%17!@267>!2O!5760@7<=!;237!*$"\R"9[G!"SH"TVWa*%b#%)%HZT"RVWH!
9G!"VV\;G!%17!@267>!2O!5760@7<=!;237!*$RSZ\9RG!"SH"TVWa*%b#%)%HZT"RVTH!
9G!"VV\6G!*:>:7283264;=0e0=A!:=!=B7!%<=:3;=0;!;2<=0<7<=:>!@:310<M!28:>!:<6!?:304@!
37;2365!O23!=B7!>:5=!WSS!C:M!*:>:7217213:8BAG!*:>:72;>0@:=2>21AG!*:>:727;2>21AG!
eH!"ZVG!<2H!ZG!8H!"VT9R""G!!
P3:6=@0>>73G!^H!,HG!%<67352<G!(H!]HG!]>705B73G!IH!mHG!:<6!P43;C>7G!^H!LHG!RSSVG!K2@8:30<1!
1>:;0:>!:<6!L2>2;7<7!28:>!O>4h75!0<!=B7!*:;0O0;!57;=23!2O!=B7!$24=B73<!+;7:<M!
*:>72;7:<213:8BAG!eH!RWG!<2H!RG!!
KB:3>75G!KH!&HG!:<6!]:03?:<C5G!(H!#HG!"VVR:G!)e067<;7!O32@!$24=B73<!+;7:<!5760@7<=5!O23!
=B7!7OO7;=!2O!b23=B!%=>:<=0;!67789D:=73!O>4h!2<!;>0@:=7M!b:=437G!eH!ZTTG!8H!W"[9W"VG!!
KB:3>75G!KH!&HG!:<6!]:03?:<C5G!(H!#HG!"VVR?G!Q':?>7!"U!%17!67=73@0<:=02<!2O!5760@7<=!;237!
(K""9\ZHG!"SH"TVWa*%b#%)%HYR[R["H!
KB:57G!pHG!%<67352<G!(H!]HG!]>705B73G!IH!mHG!:<6!`4?0CG!*H!dHG!RSSZG!%;;4@4>:=02<!2O!
?0217<0;!:<6!>0=B217<0;!@:=730:>!0<!=B7!*:;0O0;!57;=23!2O!=B7!$24=B73<!+;7:<!
6430<1!=B7!8:5=!WSGSSS!A7:35M!&778!$7:!(757:3;B!*:3=!,,M!'280;:>!$=46075!0<!
+;7:<213:8BAG!eH!TSG!<2H!ZG!8H!YVV9\ZRG!620M"SH"S"[a$SV[Y9S[WTQSRUSSTVT9YH!
KB:57G!pHG!:<6!P43;C>7G!^H!LHG!RS"TG!K2@80>:=02<!2O!RZS'B9<23@:>0E76!28:>!?430:>!:<6!28:>!
;2<;7<=3:=02<5!O32@!$24=B73<!+;7:<!543O:;7!5760@7<=5G!
"SH"TVWa*%b#%)%H\W[""YH!
KB:57G!pHG!`2BO7>6G!`H!)HG!:<6!I:=54@2=2G!`HG!RS"TG!K2<=32>5!2<!?0217<0;!50>0;:!?430:>!0<!=B7!
$24=B73<!+;7:<M!#>2?:>!P02172;B7@0;:>!KA;>75G!eH!RVG!<2H!"SG!8H!"TVV9"["[G!620M!
"SH"SSRaRS"T#PSST"\[H!
!
R[!
&7E0>7:4G!^HG!P:370>>7G!#HG!(7A55G!cH!^HG!:<6!^7@20<7G!]HG!RSSSG!)e067<;7!O23!5=32<1!5760@7<=!
37605=30?4=02<!?A!?2==2@!;4337<=5!:>2<1!=B7!524=B7:5=!,<60:<!30617M!&778!$7:!
(757:3;B!*:3=!,M!+;7:<213:8B0;!(757:3;B!*:8735G!eH!WYG!<2H!"SG!8H!"\VV9"VZ[G!
620M"SH"S"[a$SV[Y9S[ZYQSSUSSSS\9.H!
&0e0<5G!&H!^HG!RSSWG!'2=:>!$760@7<=!'B0;C<755!2O!=B7!d23>6l5!+;7:<5!:<6!I:310<:>!$7:5G!!
&2@:;CG!)H!dHG!c4>>G!%H!cH!'HG!:<6!b:C:2G!$HG!"VV":G!%6e:<;7!2O!):5=!%<=:3;=0;!24=>7=!1>:;0735!
6430<1!=B7!LA850=B73@:>M!0@8>0;:=02<5!O23!=B7!e2>4@7!5=:=7!2O!=B7!%<=:3;=0;!0;7!
5B77=!4<673!1>2?:>!D:3@0<1M!#72>21AG!eH!"VG!<2H!""G!8H!"STV9"S[RG!!
9G!"VV"?G!Q':?>7!"U!%17!67=73@0<:=02<5!2<!+&*!L2>7!""V9YWS%G!
"SH"TVWa*%b#%)%HZ\VSTWH!
9G!"VV";G!Q':?>7!"U!%17!67=73@0<:=02<5!2<!5760@7<=!;237!K237ZSRG!
"SH"TVWa*%b#%)%HZ\VSTTH!
9G!"VV"6G!Q':?>7!"U!%17!67=73@0<:=02<5!2<!5760@7<=!;237!&]YVHSSV9#PG!
"SH"TVWa*%b#%)%HZ\VST[H!
9G!"VV"7G!Q':?>7!"U!%17!67=73@0<:=02<5!2<!5760@7<=!;237!&]YVHS"R9#PG!
"SH"TVWa*%b#%)%HZ\VSTYH!
&4=C07D0;EG!%HG!IJ>>73G!(H!&HG!+lK:>>:1B:<G!$HG!:<6!cq<:552<G!LHG!RS"TG!K7<545!2O!57:O>223!
5760@7<=5!0<!=B7!D23>6l5!2;7:<M!#72>21AG!eH!WZG!<2H!VG!8H!YVT9YV\G!!
]3:<;205G!(HG!P:;2<G!IH!*HG!%>=:?7=G!IH!%HG!:<6!^:?7A307G!^H!&HG!"VVZG!#>:;0:>a0<=731>:;0:>!
;B:<175!0<!5760@7<=!3:0<!3:=7!0<!=B7!$d!,<60:<!57;=23!2O!$4?:<=:3;=0;!D:=735!:5!
37;23676!?A!RZS'BG!RZ"*:G!oG!:<6!r"TbM!*:>72;7:<213:8BAG!eH!\G!<2H!TG!8H![""9
[RVG!!
]3:<;205G!(HG!]3:<CG!IHG!(4=1735!e:<!673!^27OOG!IH!IHG!:<6!P:;2<G!IH!*HG!RSSWG!RZS'B!
<23@:>0E:=02<M!%<!7557<=0:>!=22>!O23!0<=73837=0<1!5760@7<=:3A!O>4h75!6430<1!=B7!
>:=7!m4:=73<:3AM!*:>72;7:<213:8BAG!eH!"VG!<2H!"G!8H!"9"[G!!
]3:<CG!IHG!RSSR:G!%17!@267>!2O!5760@7<=!;237!*$"YTW9"G!620M"SH"TVWa*%b#%)%H\""SVH!
