ArticlePDF Available

Freshwater fish faunas, habitats and conservation challenges in the Caribbean river basins of north-western South America: FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA

Wiley
Journal of Fish Biology
Authors:

Abstract and Figures

The remarkable fish diversity in the Caribbean rivers of north-western South America evolved under the influences of the dramatic environmental changes of neogene northern South America, including the Quechua Orogeny and Pleistocene climate oscillations. Although this region is not the richest in South America, endemism is very high. Fish assemblage structure is unique to each of the four aquatic systems identified (rivers, streams, floodplain lakes and reservoirs) and community dynamics are highly synchronized with the mono-modal or bi-modal flooding pulse of the rainy seasons. The highly seasonal multispecies fishery is based on migratory species. Freshwater fish conservation is a challenge for Colombian environmental institutions because the Caribbean trans-Andean basins are the focus of the economic development of Colombian society, so management measures must be directed to protect aquatic habitat and their connectivity. These two management strategies are the only way for helping fish species conservation and sustainable fisheries.
Content may be subject to copyright.
Journal of Fish Biology (2016) 89, 65101
doi:10.1111/jfb.13018, available online at wileyonlinelibrary.com
Freshwater sh faunas, habitats and conservation
challenges in the Caribbean river basins of north-western
South America
L. F. JIMÉNEZ-SEGURA*, G. GALVIS-VERGARA, P. CALA-CALA,
C. A. GARCÍA-ALZATE§, S. LÓPEZ-CASAS*, M. I. RÍOS-PULGARÍN,
G. A. ARANGO¶, N. J. MANCERA-RODRÍGUEZ**,
F. GUTIÉRREZ-BONILLA††  R. ÁLVAREZ-LEÓN ‡‡
*Universidad de Antioquia, Calle 67 No. 53-108, Medellín, Colombia, Universidad Nacional
de Colombia, Carrera 25 No. 61-20, A-201, Bogotá D.C., Colombia, §Universidad del
Atlántico, Km 7 Antigua vía Puerto Colombia, Barranquilla, Colombia, Universidad
Católica de Oriente, Carrera 46 No. 40b 50, Rionegro, Colombia, Empresas Públicas de
Medellín, Carrera 58 42-125, Medellín, Colombia, **Universidad Nacional de Colombia-Sede
Medellín, Calle 59A No. 63-20, Medellín, Colombia, ††Universidad de Bogotá Jorge Tadeo
Lozano, Carrera 4aNo 22-61, Bogotá, Colombia and ‡‡Fundación Verdes Horizontes,
Carrera 25 No. 61-20, A-201, Manizales, Colombia
The remarkable sh diversity in the Caribbean rivers of north-western South America evolved under
the inuences of the dramatic environmental changes of neogene northern South America, including
the Quechua Orogeny and Pleistocene climate oscillations. Although this region is not the richest
in South America, endemism is very high. Fish assemblage structure is unique to each of the four
aquatic systems identied (rivers, streams, oodplain lakes and reservoirs) and community dynamics
are highly synchronized with the mono-modal or bi-modal ooding pulse of the rainy seasons. The
highly seasonal multispecies shery is based on migratory species. Freshwater sh conservation is a
challenge for Colombian environmental institutions because the Caribbean trans-Andean basins are the
focus of the economic development of Colombian society, so management measures must be directed
to protect aquatic habitat and their connectivity. These two management strategies are the only way
for helping sh species conservation and sustainable sheries.
© 2016 The Fisheries Society of the British Isles
Key words: Caribbean trans-Andean Rivers; sheries; freshwater shes; threats to conservation.
INTRODUCTION
The river basins of northern South America vary widely in their climatic and hydro-
logical conditions, and their geomorphology and soil matrix reveals a dramatic history
of land transformations millions of years ago. Some efforts have already been made to
group them into geographic units using landscape, vegetation type, climate, precipita-
tion, altitude and faunal composition (Hernández-Camacho, 1992; IGAC, 2003).