9G!RSSR?G!%17!@267>!2O!5760@7<=!;237!*$"YYR9\G!620M"SH"TVWa*%b#%)%H\""S\H!
]3:<CG!IHG!#7352<67G!(HG!:<6!I:<10<0G!%HG!"VVVG!$760@7<=!37605=30?4=02<G!RZS'B7h9
<23@:>0E:=02<!:<6!0@8>0;:=02<5!O23!=B7!37;2<5=34;=02<!2O!8:3=0;>7!O>4h!:<6!7h823=!
8:>7283264;=0e0=AG!in!]05;B73G!#HG!:<6!d7O73G!#HG!765HG!o57!2O!*32h075!0<!
*:>72;7:<213:8BAM!)h:@8>75!O32@!=B7!$24=B!%=>:<=0;M!P73>0<!L7067>?731G!
$830<1739/73>:1G!8H!WSV9WR[H!
]3:<CG!IHG!:<6!I:;C7<57<G!%HG!RSSR:G!%17!@267>!2O!5760@7<=!;237!*$"YT[9TG!
620M"SH"TVWa*%b#%)%H\""S[H!
]3:<CG!IHG!:<6!I:;C7<57<G!%HG!RSSR?G!%17!@267>!2O!5760@7<=!;237!*$RS\R9"G!
620M"SH"TVWa*%b#%)%H\""SZH!
]327>0;BG!*H!bHG!I:>2<7G!*H!bHG!L267>>G!&H!%HG!K07507>5C0G!*H!]HG!d:3<C7G!&H!%HG!d75=:>>G!]HG!
L:0>D226G!)H!%HG!b2?75G!&H!KHG!]7<<73G!cHG!:<6!I07<73=G!cHG!P0217<0;!28:>!:<6!
;:3?2<:=7!:;;4@4>:=02<!3:=75!0<!=B7!54?:<=:3;=0;!$24=B!%=>:<=0;M!=B7!>:=7!b7217<7!
2O!I7=723!(057!$0=7!YSWG!in!*32;7760<15!*32;H!+;7:<!&30>>H!*3213:@!$;0H!
(754>=5"VV"G!/2>4@7!""WG!8H!T"T9TTSH!
#70?73=G!dHG!(4=1735!e:<!673!^27OOG!IH!IHG!o5?7;CG!(HG!#7352<67G!(HG!`4B<G!#HG!:<6!
$77?731)>e73O7>6=G!cHG!RSSTG!m4:<=0OA0<1!=B7!28:>!?7>=!0<!=B7!%=>:<=0;!:<6!
524=B7:5=!*:;0O0;!57;=23!2O!=B7!$24=B73<!+;7:<!?A!@7:<5!2O!RZS'B!<23@:>0E:=02<M!
#>2?:>!P02172;B7@0;:>!KA;>75G!eH!"VG!<2H!WG!8H!"9"ZG!620M!"SH"SRVaRSST#PSSRW[TH!
#2267>>G!LH!#HG!:<6!d:=C0<5G!bH!&HG!"V[\G!'B7!8:>72@:1<7=0;!5=3:=013:8BA!2O!=B7!$24=B73<!
+;7:<M!RSs!d75=!=2!"[Ss!):5=!>2<10=467M!&778!$7:!(757:3;B!:<6!+;7:<213:8B0;!
%?5=3:;=5G!eH!"TG!8H!\V9""RG!620M"SH"S"[aSS""9YWY"Q[\UVSSZS9RH!
!
RY!
#2EB0CG!*H!]HG!+3>2e5CAG!#H!bHG!I0=0<G!^H!,HG!*:e>2eG!%H!-HG!(46G!^H!IHG!-:<;B4CG!)H!%HG!,e:<0CG!IH!
IHG!/2628A:<G!bH!$HG!:<6!`3:5<2EB0<:G!pH!/HG!"VV":G!#72>210A:!0!I7=:>>217<0A:!
-4EB<212!+C7:<:!Q#72>21A!:<6!I7=:>>217<A!2O!=B7!$24=B73<!+;7:<UG!in!
$B<A4C2eG!)H!]HG!76HG!b:4C2e:!&4@C:!Q`07eUM!0<!(4550:<G!8H!"VRH!
9G!"VV"?G!Q':?>7!"ZU!(:602;:3?2<!:17!2O!?2==2@!5760@7<=5!O32@!=B7!$24=B73<!+;7:<G!
"SH"TVWa*%b#%)%HY\RWR[H!
#32?7G!LHG!:<6!I:;C7<57<G!%HG!"VVR:G!%17!@267>!2O!5760@7<=!;237!*$"Z\S9ZG!
"SH"TVWa*%b#%)%HTSTT\H!
9G!"VVR?G!^:=7!m4:=73<:3A!;>0@:=0;!;A;>75!:5!37;23676!0<!5760@7<=5!O32@!=B7!%<=:3;=0;!
;2<=0<7<=:>!@:310<G!in!`7<<7==G!cH!*HG!:<6!d:3<C7G!&H!%HG!765HG!'B7!%<=:3;=0;!
*:>727<e032<@7<=M!:!873587;=0e7!2<!#>2?:>!KB:<17G!%<=:3;=0;!(757:3;B!$73075G!
%@730;:<!#728BA50;:>!o<02<H!
L2D:36G!dH!(HG!:<6!*37>>G!dH!^HG!"VVW:G!%17!@267>!2O!5760@7<=!;237!I&\W9TRVHG!
"SH"TVWa*%b#%)%HR[ZVW\H!
9G!"VVW?G!%17!@267>!2O!5760@7<=!;237!(K"Z9RRVG!"SH"TVWa*%b#%)%HTR[TTH!
L2D:36G!dH!(HG!:<6!*37>>G!dH!^HG!"VVW;G!^:=7!m4:=73<:3A!K:K+Z!83264;=02<!:<6!
837573e:=02<!0<!=B7!$24=B73<!+;7:<M!,@8>0;:=02<5!O23!2;7:<0;!:<6!:=@258B730;!
;:3?2<!;A;>0<1M!*:>72;7:<213:8BAG!eH!VG!<2H!ZG!8H!WTZ9W\RG!!
c:;2=!&75!K2@?75G!LHG!)5873G!+HG!&7!^:!(2;B:G!KH!^HG!%?7>@:<<G!%HG!#7352<67G!(HG!-:@G!(HG!
:<6!$B7@75BG!%HG!RSS\:G!&0:=2@!r"ZKG!r"TbG!:<6!Kab!50<;7!=B7!^:5=!#>:;0:>!
I:h0@4@!0<!=B7!$24=B73<!+;7:<M!*2=7<=0:>!0@8:;=!2O!587;075!;2@8250=02<M!
*:>72;7:<213:8BAG!eH!RZG!<2H!WG!8H!*%WRSVG!!
9G!RSS\?G!Q':?>7!"U!%17!67=73@0<:=02<!2O!5760@7<=!;2375!O32@!=B7!$24=B73<!+;7:<G!!
`7<<7==G!cH!*HG!:<6!d:=C0<5G!bH!&HG!"VY[G!(7102<:>!6778957:!6A<:@0;!832;75575!37;23676!
?A!>:=7!K7<2E20;!5760@7<=5!2O!=B7!524=B7:5=73<!,<60:<!+;7:<M!#72>210;:>!$2;07=A!
2O!%@730;:!P4>>7=0<G!eH!\YG!<2H!ZG!8H!ZR"9ZZVG!620M!"SH""ZSaSS"[9
Y[S[Q"VY[U\YiZR"M(&&*(PkRHSHK+XRH!
`035B<73G!%H!)HG!%<67352<G!cH!PHG!c:C2?552<G!IHG!+l(71:<G!IHG!I:f7D5C0G!dHG!:<6!b0=5;B7G!]H!
+HG!RS"R:G!*25=9^#I!671>:;0:=02<!0<!*0<7!05>:<6!P:AG!D75=!%<=:3;=0;:M!m4:=73<:3A!
$;07<;7!(7e07D5G!eH!Z\G!8H!""9R[G!!
9G!RS"R?G!Q':?>7!"U!(:602;:3?2<!:175!2O!5760@7<=!;2375!2?=:0<76!6430<1!,;7?37:C73!
+67<!;34057!+$+SV"SG!*0<7!,5>:<6!P:AG!"SH"TVWa*%b#%)%H\"RS[YH!
^:?7A307G!^HG!^:?3:;B7307G!IHG!#23O=0G!bHG!*0;B2<G!cH!cHG!/:4=3:e735G!IHG!%3<2>6G!IHG!&48>755AG!
cH!KHG!*:=73<7G!IHG!I0;B7>G!)HG!:<6!&483:=G!cHG!"VV[:G!LA63213:8B0;!;B:<175!2O!=B7!
$24=B73<!+;7:<!Q524=B7:5=!,<60:<!57;=23U!2e73!=B7!>:5=!RZS!CA3M!
*:>72;7:<213:8BAG!eH!""G!<2H!"G!8H!TY9Y[G!!
9G!"VV[?G!Q':?>7!ZU!%17!67=73@0<:=02<!2O!5760@7<=!;237!I&\\9YYSG!
"SH"TVWa*%b#%)%HTRYZSH!
^:?3:;B7307G!IHG!^:?7A307G!^H!&HG!&483:=G!cHG!P:36G!)HG!%3<2>6G!IHG!*0;B2<G!cH9cHG!:<6!&48>755AG!
cH9KHG!Q':?>7!WU!%17!67=73@0<:=02<5!2<!5760@7<=!;237!I&\W9TRYG!
"SH"TVWa*%b#%)%HZT\ZTRH!
9G!"V\V:G!%17!67=73@0<:=02<5!2<!5760@7<=!;237!I&YZ9SRTG!"SH"TVWa*%b#%)%HZT\ZW\H!
9G!"V\V?G!Q':?>7!WU!%17!67=73@0<:=02<5!2<!5760@7<=!;237!I&\W9TT"G!
"SH"TVWa*%b#%)%HZT\ZTZH!
^:?3:;B7307G!IHG!^:?7A307G!^H!&HG!&483:=G!cHG!P:36G!)HG!%3<2>6G!IHG!*0;B2<G!cH!cHG!:<6!&48>755AG!
cH!KHG!"V\V;G!'B7!>:5=!671>:;0:=02<!0<!=B7!$24=B73<!+;7:<M!*:>72;7:<213:8BAG!eH!WG!
<2H![G!8H![RV9[Z\G!!
^:@AG!]HG!%3EG!LH!dHG!`0>0:<G!(HG!^:<17G!KH!PHG!^7@?C79c7<7G!^HG!d7<1>73G!IHG!`:0573G!cHG!P:7E:9
o337:G!+HG!L:>>G!,H!(HG!:<6!L:3:6:G!bHG!RS"T:G!#>:;0:>!3764;=02<!:<6!@0>>7<<0:>95;:>7!
!
R\!
e:30:=02<5!0<!&3:C7!*:55:17!=B3241BO>2DM!*32;7760<15!2O!=B7!b:=02<:>!%;:67@A!2O!
$;07<;75G!eH!""RG!<2H!WWG!8H!"ZWV[9"ZTS"G!!
9G!RS"T?G!Q':?>7!$"U!%17!@267>!2O!5760@7<=!;237!RSR9"RZZG!"SH"TVWa*%b#%)%H\W\"R[H!
9G!RS"T;G!Q':?>7!$"U!%17!@267>!2O!5760@7<=!;237!I&SY9Z"R\G!
"SH"TVWa*%b#%)%H\W\"RYH!
9G!RS"T6G!Q':?>7!$"U!%17!@267>!2O!5760@7<=!;237!I(S\S[9*KSVG!
"SH"TVWa*%b#%)%H\W\"R\H!
^:@AG!]HG!#7352<67G!(HG!d0<;C>73G!#HG!)5873G!+HG!c:75;BC7G!%HG!`4B<G!#HG!o>>73@:<<G!cHG!
I:3=t<7E9#:3;0:G!%HG!^:@?73=G!]HG!:<6!`0>0:<G!(HG!RS"W:G!%17!;2<=32>!820<=5!2O!
5760@7<=!;237!*$YTaST[9"G!"SH"TVWa*%b#%)%H\R[TYVH!
9G!RS"W?G!%17!;2<=32>!820<=5!2O!5760@7<=!;237!*$YTaSTV9RG!"SH"TVWa*%b#%)%H\R[T\SH!
9G!RS"W;G!%17!;2<=32>!820<=5!2O!5760@7<=!;237!*$YTaSYW9ZG!"SH"TVWa*%b#%)%H\R[T\"H!
9G!RS"W6G!%17!;2<=32>!820<=5!2O!5760@7<=!;237!*$YTaSY[9RG!"SH"TVWa*%b#%)%H\R[T\RH!
9G!RS"W7G!%17!;2<=32>!820<=5!2O!5760@7<=!;237!*$YTaSYV9RG!"SH"TVWa*%b#%)%H\R[T\ZH!
9G!RS"WOG!%17!;2<=32>!820<=5!2O!5760@7<=!;237!*$YTaS\Z9"G!"SH"TVWa*%b#%)%H\R[T\WH!
9G!RS"W1G!,<;37:576!645=!678250=02<!0<!=B7!*:;0O0;!$24=B73<!+;7:<!6430<1!1>:;0:>!8730265M!
$;07<;7G!eH!ZWZG!<2H!["[VG!8H!WSZ9WSYG!!
^76?7==73G!IH!'HG!:<6!K07507>5C0G!*H!]HG!"V\[G!*25=9I02;7<7!605;2<O23@0=075!:<6!
8:>72;7:<213:8BA!0<!=B7!%=>:<=0;!57;=23!2O!=B7!$24=B73<!+;7:<M!*:>:7217213:8BAG!
*:>:72;>0@:=2>21AG!*:>:727;2>21AG!eH!TRG!<2H!ZG!8H!"\T9R"WG!620M"SH"S"[aSSZ"9
S"\RQ\[UVSSW[9TH!
I:;C7<57<G!%HG!"VV[G!%17!@267>!2O!5760@7<=!;237!*$"Y[\9\G!
620M"SH"TVWa*%b#%)%HTSTTVH!
I:;C7<57<G!%HG!#32?7G!LHG!L4??73=7<G!LH9dHG!:<6!`4B<G!#HG!"VVW:G!%17!@267>!2O!5760@7<=!