In South America, Colombia is second, after Brazil, in number of sh species
(Maldonado-Ocampo et al., 2008); however, if the species per unit area of the two
Author to whom correspondence should be addressed: Tel.: +57 4 2195620; email: luz.jimenez@udea.edu.co
65
© 2016 The Fisheries Society of the British Isles
66 L. F. JIMÉNEZ-SEGURA ET AL.
countries is considered, Colombia is the most diverse. This remarkable sh diversity
is the result of a dynamic geological history caused by plate tectonics, the uplift
of the Andean mountains, marine incursions during the Pleistocene period and the
land-bridge connections with the North America fauna after the rise of the Panama
Isthmus. The long isolated trans-Andean sh fauna is highly endemic, with ancestral
links with the Amazon and Orinoco ichthyofaunas (Rodríguez-Olarte et al., 2011).
Since its separation from the Gondwana continent c. 100 million years ago, aquatic
systems of northern South America evolved from a proto Amazon-Orinoco river that
drained eastward to the western Atlantic to a set of basins that drains to the Caribbean,
because of the rise of various branches of the western, central and eastern Andes
cordilleras, and the Venezuela and Merida branches. Glacial and interglacial periods
of the Pleistocene, caused changes in the sea level and the advance and withdrawal
of salt water into the lowland freshwater systems. Elevation of sea level during the
warmer periods may have generated massive extinctions of freshwater biota and also
the connection of the oodplains of all of these northern basins leading to the potential
dispersion of freshwater faunas along the coast (Rodríguez-Olarte et al., 2011).Today,
the interaction between the Andean mountains and the movement of water vapour
inside the inter-tropical convergence zone (ITCZ), their altitudinal gradients and soil
types caused those north-western basins to have different characteristics of rainfall,
hydrology and water production. Additionally, land use by humans has become
a permanent inuence on freshwater habitats and it has become a threat to biota
conservation. A new extinction period, the Anthropozoic period already began.
Since the 1990s, scientic knowledge about the Colombian sh fauna has
been growing. Checklists have recently been published (Mojica et al., 2006a,b;
Maldonado-Ocampo et al., 2008; Álvarez-León et al., 2013), biogeographic anal-
yses (Rodríguez-Olarte et al., 2011), sheries and biology (Lasso et al., 2011a,
b; Usma-Oviedo et al., 2013), threats to its conservation (Galvis & Mojica, 2007;
Barletta et al., 2010; Baptiste et al., 2010; Mojica et al., 2012) and many other short
publications focused on biology and ecology are compiled in Maldonado-Ocampo
et al. (2005), Maldonado-Ocampo et al. (2013), Usma-Oviedo et al. (2013) and
Álvarez-León et al. (2013), and on the use of cytogenetic and molecular techniques
for the assessment of genetic variability are compiled in Mancera-Rodríguez et al.
(2013).
Here, most of the available knowledge on the sh fauna in some of the river basins of
north-western South America in Colombia draining to the Caribbean sea are reviewed,
to describe species richness, identify life-history patterns, habitat assemblages and the
threats to shes resulting from Colombia’s economic development, and to determine
what is needed to protect the freshwater shes and the associated artisanal sheries.
THE CARIBBEAN RIVER BASINS OF NORTH-WESTERN SOUTH
AMERICA IN COLOMBIA
The Republic of Colombia is located in the north-western corner of South Amer-
ica. It includes a continental area of 1 141 748 km2. Within the Colombian continental
area ve main river basins are recognized: Amazon, Orinoco, Pacic, Catatumbo and
Caribbean. The unit of analyses has followed the basin category and is focused on
the four principal basins north-west of the eastern branches of the Andean mountains:
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 67
12
10
8
6
4
2
807876 74 72
a
b
c
d
e
f
Caribbean Sea
Pacic Ocean
N
F. 1. Map of Colombia and the Caribbean draining trans-Andean River basins. a, Ranchería River; b, Mompo-
sine Depression; c, Magdalena River; d, Cauca River; e, Sinú River; f, Atrato River
Atrato River, Magdalena-Cauca River, Sinú River and Ranchería River (Fig. 1). Table I
shows the characteristics of these river basins.
The Atrato River (528N; 7600W) ows to the north, between the western
cordillera and the Baudó range, and ends in the Caribbean Sea. It is the main river
in the Chocó biogeographic area, owing to the north. Most of the channel is naviga-
ble (500 km; 67% length) and it is one of the largest producers of water in the world.
The mean annual rainfall is 8 000 mm, and air temperatures range between 23 and 30
C. The Atrato River basin has a mono-modal cycle with a rainy season between June
and November, and a dry season from December to May.
T I. Characteristics of some Caribbean basin rivers. Data were taken from Lasso et al.
(2011a,b) and Mojica et al. (2006a,b)
River basin
Characteristic Magdalena Cauca Atrato Sinú Ranchería
Basin area (km2) 262 075 55 599 37 810 18 478 2 338
Maximum altitude (m) 3 685 3 000 3 800 2 300 5 572
Main channel lenght 1 502 1 350 720 336 248
Mean discharge (m3s1) 7 100 2 407 3 993 486 7·8
Hydrologic pattern Bi-modal Bi-modal Mono-modal Mono-modal Mono-modal
Flooding plane area (Ha) 295 756 950·2 65 000 24 340 510
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
68 L. F. JIMÉNEZ-SEGURA ET AL.
The Sinú River (804N; 7553W) ows to the north-west between the San Jerón-
imo and Abibe ranges, towards to the Caribbean Sea. Half of its course is navigable.
The range of annual rainfall is between 800 and 3000 mm, and air temperatures range
between 18 and 28C. The Sinú River discharge is between 60 and 700m3s1and it
has a mono-modal cycle with a rainy season between June and November and a dry
season from December to May.
The Magdalena-Cauca Basin is the most populated area in Colombia, most (80%)
of the Colombian population inhabits there. The Magdalena River (132N; 7652
W) ows to the north-west through an extensive valley between the eastern and central
cordilleras of the Andes. Below 200 m altitude the valley opens to form an extensive
oodplain and the main channel ows through an extensive oodplain (22 000 km2),
the Momposine depression (906N; 7425W); the Cauca and San Jorge Rivers also
discharge into this depression. The Cauca River runs parallel to the Magdalena River
(113N; 7722W). Between 1500 and 900 m altitude the river valley widens to form
another great oodplain area. After the 900 m altitude, the valley gets narrower and the
river ows north-east through a deep and narrow canyon until the 400 m altitude; at that
point the Cauca valley opens again to form an extensive oodplain area that nally
discharges into the Momposine depression. Beyond this area the Magdalena-Cauca
River ows to the north-west and discharges into the Caribbean Sea (1103N; 74
50W).
The Ranchería River is a small coastal river formed in the Sierra Nevada de Santa
Marta Mountains (SNSM) (1131N; 7254W). It ows to the north-east and when
it reaches 99 m altitude (1111N; 7234W), the channel turns to the west and
discharges in the Caribbean Sea. The SNSM is a mountainous massif, isolated from
the Andes and Perijá Cordilleras and its lower areas to the north-west form the beaches
of the Caribbean Sea. It is located in the north of Colombia (1001N; 7236W)
and the mean annual temperature ranges between 10 and 32C. SNSM forms three
drainage areas: Caribbean, west, and east. The Caribbean basin is formed by the rivers
that ow directly to the sea, covers the north face of the mountain massif and includes
18 rivers, including the Ranchería River. The western basin is formed by six rivers that
drain the western slope and discharge into a brackish water – riverine lake connected
with the Magdalena: Ciénaga Grande de Santa Marta. The eastern basin is formed by
tributaries of the Cesar River: the Badillo, Guatapurí, Cesarito, Los Clavos, Diluvio
and Ariguaní Rivers.
FISH DATA SOURCES
Lists of sh species, data for assemblage analyses, information about sheries and
habitat threats were obtained from different sources. The species list was constructed
with published data (Mojica, 2002; Maldonado-Ocampo et al., 2005, 2008, 2013;
Mojica et al., 2006a,b; Ortega-Lara et al., 2006; Villa-Navarro et al., 2006), Natural
History Museum data les (Universidad de Antioquia, Universidad Católica de Ori-
ente, Universidad del Atlántico) and unpublished data from C. García-Alzate (Cesar
River and lower basin of the Magdalena River). Synonyms and actual classication of
sh groups was veried in the online Fish Catalog (Eschmeyer & Fong, 2016).
Data on species assemblages were only obtained for some aquatic systems (creeks
and rivers) in the western and eastern slopes of the Central Andean Cordillera and
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 69
the oodplain lakes from the Magdalena River valley between the eastern and central
Cordillera. Data were obtained from three rivers: the Manso and La Miel on the eastern
slope (Magdalena Basin) and the Porce on the western slope (Cauca Basin). La Miel
and Porce Rivers were dammed for hydro-power as well as 15 streams that discharge to
reservoirs Porce II and Porce III (Porce River) and 35 oodplain lakes in the Magdalena
River Valley. Samples were taken according to the climatic season (rains or dry) in
each aquatic system and for at least a 1 year period. Fishes in the oodplain lakes
were captured only during the high water season of the sampled years (2008, 2010
and 2012) because in this period most of the sh species inhabit this aquatic system.