;237!*$"TS[9"G!"SH"TVWa*%b#%)%HTS"[[H!
9G!"VVW?G!%17!@267>!2O!5760@7<=!;237!*$RS\R9"G!"SH"TVWa*%b#%)%HTS"[YH!
9G!"VVW;G!P7<=B0;!O23:@0<0O73:>!:557@?>:175!:<6!=B7!6!r"ZK9501<:>!0<!=B7!:=>:<=0;!57;=23!2O!
=B7!$24=B73<!+;7:<M!1>:;0:>9=290<=731>:;0:>!;2<=3:5=5G!in!p:B<G!(HG!*767352<G!'H!]HG!
`:@0<05C0G!IH!%HG!:<6!^:?7A307G!^HG!765HG!K:3?2<!KA;>0<1!0<!=B7!#>:;0:>!+;7:<M!
K2<5=3:0<=5!2<!=B7!+;7:<u5!(2>7!0<!#>2?:>!KB:<17G!/2>4@7!b%'+!%$,!$73075!,"YM!
P73>0<G!L7067>?731G!$830<1739/73>:1G!8H!"ST9"WWH!
I:;C7<57<G!%HG!(462>8BG!IHG!:<6!`4B<G!#HG!RSS":G!%17!@267>!2O!5760@7<=!;237!*$RWV\9"G!
620M"SH"TVWa*%b#%)%H\S\S"H!
9G!RSS"?G!Q':?>7!R;U!%17G!'+KG!830@:3A!83264;=02<G!:<6!052=2875!QK0?0;0620675!588HU!2O!
5760@7<=!;237!*$RWVV9TG!620M"SH"TVWa*%b#%)%H[TVRYH!
I:66052<G!)H!cHG!*0C7G!cHG!:<6!&4<?:3G!(HG!RS"R:G!$7:52<:>>A!>:@0<:=76!60:=2@930;B!
5760@7<=5!O32@!&4@2<=!6lo3e0>>7!'3241BG!):5=!%<=:3;=0;!I:310<M!^:=79L2>2;7<7!
b721>:;0:>!57:90;7!;2<60=02<5M!'B7!L2>2;7<7G!eH!RRG!<2H!\G!8H!\TY9\YTG!!
9G!RS"R?G!Q':?>7!"U!(:602;:3?2<!:175!O23!5760@7<=!;2375!I&SZ9RTVYG!bP*S"9S"9c*K"YP!
:<6!bP*S"9S"9`K"YPG!"SH""YYaSVTV[\Z[""WZWRRZH!
IJ>>73G!(H!&HG!$7=2<G!IHG!p:B032e0;G!$HG!d0>>0:@5G!$H!)HG!I:==B7D5G!`H!cHG!d301B=G!bH!IHG!
$B78B:36G!#H!)HG!I:>2<7AG!`H!'HG!P:3<7==9I2237G!bHG!L25570<8243G!IHG!P2D73G!&H!cHG!
:<6!K:<<2<G!cHG!RS"[G!+;7:<!?:50<!7e2>4=02<!:<6!1>2?:>95;:>7!8>:=7!37231:<0E:=02<!
7e7<=5!50<;7!*:<17:!?37:C48M!%<<4:>!(7e07D!2O!):3=B!:<6!*>:<7=:3A!$;07<;75G!eH!
WWG!8H!"SYn"Z\G!"SH""W[a:<<437e97:3=B9S[S""T9S"RR""H!
I43:A:@:G!IHG!b:C:@43:G!'HG!:<6!':03:G!%HG!RSSS:G!Q':?>7!RU!%17!67=73@0<:=02<!2O!
5760@7<=!;2375!O32@!=B7!':5@:<!*>:=7:4G!"SH"TVWa*%b#%)%H\TTZWTH!
!
RV!
9G!RSSS?G!/:30:=02<5!2O!=73375=30:>!0<84=!:<6!@:30<7!83264;=0e0=A!0<!=B7!$24=B73<!+;7:<!
QW\v$U!6430<1!=B7!>:5=!=D2!671>:;0:=02<5M!*:>72;7:<213:8BAG!eH!"TG!<2H!RG!8H!"YS9
"\SG!!
+5?23<G!bH!,HG!K07507>5C0G!*H!]HG!:<6!^76?7==73G!IH!'HG!"V\ZG!&05;2<O23@0=075!:<6!
8:>72;7:<213:8BA!0<!=B7!524=B7:5=!,<60:<!+;7:<!6430<1!=B7!8:5=!THW!@0>>02<!
A7:35M!#72>210;:>!$2;07=A!2O!%@730;:!P4>>7=0<G!eH!VWG!<2H!""G!8H!"ZWT9"ZT\G!620M!
"SH""ZSaSS"[9Y[S[Q"V\ZUVWi"ZWTM&%*,'$kRHSHK+XR!!
(7?75;2G!IHG!L73<w<67E9I2>0<:G!]H!cHG!/:<!(220fG!&HG!:<6!dxB>0<G!%HG!RS"WG!K2<=2430=75!:<6!
:552;0:=76!5760@7<=5!;2<=32>>76!?A!67789D:=73!;03;4>:=02<!832;75575M!5=:=792O9
=B79:3=!:<6!O4=437!;2<50673:=02<5M!I:30<7!#72>21AG!eH!ZTRG!8H!"""9"TWG!
620M"SH"S"[afH@:3172HRS"WHSZHS""H!
(257<=B:>G!-HG!P2A>7G!)H!%HG!^:?7A307G!^HG!:<6!+882G!&HG!"VVT:G!#>:;0:>!7<30;B@7<=5!2O!
:4=B017<0;!K6!:<6!o!0<!$4?:<=:3;=0;!5760@7<=5M!%!;>0@:=0;!;2<=32>!2<!=B7!
7>7@7<=5u!2;7:<0;!?4617=yM!*:>72;7:<213:8BAG!eH!"SG!<2H!ZG!8H!ZVT9W"ZG!!
9G!"VVT?G!Q':?>7!ZU!$760@7<=:=02<!3:=7!e73545!:17!0<!;237!I&\S9ZSWG!
"SH"TVWa*%b#%)%HZ\\T[SH!
9G!"VVT;G!Q':?>7!ZU!$760@7<=:=02<!3:=7!e73545!:17!0<!;237!I&\\9Y[VHG!
"SH"TVWa*%b#%)%HZ\\T["H!
9G!"VVT6G!Q':?>7!ZU!$760@7<=:=02<!3:=7!e73545!:17!0<!;237!(K"Z9RRVG!
"SH"TVWa*%b#%)%HZ\\T[RH!
$B7@75BG!%HG!L267>>G!&HG!K325=:G!.HG!`:<O245BG!$HG!KB:3>75G!KHG!:<6!#40>67352<G!'HG!RSSR:G!
%179678=B!37>:=02<!0<!5760@7<=!;237!''bSTY9"Z9*KWG!
"SH"TVWa*%b#%)%H\WRVZVH!
9G!RSSR?G!$7g47<;7!2O!7e7<=5!6430<1!=B7!>:5=!671>:;0:=02<!0<!$24=B73<!+;7:<!5760@7<=5!