These data were published by Granado-Lorencio et al. (2012a,b), Hernández-Serna
et al. (2014), Jiménez-Segura et al. (2014b) and J. Álvarez-Bustamante (unpublished
data). Unpublished data of the Manso River comes from the monitoring programmes
of ISAGEN S.A. E.S.P., who kindly donated these data.
For analysing sh assemblage data, abundance of each sh species in each aquatic
system was normalized. Frequency of each sh species in each aquatic system was cal-
culated as the number of times that the species appears in the total of samples. Relative
abundance (AR) was multiplied by the sh species frequency for ranking the species
importance in the sh assemblage.
Information about sheries yield of Colombian basins was taken from public reports
of Government Agencies (AUNAP, 2014a,b). Although highly criticized because of
changes to their data recording methods, yield reports were made yearly by these Agen-
cies from 1970 until June 2014. The oldest records came from the Magdalena-Cauca
River Basin and since 2006 records have been taken in all continental basins and marine
systems (Pacic Ocean and Caribbean Sea); sadly, records from 2014 were not avail-
able when we get the data. So for comparing between basins only those years with com-
plete data were used. Reports from Lasso et al. (2011a,b) were also used. Knowledge
about habitat threats to sh fauna were compiled from different sources (unpubl. data).
CURRENT STATUS OF THE FISH KNOWLEDGE IN THE CARIBBEAN
NORTH-WESTERN BASINS IN COLOMBIA
PATTERNS OF THE FISH ASSEMBLAGES
Species richness and composition
As research advances the number of freshwater sh species in Colombia increases.
Cala (1987, 2001a,b) mentioned c. 20003 000 possible species, Mojica (2002)
838 species, Maldonado-Ocampo et al. (2008) counted 1435 species, and recently
Álvarez-León et al. (2013) found a little more than 1700. For the north-western basins
of the Caribbean Sea, 290 freshwater sh species are listed (Table S1, Supporting
Information). Species are grouped in seven orders and 37 families. The super-
order Ostariophysi dominates with 265 species, with the two most speciose Orders:
Characiformes (134 species; 44% of total) and Siluriformes (117 species, 37%).
Other Orders are Cyprinodontiformes (15 species), Perciformes (eight species) and
Gymnotiformes (13 species). Families with the most species are the Characidae (77
species), Loricariidae (34 species), Trichomycteridae (26 species), Astroblepidae (23
species) and Heptapteridae (11 species). Another eight families are represented just by
one species.
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
70 L. F. JIMÉNEZ-SEGURA ET AL.
0·1 0·2 0·3 0·4 0·5 0·6 0·7 0·8
Jaccard similarity index
Atrato river
(118)
Magdalena-Cauca rive
r
(224)
Sinu river
(55)
Rancheria river
(50)
0·26
0·22
32
Conphenetic correlation= 0·80
F. 2. Similarities in the sh faunas between the Caribbean draining trans-Andean rivers basins. Numbers in
parenthesis are the number of sh species.
Biogeographic regions
Based on sh distributions, Cala (1987) proposed eight biogeographic regions:
Andean altiplano, Atrato River system, Sinú River system, north-western Caribbean
slope and Magdalena River system, Catatumbo River, Orinoco River and Ama-
zonas River. After the analyses of Abell et al. (2008) on freshwater sh distribution
around the world, the Atrato River was joined to North Andean Pacic slopes,
the Magdalena River with the Sinú River and South America Caribbean drainages
were attached to the Trinidad region. Recently, Albert et al. (2011) and Albert &
Reis (2011) further advanced beyond Abell et al. (2008) classication to dene sh
endemism and species densities for 44 South American eco-regions. They found
that although eco-regions in the north of South America are not as diverse as oth-
ers in the Amazonas or Orinoco regions, their sh fauna is highly endemic (50%
endemism).