:<6!%<=:3;=0;!0;7!;2375M!*:>72;7:<213:8BAG!eH!"YG!<2H!WG!8H!\9"n\9Y!!
$C0<<73G!^H!KHG!]:>>2<G!$HG!d:7>?327;CG!KHG!I0;B7>G!)HG!:<6!P:3C73G!$HG!RS"S:G!Q':?>7!$"U!%17!
67=73@0<:=02<!2O!5760@7<=!;237!I&SY9ZSY[G!8>:<C=2<0;!O23:@0<0O73:HG!
"SH"TVWa*%b#%)%H\RVYT[H!
9G!RS"S?G!/7<=0>:=02<!2O!=B7!6778!$24=B73<!+;7:<!:<6!671>:;0:>!K+R!3057M!$;07<;7G!eH!ZR\G!
<2H!TV\RG!8H!""WY9""T"G!!
$288:G!IH!%HG!L03:=:G!'HG!$0>e:G!PHG!&0<=73G!'HG!*77C7<G!,HG!d071@:<<G!$HG!:<6!P3:;B73G!%HG!
RS"WG!#>2?:>!37=307e:>!2O!60:=2@!:?4<6:<;7!?:576!2<!8BA=28>:<C=2<!801@7<=5!
:<6!5:=7>>0=7!6:=:M!(7@2=7!$7<50<1G!eH![G!<2H!"SG!8H!"SGS\V9S"SG"S[G!620M!
"SHZZVSa35["S"SS\VH!
$4@:<G!&H!+HG!:<6!P:;2<G!IH!*HG!"V\VG!/:30:=02<5!0<!L2>2;7<7!5760@7<=:=02<!0<!=B7!b23=B!
%@730;:<!P:50<!67=73@0<76!O32@!RZS'B!@7:5437@7<=5M!&778!$7:!(757:3;B!*:3=!
%H!+;7:<213:8B0;!(757:3;B!*:8735G!eH!Z[G!<2H![G!8H!\[V9\Y\G!"SH"S"[aS"V\9
S"WVQ\VUVSSZZ9RH!
o0=EG!cHG!K>:45=37G!LHG!#7<=0>0G!PHG!:<6!$=3:@5C0G!&HG!RS"SG!*BA=28>:<C=2<!;>:55587;0O0;!
830@:3A!83264;=02<!0<!=B7!D23>6u5!2;7:<5M!57:52<:>!:<6!0<=73:<<4:>!e:30:?0>0=A!
O32@!5:=7>>0=7!2?573e:=02<5M!#>2?:>!P02172;B7@0;:>!KA;>75G!eH!RWG!<2H!ZG!
"SH"SRVaRSSV#PSSZ[\SH!
d:=C0<5G!bH!&HG!:<6!`7<<7==G!cH!*HG!"VYRG!(7102<:>!5760@7<=:3A!605;2<O23@0=075!:<6!o8873!
K7<2E20;!;B:<175!0<!?2==2@!D:=73!e7>2;0=075!?7=D77<!%45=3:>:50:!:<6!%<=:3;=0;:M!
%<=:3;=0;:!+;7:<2>21A!,,M!'B7!%45=3:>0:<9b7D!p7:>:<6!$7;=23G!8H!RYZ9RVZG!620M!
"SH"SRVa%(S"V8SRYZH!
-4G!)H9]HG!"VVWG!/:30:=02<5!0<!=B7!*:3=0;4>:=7!]>4h!2O!RZS'B!:<6!RZ"*:!:<6!
*:>72;7:<213:8B0;!%88>0;:=02<5!2O!=B7!RZ"*:aRZS'B!(:=02M!I:55:;B457==5!,<5=0=4=7!
2O!'7;B<2>21AG!R[V!8H!
!
ZS!
!
... Pliocene to Quaternary widespread regional erosional unconformities, manganese nodules and manganese pavements have been identified along the Australian-Antarctic basin, following the modern track of the AABW, and indicating that strong bottom currents were already in place since the Pliocene (Figure 2a; Dutkiewicz et al., 2016;Kennett & Watkins, 1976;Watkins & Kennett, 1977). The highest modern values of AABW velocity and the strongest equatorward export of cold deep waters are also observed along this AABW pathway, east of the Kerguelen Plateau (Fukamachi et al., 2010). ...
... 4.8 and 4.6 Ma (gray bars), with the onset of a gradual increase in the terrigenous deposition. multiple regional hiatuses and ferromanganese nodules, points to the existence of intense bottom currents during these intervals (Figure 2; Dutkiewicz et al., 2016;Glasby, 1978;Kennett & Watkins, 1976;Tagliaro, Wainman, & Fulthorpe, 2021;Watkins & Kennett, 1977). ...
... Ma, as identified in previous studies (Figure 8c; Drury et al., 2017;Levy et al., 2019). While further studies are needed to assess the impact of deepening gateways on the northward displacement of bottom currents from the Southern Ocean, the presence of Neogene contourite drifts and stratigraphic hiatuses around the flanks of many Southern Ocean gateways may indicate a link between deep ocean circulation and tectonics in this period (Carter & McCave, 2002;Dutkiewicz et al., 2016;Koenitz et al., 2008;Martos et al., 2013;Pérez et al., 2015;Schut et al., 2002;Schut & Uenzelmann-Neben, 2005;Uenzelmann-Neben, 2002). Miocene deepening of the Southern Ocean gateways, and the subsequent increase in bottom water exchange, could potentially explain why contourite drift deposits are particularly abundant in Miocene oceanic deposits (Hochmuth et al., 2020;Maldonado et al., 2005Maldonado et al., , 2006Potter & Szatmari, 2009. ...
Article
Full-text available
Deep ocean circulation in the Southern Hemisphere plays a central role in global ocean overturning circulation and determines ocean carbon sink variability on multimillion‐year timescales. For this reason, it is important to understand how deep currents that originate in the Southern Ocean responded to past climate fluctuations and changing temperature patterns in the Southern Hemisphere oceans. To investigate this feedback mechanism, we analyze deep‐sea sediment cores formed under the influence of bottom currents from the Mentelle Basin (International Ocean Discovery Program Sites U1513, U1514, and U1516), in the Southeastern Indian Ocean. We show that bottom current activity intensified in the Australian‐Antarctic Basin during the cooling intervals of the late Miocene (ca. 7.8–4.8 Ma) and late Pliocene (ca. 3.59–3.2 Ma). At those intervals, bulk grain‐sizes and terrigenous input increased, via current winnowing. Ferromanganese nodules and stratigraphic hiatuses are also observed within these periods, indicative of intense sediment erosion at the seafloor. Sediment accumulation and preservation in the basin was particularly low at the deep Site U1514 (3,838 m water depth), suggesting that enhanced current transport and sediment erosion occurred preferentially within the deepest parts of the basin. We suggest that bottom water fluxes in the Australian‐Antarctic Basin intensified during late Miocene and Pliocene cooling intervals, likely boosted by renewed Australian‐Antarctic Discordance spreading since the Miocene.
... According to Harper and Peck (2016) there is a general paradigm that marine predation pressure decreases with depth, which they confirmed in their study of shell repair in brachiopods. In addition, ocean currents generally diminish in intensity with increasing depth (Faugères and Mulder 2011), which enables fine particles to settle out of suspension as detritus (Dutkiewics et al. 2016). Seasonal deposition of phytodetritus below productive surface areas provides abyssal communities with a high-quality food resource (Tyler 1988;Gage 2003;Ramirez-Llodra et al. 2010). ...
Article
Full-text available
Amphicutis stygobita Pomory, Carpenter & Winter, 2011 was the world’s first known cave brittle star. It has been found only in two anchialine caves: Bernier Cave (type locality and current study area) and Lighthouse Cave on San Salvador Island, The Bahamas. Bernier Cave’s low salinity (14–28 ppt) reduces ionic precipitation in A. stygobita’s endoskeleton to produce fewer and lighter ossicles. Scanning electron microscopy (SEM) revealed details of internal skeletal structures including elongated arm segment ossicles with greatly reduced density and increased fenestration. The large ceiling entrance of Bernier Cave is directly above the water allowing abundant growth of algae and accumulation of detritus. Small (disk diameter = 3-4 mm) microphagous deposit-feeding brittle stars survived and grew in captivity by consuming energy-rich detritus containing algae, bacteria, invertebrates, and a sticky biofilm containing extracellular polymeric substances (EPS). Reproductive structures are described for this hermaphroditic brooding species, as are morphology and growth rates for adults and three babies born in captivity. Comparisons are made to three recently described cave species that appear to be cave endemics and to several epigean brittle stars including the brackish-water species Ophiophragmus filograneus and two deep-sea species: Amphilepis patens and Amphilepis platytata herein removed from synonymy. Several of these species show paedomorphy, including reduced mouth structures and arm ossicles. Paedomorphy conserves energy by not producing, maintaining, and transporting adult structures not needed for survival. Paedomorphic traits that are adaptive and occur in cave organisms are considered troglomorphic traits, as in A. stygobita. Correlations are made between specific paedomorphisms and environmental features.
... All rock compositions that can occur during the model evolution are coded with a specific colour which is shown in (B). Note that not all colours are visible in (A) but in later stages ( or below (i.e., in the ocean, comparable with natural pelagic environments characterized by low sedimentation rate, Eqs 8, 9; e.g., Dutkiewicz et al., 2016). ...
Article
Full-text available
Understanding the formation of new subduction zones is important because they have been proposed as the main driving mechanism for plate tectonics and they are crucial for geochemical cycles on Earth. However, the conditions needed to facilitate subduction zone initiation and the associated magmatic evolution are still poorly understood. Using a natural case study, we conducted a series of high-resolution 2D petrological-thermomechanical (i2VIS) subduction models assuming visco-plastic rheology. We aim to model the initiation and early stage of an intra-oceanic subduction zone connected to the gravitational collapse of a weak transform zone and compare it to the natural example of the Izu-Bonin-Mariana subduction zone. We also analysed the influence of low convergence rates on magmatic evolution. We propose a viable transition from initiation to mature subduction zone divided into distinct stages that include initiation by gravitational collapse of the subducting slab, development of a near-trench spreading centre, gradual build-up of asthenospheric mantle return flow, and maturation of a volcanic arc. We further show that mantle flow variations and shear instabilities, producing thermal perturbations and depleted interlayers, influence the temporal and spatial distribution of asthenospheric mantle composition and fertility in the mantle wedge. Our modelling results are in good agreement with geological and geochemical observations of the early stages of the Izu-Bonin-Mariana subduction zone.
... The source(s) of these inputs appear(s) to be at a reasonable distance from the station, given the particle size typical of distal transport (1-100 μm; Feely et al., 1987Feely et al., , 1990Lou et al., 2020). Consistently, estimated sedimentation rates were 94-470 times higher than those of pelagic sediments (average 0.1-0.5 mm kyr −1 ; Li and Schoonmaker, 2003;Piper, 2005) and in the range of those measured in hydrothermally-influenced areas accumulating to several cm kyr −1 (Cave, 2002;Cave et al., 2002;Dutkiewicz et al., 2016;Mahiques et al., 2011). Such rates indicate a significant material flux, likely from hydrothermal and volcanic origin. ...
Article
Full-text available
Iron (Fe) is an essential micronutrient for diazotrophs, which are abundant in the Western Tropical South Pacific Ocean (WTSP). Their success depends on the numerous trace metals, particularly Fe, released from shallow hydrothermal vents along the Tonga Arc. This study aimed to explore the spatio‐temporal impact of hydrothermal fluids on particulate trace metal concentrations and biological activity. To identify the composition of sinking particles across a wide area of the WTSP, we deployed sediment traps at various depths, both close and further west of the Tonga Arc. Seafloor sediments were cored at these deployment sites, including at a remote location in the South Pacific Gyre. The sinking particles were composed of a large amount of biological material (up to 88 mg d⁻¹), indicative of the high productivity of the region. A significant portion of this material (∼21 ± 12 wt.%) was lithogenic of hydrothermal origin, as revealed through Al‐Fe‐Mn tracing. The sinking material showed similar patterns between lithogenic and biogenic fractions, indicating that hydrothermal input within the photic layer triggered surface production. A hydrothermal fingerprint was suggested in the sediments due to the high sedimentation rates (>47 cm kyr⁻¹) and the presence of large, heterogeneous, metal‐rich particles. The presence of nearby active deep hydrothermal sources was suspected near the Lau Ridge due to the large particle size (1–976 μm) and the significant excess of Fe and Mn (2–20 wt.%). Overall, this study revealed that hydrothermal sources have a significant influence on the biogeochemical signature of particles in the region.
... With all due caution taken with respect to the uncertainties associated with this approach, this expression suggests that the ∼5 m-thick layer of black shales hosting the LF specimens was deposited in about 20,000 years (25 cm ka −1 ). In the modern ocean, such rapid sedimentation rates are observed along passive margins and in the distal parts of the Bengal and Indus fans (Dutkiewicz et al., 2016) ...
Article
Sediments from the 2.1- to 1.9-billion-year-old Francevillian Group in southeastern Gabon include centimeter-sized pyritized structures suggestive of colonial organisms (El Albani et al., 2010), some of which may have been motile (El Albani et al., 2019). However, these interpretations were largely based on morphological and geochemical characteristics that lack metabolic clues and/or can be explained by abiotic processes. To move this work forward, we describe other centimeter-sized specimens, loosely referred to as lenticular forms (LF), from the same area and apply a more holistic approach including morphology, mineralogy, and geochemistry. The objects are 0.2–4 cm in diameter, and most of them are endowed with a regular brim that scales proportionally to external diameter reminiscent of biological order, hence rendering the LF putative biogenic traces. The LF are perfectly delineated in every direction and deflect the sedimentary layers on which they rest. X-ray microtomography further demonstrates that the LF are syn-depositional features and not concretions, while lead isotope systematics indicate that the geochemical imprint of diagenesis is inconsequential. Low sulfur content is largely concentrated in the organic matrix, and scarcity of pyrite and its persistence as micron-sized crystals show that the role of sulfate reduction is minor. Most interestingly, the fillings of the LF cavities show large and correlated excesses of organic carbon and zinc, with the latter being distinctly enriched in its light isotopes. The geochemical anomalies of the fillings relative to the host rock, notably those associated with Zn, clearly were buried with the LF, and further imply biogenicity. In this regard, a ten-fold increase in LF size towards the top of the black shale series hosting the LF might be related to increasing Zn (nutrient) availability. Although we cannot conclude with any certainty what these remnant organisms were, their features all taken together are evocative of very large agglutinate protists that grazed on bacterial biomass either in the water column or as benthic mats.