The basin classication based on the present analysis of species presence or
absence and has an important co-phenetic correlation value (r=0·80) so, the records
used for the construction of the UPGMA dendrogram were an adequate t. The
relationship between the sh faunas showed two large clusters with low similari-
ties: Magdalena-Cauca and Atrato River basins, and Sinú-Ranchería River basins
(Fig. 2). Twenty two species are widely distributed in the analysed basins. The
Magdalena-Cauca and Atrato basins share 75 species and the Ranchería and Sinú
Rivers share 28 species (Table S1).
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 71
120
Fish species
100
80
60
40
20
0
5–100
101–200
201–300
301–400
401–500
501–600
601–700
701–800
801–900
901–1000
1001–1100
1101–1200
1201–1300
1301–1400
1401–1500
1501–1600
1601–1700
1701–1800
1801–1900
1901–2000
2001–2100
2101–2200
2201–2200
>2300
Altitudinal range (m)
Hoplosternum
Prochilodus
Triportheus spp. GymnotiformesChaetostoma spp.
Astyanax spp. Pimelodus spp.
Astroblepus spp.
Trichomycteridae spp.
Grundulus
F. 3. Fish species number across the altitudinal range and endemism percentages in the Magdalena-Cauca River
basin, and some of the key species along the altitudinal range. , endemism percentage; , number of sh
species. Modied from Jiménez-Segura et al. (2014a).
Altitudinal zonation
The number of sh species in the basin of the Magdalena-Cauca River changes along
the altitudinal gradient showing the highest value at lower elevations (Jiménez-Segura
et al. 2014a; Carvajal-Quintero et al., 2015). Even though the number of species is
reduced as the altitude increases, the ß diversity value is high (Carvajal-Quintero et al.,
2015) and the percentage of endemic species is the highest of the analysed basins
(Fig. 3).
Altitudinal distribution of the sh fauna along the river beds in the Andes is
inuenced by the slope, speed and water temperature (Jaramillo-Villa et al., 2010;
Carvajal-Quintero et al., 2015) and the height of the water column; these physical
characteristics of the aquatic systems result in the formation of an altitudinal zonation
of sh assemblages. Aquatic ecosystems of the Magdalena River between 5 and 100m
altitude (i.e. swamps or oodplain lakes) are habitat for 62 species; between 100 and
300 m the number of species reaches 92 and assemblages up to 2300 m may have
between three and six species. Dominant species in the assemblages between 5 and
100 m altitude are Cyphocharax magdalenae (Steindachner 1878), Pimelodus blochii
Valenciennes 1840, Triportheus magdalenae (Steindachner 1878), Hyphessobrycon
proteus Eigenmann 1913, Prochilodus magdalenae Steindachner 1879, Hoplosternum
magdalenae Eigenmann 1913 and Astyanax magdalenae Eigenmann & Henn 1916.
As altitude increases, the Andean rivers assemblage changes and other species
become abundant, such as Chaetostoma spp.,Andinoacara latifrons (Steindachner
1878), Astyanax spp., Bryconamericus spp. and Creagrutus magdalenae Eigenmann
1913. Between 200 and 700 m, Brycon henni Eigenmann 1913 and the genera
Astroblepus,Trichomycterus and Lebiasina characterize the sh fauna.
Although the number of species in the assemblage is negatively correlated with
altitude, this pattern is disrupted over some altitude ranges. Stretches of the channel
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
72 L. F. JIMÉNEZ-SEGURA ET AL.
between 100 and 300 m altitude are the richest in species. These stretches are highly
heterogeneous and different aquatic environments can be found: small streams, creeks,
rivers with wide and deep channels with an extensive lateral oodplain, and large
lowland lakes (Jaramillo et al. 2015a) that are repeatedly ooded and connected
during the two seasons of yearly oods. Although the variety of aquatic environments
in these stretches may be the cause of most species richness, this is a hypothesis that
needs to be veried.
As the altitude increases, the water temperature decreases and water speed increases,
resulting from the increased slope of the channel (Lewis, 2008). These conditions
cause changes in the composition of the sh species assemblage: small species that
have developed body structures and depressed body forms that allow them to live
in such rife-pool, shallow environments are more frequent. In the aquatic habitats
in the altitudinal range between 1000 and 1800 m, there are between 20 and 30
species. Characins like B. henni and species of the genus Creagrutus,Astroblepus
and Trichomycterus are typical. Assemblages over 1800 m are poor in species with
Eremophilus mutissi Humboldt 1805, Lebiasina narinensis Ardila Rodriguez 2002 and
Grundulus species found most frequently. The sucking mouth disc and strong pectoral
and pelvic ns of the Astroblepidae and Loricariidae families are the most obvious
characteristics associated with the type of aquatic environment that these bottom
species inhabit (Maldonado-Ocampo et al., 2005; Carvajal-Quintero et al., 2015).
Aquatic habitats and their sh assemblages
The sh assemblages in the Magdalena-Cauca Basin are unique to each aquatic sys-
tem in the basin. Each aquatic system has a different number of sh species; reservoir
systems were the poorest and the river systems in the low lands were the richest in
species number. In every aquatic system, 70% of the relative abundance is represented
by at least 13 species, all different in each of the aquatic systems (Table II). Inter-
estingly, B. henni was present in all the systems of the western slope of the Central
Cordillera, although its abundance and frequency was not high in the reservoirs or in
the eastern drainages of this basin.
The following sh species were the most representative of the sh fauna in the
Andean streams: B. henni, Guacuco catshes of the genus Astroblepus,A. latifrons
armoured catshes Chaetostoma spp. and the tetra Bryconamericus caucanus Eigen-
mann 1913 comprised most of the total abundance. Habitat characteristics of these
Andean streams are very distinctive. The longitudinal slope of the channel is almost
30% so it forms a serial of cascades, rifes and pools than offer unique conditions for
each sh species. The streams are surrounded by at least a gallery forest fringe that
is the food source for most of the species that inhabit the streams because it offers
seeds, insects and other invertebrates. Also, the rocky substratum favours the growth
of microorganisms in the biolm, one of the most important foods for detritivore
sh species. As previously discussed, Astroblepus and Chaetostoma species also
have body structures that let them attach to the rocky substratum during the ushing
discharges of rainy seasons and during dry seasons, individuals of Trychomycteridae
spp. and Lebiasina spp. dig into the humid bedrock layer awaiting the arrival of the
rains (López-Casas S., pers. observ.); research on these sh strategy is needed.
In the reservoirs on the Porce River, some of the sh species of the original river
assemblage have persisted. Just one sh species, Astyanax microlepis Eigenmann 1913,
comprised 78% of total abundance. Other native species such as H. magdalenae and A.
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 73
T II. Dominant species in each aquatic system in the two slopes of the Andean Central Cordillera. Species in bold form 70% of relative numerical
abundance (AR) and frequency (F)
Central Andes Cordillera
Western Slope: Cauca River Basin Eastern Slope: Magdalena River Basin
Rank
(ARF1)
Andean Creeks
(550– 900 m)
Dammed River Channel
(650– 900 m) Reservoirs (590 –900 m)
River channel
(200– 700 m)
Dammed River Channel
(145– 200 m)
Floodplain lakes
(70– 215 m)
1Brycon henni Andinoacara latifrons Astyanax microlepis Chaetostoma cf. leucomelas Creagrutus brevipinnis Cyphocharax magdalenae
2Astroblepus unifasciatus Poecilia caucana Hoplosternum magdalenae Creagrutus brevipinnis Gephyrocharax melanocheir Caquetaia kraussii
3Astroblepus trifasciatus Brycon henni Andinoacara latifrons Hemibrycon spp. Crossoloricaria variegata Roeboides dayi
4Andinoacara latifrons Poecilia reticulata Roeboides dayi Prochilodus magdalenae Astyanax liferus Centrochir crocodili
5Chaetostoma cf. leucomelas Astyanax microlepis Coptodon rendalli * Astroblepus guentheri Astyanax fasciatus Hoplosternum magdalenae
6Bryconamericus caucanus Bryconamericus caucanus Brycon henni Astyanax fasciatus Pseudopimelodus bufonius Ctenolucius hujeta
7Chaetostoma cf. thomsoni Chaetostoma cf. leucomelas Oreochromis niloticus * Argopleura magdalenensis Chaetostoma cf. leucomelas Leporinus muyscorum
8Astroblepus chotae Roeboides dayi Poecilia caucana Trichomycterus striatus Dasyloricaria lamentosa Ageneiosus pardalis
9Hemibrycon dentatus Bryconamericus caucanus Hyphessobrycon spp. Geophagus steindachneri Chaetostoma cf. milesi Dasyloricaria lamentosa
10 Poecilia reticulata Lasiancistrus caucanus Parachromis loisellei * Chaetostoma cf. milesi Chaetostoma cf. thomsoni Hypostomus tenuicauda
11 Astroblepus chapmani Chaetostoma cf. thomsoni Oreochromis mossambicus * Chaetostoma cf. scheri Microgenys minuta Gilbertolus alatus
12 Astroblepus grixalvii Hemibrycon dentatus Leporellus vittatus Saccodon dariensis Saccoderma hastatus Eigenmannia humboldtii