... The source(s) of these inputs appear(s) to be at a reasonable distance from the station, given the particle size typical of distal transport (1-100 μm; Feely et al., 1987Feely et al., , 1990Lou et al., 2020). Consistently, estimated sedimentation rates were 94-470 times higher than those of pelagic sediments (average 0.1-0.5 mm kyr −1 ; Li and Schoonmaker, 2003;Piper, 2005) and in the range of those measured in hydrothermally-influenced areas accumulating to several cm kyr −1 (Cave, 2002;Cave et al., 2002;Dutkiewicz et al., 2016;Mahiques et al., 2011). Such rates indicate a significant material flux, likely from hydrothermal and volcanic origin. ...
Preprint
Iron (Fe) is an essential micronutrient for phytoplankton, particularly diazotrophs, which are abundant in the Western Tropical South Pacific Ocean (WTSP). Their success depends on the numerous trace metals, particularly iron, released from shallow hydrothermal vents along the Tonga Arc. This study aimed to explore the impact of hydrothermal fluids on particulate trace metal concentrations and biological activity. To identify the composition of sinking particles across a wide area of the WTSP, we deployed sediment traps at various depths, both close and further west of the Tonga Arc. Seafloor sediments were cored at these deployment sites, including at a remote location in the South Pacific Gyre. The sinking particles were composed of a large amount of biological material, indicative of the high productivity of the Lau Basin. A significant portion of this material was lithogenic of hydrothermal origin, as revealed through Al-Fe-Mn tracing. The sinking material showed similar patterns between lithogenic and biogenic fractions, indicating that hydrothermal input within the photic layer triggered surface production. A hydrothermal fingerprint was suggested in the sediments due to the high sedimentation rates and the presence of large, heterogeneous, trace metal-rich particles. The presence of nearby active deep hydrothermal sources was suspected near the Lau Ridge due to the large particle size and the significant enrichment of Fe and Mn. Overall, this study revealed that deep and shallow hydrothermal sources along with submarine volcanism have a significant influence on the biogeochemical signature of particles in the Lau Basin at large spatial and temporal scales.
Article
Rapid sedimentation reduces the temperature and raises the pore pressure in sedimentary basins. During rapid sedimentation (>0.5 mm yr−1), cold sediment is buried fast and there is insufficient heat flow to keep the sediment at its steady state conductive equilibrium temperature. In addition, rapid deposition of low permeability mud results in overpressure due to the inability of the pore fluid to drain. It dramatically expands the thickness of the zone where hydrates are stable (the gas hydrate stability zone or GHSZ). We explore this effect with one-dimensional models. We then simulate the two-dimensional evolution of temperature and pressure of the Terrebonne Basin in the Gulf of Mexico. We use seismic, well data, and salt restoration to provide the initial and boundary conditions. We show that rapid burial reduces the geothermal gradient from ∼30 °C/km, which would be expected under equilibrium pressure and temperature, to as low as ∼10 °C/km; we also show that 25 MPa of overpressure is developed. This deepens the thickness of the GHSZ from ∼600 mbsf (its equilibrium depth) at the basin margin, to as much as 2000 mbsf basin-ward, in response to the increasing sedimentation rates. The model successfully simulates the deepening of the base of GHSZ that is interpreted from a bottom simulating reflection in the seismic data. The model and the observations suggest that the thickness of the GHSZ may be much thicker than commonly presumed and as a result the volume of carbon stored may be underestimated. Furthermore, the thickness of the hydrate stability will change significantly with time as sedimentation rate waxes and wanes implying that the hydrate stability zone is a dynamic component of the carbon cycle.
Conference Paper
Many offshore wells and platforms are nearing abandonment, in the Gulf of Mexico, the North Sea, Offshore West Africa, and other areas. The current decommissioning process, however, is expensive. Instead of decommissioning, do these assets create an opportunity to decrease cost of decarbonization efforts using this existing infrastructure? Some platform repurposing options include geothermal energy generation (heat or electricity) using modular power generation units or pipelines back to the beach, carbon dioxide storage, hydrogen generation, and potentially others. Each option has both a technical probability of success and a financial outcome. In this study, we begin to answer the question "Where is geothermal energy an option for repurposing offshore wells and platforms?" Here, we examine the Corpus Christi Bay and the Galveston Bay for geothermal power potential as shallow water offshore platforms that will have the highest likelihood to sell power if a geothermal resource exists. Geothermal power potential is calculated and several end use scenarios for the geothermal energy, including cost of energy and project financials, are examined. Using these two regions as test cases, estimations on the potential shallow water offshore geothermal market is discussed. To perform this assessment, we examine published geothermal gradient maps and produce an industry standard geothermal resource assessment based on existing well production from the offshore platform. Using the thermal energy production, we estimate electrical power potential and total potential revenue, and then calculate high level financial metrics. Technical gaps and data gaps are assessed. CAPEX, OPEX, discounted cash flows, internal rates of return, and project lifetimes are part of the financial analysis. Indicative results are presented from the sample case studies in Corpus Christi Bay and Galveston Bay. There is no offshore geothermal energy production to date, although this is a topic of interest with significant publicity from Gulf of Mexico and North Sea operators. While there is interest, there are no public studies showing potential economics. This paper, to our knowledge, summarizes and publicly presents technical and financial parameters for shallow water offshore geothermal energy production with the specific goal to extend the life of offshore platforms and re-use existing wellbores.
Article
Full-text available
Coordinated Ocean-ice Reference Experiments (COREs) are presented as a tool to explore the behaviour of global ocean-ice models under forcing from a common atmospheric dataset. We highlight issues arising when designing coupled global ocean and sea ice experiments, such as difficulties formulating a consistent forcing methodology and experimental protocol. Particular focus is given to the hydrological forcing, the details of which are key to realizing simulations with stable meridional overturning circulations. The atmospheric forcing from [Large, W., Yeager, S., 2004. Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. NCAR Technical Note: NCAR/TN-460+STR. CGD Division of the National Center for Atmospheric Research] was developed for coupled-ocean and sea ice models. We found it to be suitable for our purposes, even though its evaluation originally focussed more on the ocean than on the sea-ice. Simulations with this atmospheric forcing are presented from seven global ocean-ice models using the CORE-I design (repeating annual cycle of atmospheric forcing for 500 years). These simulations test the hypothesis that global ocean-ice models run under the same atmospheric state produce qualitatively similar simulations. The validity of this hypothesis is shown to depend on the chosen diagnostic. The CORE simulations provide feedback to the fidelity of the atmospheric forcing and model configuration, with identification of biases promoting avenues for forcing dataset and/or model development.