13 Astroblepus micrescens Coptodon rendalli * Chaetostoma cf. scheri Leporinus muyscorum Geophagus steindachneri Pimelodus blochii
14 Oreochromis mossambicus * Parodon magdalenensis Poecilia reticulata Characidium phoxocephalum Astyanax magdalenae Curimata mivartii
15 Hemibrycon boquiae Oreochromis mossambicus * Lasiancistrus caucanus Chaetostoma spp. Prochilodus magdalenae
16 Oreochromis niloticus * Hoplosternum magdalenae Trichomycterus banneaui Pimelodella chagresi Astyanax fasciatus
17 Trichomycterus chapmani Hemibrycon boquiae Astyanax magdalenae Ctenoluccius hujeta Astyanax magdalenae
18 Astroblepus frenatus Xiphophorus hellerii * Parodon magdalenensis Brycon fowleri Andinoacara latifrons
19 Poecilia caucana Chaetostoma cf. scheri Trichomycterus caliense Creagrutus magdalenae Hypostomus hondae
20 Xiphophorus hellerii * Oreochromis niloticus * Chaetostoma cf. thomsoni Lasciancistrus caucanus Sternopygus aequilabiatus
Species
number
40 38 14 68 91 53
*, an exotic species.
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
74 L. F. JIMÉNEZ-SEGURA ET AL.
latifrons, are common and abundant. These species are typical of oodplain lakes of the
Magdalena River (Granado-Lorencio et al., 2012a) so the reservoir habitat conditions
may favour their recruitment. Foreign species such as Coptodon rendalli (Boulenger
1897), Parachromis loisellei (Bussing 1989) and Oreochromis spp. were also important
in the reservoir assemblage; they have also been reported in many other reservoirs in
South America (Agostinho et al., 2007). These species are good colonizers of these
articial habitats because they make their nests in the sandy substratum of the reservoir;
they have parental care of their offspring and are mostly omnivores.
The riverine sh assemblage was more diverse than streams or reservoirs. In La
Miel River, downstream of the dam, nine species were the most important in the
sh assemblage: Tetras: Creagrutus brevipinnis Eigenmann 1913, Gephyrocharax
melanocheir Eigenmann 1912, Astyanax liferus (Eigenmann 1913) and Astyanax
fasciatus (Cuvier 1819) and three species of detritivores [Chaetostoma spp., Dasy-
loricaria lamentosa (Steindachner 1878), Crossoloricaria variegate (Steindachner
1879)] and the migratory Prochilodontidae: Bocachico Prochilodus magdalenae
Stenidachner 1879 and the Jetudo Ichthyoelephas longirostris (Steindachner 1879).
This assemblage is seasonally enriched with migratory sh species [Pimelodi-
dae: Pseudoplatystoma magdaleniatum Buitrago-Suarez & Burr 2007, Sorubim
cuspicaudus Littmann, Burr & Nass 2000, Pimelodus spp. and the characiforms
T. magdalenae,Curimata mivartii Steindachner 1878, Cyphocharax magdalenae
(Steindachner 1878)] that move upstream through the Magdalena River from the
oodplain in the lowlands during the dry season. Although the ow in La Miel
River downstream of the dam is inuenced by the water discharge of hydropower
generation, hydro-peaking is damped by the natural ow of its tributaries: the Manso
and Samana Rivers (Jiménez-Segura et al., 2014b; López-Casas 2015). Also, there
are several habitats such as sandy beaches, rocky substratum, pools and rifes that
offer favourable conditions for different sh species. On the other hand, the dammed
channel of the Porce River is species poor if compared with the Manso and La
Miel Rivers and four species are characteristic of the sh assemblage. This is the
result of the isolation of this sector of the river, because the sampling only took
place in the stretch of the Porce River between the discharge of Porce II reservoir
and the main body of the Porce III reservoir. In this sector, due to the lack of sh
pass facilities, there is no possibility of sh species reaching the Porce III reservoir
from downstream, where the ow is free. In this isolated stretch of the river the
substratum is rocky and the ow is mainly inuenced by discharge of hydropower
ows and species typical of riverine systems are found [i.e.B. henni,Chaetostoma
spp., Poecilia reticulata Peters 1859 and Poecilia caucana (Steindachner 1880)] and
from the reservoir (A. microlepis,A. latifrons,C. rendalli and Oreochromis spp.)