Data
Full-text available
Various biomarkers (n-alkanes, n-alcohols, and sterols) have been studied in a piston core TSP-2PC taken from the Southern Ocean to reconstruct the paleoenvironmental changes in the subantarctic region for the last two deglaciations. Mass accumulation rates of terrestrial (higher molecular weight n-alkanes and n-alcohols) and marine (dinosterol and brassicasterol) biomarkers increased significantly at the last two glacials and stayed low during interglacial peaks (early Holocene and the Eemian). These records indicate that the enhanced atmospheric transport of continental materials and the increased marine biological productivity were synchronously linked in the Southern Ocean at the last two glacials. This suggests that increased glacial dust inputs have relieved iron limitation in the subantarctic Southern Ocean. These two processes, however, were not linked at the cooling phase from the Eemian to marine isotope stage (MIS) 5d. During this period, paleoproductivity may have been influenced by the latitudinal migration of the high-production zone associated with the Antarctic Polar Front.
Article
Full-text available
Understanding the transport and deposition of sediments along the Antarctic continental shelves helps to provide constraints on past ice sheet dynamics. Seismic stratigraphic and scientific drilling data from the Antarctic continental margins have provided much direct evidence concerning ice sheet evolution and sedimentation history. In this study, we describe a series of sedimentary features along the continental margin of the southeastern Weddell Sea to constrain glacial-influenced sedimentation processes from the Middle Miocene to the present. The Crary Trough Mouth Fan (CTMF), channel systems, Mix-system turbidity-contourites are investigated by using seismic reflection, sub-bottom profiler, and results from ODP Site 693. The sinuous, NE-SW-oriented turbidity-contourites are characterized by bathymetric highs that are more than 150 km wide, 700 km long, and have a sediment thickness of up to 2 km. The unique sedimentation environment of the southeastern Weddell Sea is controlled by a large catchment area and its fast (paleo-)ice streams feeding the Filchner Ronne Ice Shelf, turbidity/bottom currents as well as sea level changes. A remarkable increase in mass transport deposits (MTDs) in the Late Miocene and Early Pliocene strata has been related to, ice sheet loading, eustatic sea level fall, earthquakes, and overpressure of rapid sediment accumulation. Our seismic records also imply that fluctuations of East Antarctic ice sheet similar to those that occurred during the last glacial cycle might have been typical for southeastern Weddell Sea during glacial periods since the Late Miocene or even earlier.
Article
Full-text available
Open-access digital resources: http://www.earthbyte.org/ocean-basin-evolution-and-global-scale-plate-reorganization-events-since-pangea-breakup/ ftp://ftp.earthbyte.org/Data_Collections/Muller_etal_2016_AREPS We present a revised global plate motion model with continuously closing plate boundaries ranging from the Triassic at 230 Ma to the present day, assess differences between alternative absolute plate motion models, and review global tectonic events. Relatively high mean absolute plate motion rates around 9–10 cm yr-1 between 140 and 120 Ma may be related to transient plate motion accelerations driven by the successive emplacement of a sequence of large igneous provinces during that time. A ~100 Ma event is most clearly expressed in the Indian Ocean and may reflect the initiation of Andean-style subduction along southern continental Eurasia, while an ~80 Ma acceleration of mean rates from 6 to 8 cm yr-1 reflects the initial northward acceleration of India and simultaneous speedups of plates in the Pacific. An event at ~50 Ma expressed in relative, and some absolute plate motion changes around the globe and in a reduction of global mean velocities from about 6 to 4–5 cm yr-1, indicates that an increase in collisional forces (such as the India-Eurasia collision) and ridge subduction events in the Pacific (such as the Izanagi-Pacific Ridge) play a significant role in modulating plate velocities.
Article
Full-text available
Knowing the patterns of distribution of sediments in the global ocean is critical for understanding biogeochemical cycles and how deep-sea deposits respond to environmental change at the sea surface. We present the first digital map of seafloor lithologies based on descriptions of nearly 14,500 samples from original cruise reports, interpolated using a support vector machine algorithm. We show that sediment distribution is more complex with significant deviations from earlier hand-drawn maps and that major lithologies occur in drastically different proportions globally. By coupling our digital map to oceanographic data sets, we find that the global occurrence of biogenic oozes is strongly linked to specific ranges in sea surface parameters. In particular, by using recent computations of diatom distributions from pigment-calibrated chlorophyll-a satellite data, we show that, contrary to a widely held view, diatom oozes are not a reliable proxy for surface productivity. Their global accumulation is instead strongly dependent on low surface temperature (0.9–5.7 °C) and salinity (33.8–34.0 PSS) and high concentrations of nutrients. Under these conditions, diatom oozes will accumulate on the seafloor irrespective of surface productivity as long as there is limited competition from biogenous and detrital components, and diatom frustules are not significantly dissolved prior to preservation. Quantifying the link between the seafloor and the sea surface through the use of large digital data sets will ultimately lead to more robust reconstructions and predictions of climate change and its impact on the ocean environment. Interactive virtual globe here: http://portal.gplates.org/#SEAFLOOR
Article
Understanding the controls on opal export in the Southern Ocean can inform both the prediction of how the leakage of silicic acid from the Southern Ocean responds to climate and the interpretation of paleo-proxies. We have compiled a database of 185 230Thorium-normalized opal burial rates and 493 opal concentration measurements in Southern Ocean sediments and matched these with environmental climatologies. By subdividing the Southern Ocean on the basis of oceanographic regions and interpolating the opal burial rates, we estimate a total biogenic Si burial south of 40°S of 2.3 ± 1.0 Tmol Si year −1. In both the seasonally ice-covered and permanently ice-free regions we can predict 73% of opal burial from surface-ocean properties. Where sea-ice is present for at least part of the year, the length of the ice-free season determines the upper limit of opal burial in the underlying sediments. In the ice-free regions of the Southern Ocean, the supply of silicic acid through winter mixing is the most important factor. Our results do not support a strong role of iron in controlling opal burial. We do however find that satellite-derived net primary production increases with increasing (modelled) dust delivery. These findings support the decoupling between carbon and opal fluxes in the Southern Ocean. When corrected for opal dissolution, the observed opal fluxes are in reasonable agreement with fluxes simulated using an ocean biogeochemical model. However, the results suggest current preservation algorithms for opal could be improved by incorporating the composition of particle flux, not only its magnitude.
Chapter
The reconstruction of biogenic particle fluxes and export paleoproductivity from accumulation rates of biogenic proxies in late Quaternary marine sediments, besides other factors, greatly depends on the quantification of the amount of laterally redistributed sediment particles. This is particularly crucial in areas of highly dynamic bottom currents such as in the vicinity of the Antarctic Circumpolar Current System of the Southern Ocean but may also be important in environments with lower current speeds. The flux of the natural radionuclide 230Th to the sediments is expected to match its local production rate because of its very low oceanic residence time and high particle reactivity. Some uncertainties possibly affecting this assumed constant flux in areas of highly dynamic water masses and strong spacial contrasts of particle flux intensity have to be considered. Advective 230Th transport and particle size dependent relocation of particles may occur there. Sediment redistribution can therefore in these areas only be evaluated applying a normalization to 230Thex if its fluxes deviate significantly (>50%) from the expected values. It has been shown using this method that up to twelve times the vertical particle flux has been supplied laterally in areas such as the ACC. It is in turn possible to calculate realistic bulk accumulation rates (rain rates) as the basis for reconstructing proxy fluxes from marine sediments. A high variability of sediment redistribution intensity, and thus uncorrected proxy accumulation rates from one location to the other, but also within single cores, demonstrates the necessity of its quantification and correction before any paleoceanographic interpretations applying these accumulation rates may be carried out.