(J. Álvarez-Bustamante, unpubl. data).
The oodplain lakes in the northern rivers of South America include almost 5092
(Jaramillo et al. 2015) water bodies with a total surface area of 5332 km2(Ricaurte L.,
unpubl. data) whose limits are lost when the entire oodplain is inundated during high
water. Rains, connectivity with the main river channel, shape (perimeter) and area are
all denitive factors that inuence the sh assemblage and the sheries production. Fish
assemblages are dominated by characiforms and siluriforms. The Characidae, Curi-
matidae, Prochilodontidae and Pimelodidae are the most diverse families. Although
these habitats are not the most diverse (nspecies =53) if compared with the La Miel River
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 75
downstream of the dam (nspecies =91), 13 species are characteristic of these aquatic sys-
tems and the importance of iliophagous species as C. magdalenae and P. magdalenae is
remarkable. Other species are also important in the riverine-lake assemblage: the Yel-
low Mojarra Caquetaia kraussii (Steindachner 1878) and migratory sh species such as
Leporinus muyscorum Steindachner 1900, C. mivartii and P. blochii. These oodplain
lakes are an important component of the migratory cycle of some sh species and play
an important role in buffering the highest river discharges in the Magdalena River basin.
These aquatic systems have received much of the scientic research attention
because they are important for sheries sustainability in the Magdalena-Cauca Basin
(Arango-Rojas et al., 2008; Jaramillo-Villa & Jiménez-Segura, 2008; Ríos-Pulgarín
et al., 2008; Jiménez-Segura et al., 2010b; Granado-Lorencio et al., 2012a,b). Cli-
matic seasonality determines the characteristics of the lakes and the behaviour of
the sh fauna is also synchronized with it. Changes in depth, transparency, nutrients,
dissolved oxygen and water temperature are important for habitat and food availability
to shes during the rainy seasons. The sh responses to the change are described
in Jiménez-Segura et al. (2010a). In this sh assemblage there are different groups
of life-history strategies: migrant and non-migrant shes (white and black shes;
Welcomme, 1985). The rst group of shes move between the lake and the river as the
water levels vary and the second group remains in the lakes regardless of this change.
During the dry season, non-migrant sh [i.e. A. latifrons,Synbranchus marmoratus
Bloch 1795, Trachelyopterus insignis (Steindachner 1878) and H. magdalenae] stay
in the lakes. Although little is known about the strategies of these particular species
in these river basins, it is assumed that they may develop strategies similar to those
of their relatives in other basins of South America for breathing air to obtain oxygen,
and can nd food in available habitats in order to survive (Welcomme, 1985; Val
and Randall, 2005). As the rainy season begins, non-migrant shes spawn in the
lake and the inux of river water into the lake triggers the production of plankton,
the main food resource for larvae. Also, as the water level gets high, the growth of
aquatic plants enhances the shelter available for feeding and growth of juvenile sh of
non-migrant and migrant sh species. With the decrease in the intensity of rainfall, the
oodwaters recede, water levels in the lakes drop and the biological cycle starts again
(Jiménez-Segura et al., 2010b). This cycle occurs once in Sinú, Atrato and Ranchería
Rivers (basins with mono-modal hydrological regimen), but in the Magdalena-Cauca
basin occurs twice a year (bi-modal regime).
Although more research is needed on sh biology, some of the described life
strategies conform to the environmental guilds proposed by Welcomme et al. (2006).
There are, however, some important changes in the eupotamonic, pelagophilic and
phytophilic guilds (potamonic communities) proposed, associated with the spawning
and nursery sites. These changes are described.
The sh migrations: the habitat linkage
Potamodromous migration (white sh) is a common strategy of some sh species
in the northern river basins of South America and these movements directly impact
the artisanal sheries. Almost 15% of the sh species in these basins have migratory
behaviour synchronized with the rainy season and mainly associated with spawn-
ing. Of the 15 migratory species living in the Magdalena-Cauca River; most perform
migrations of short (<100 km) or medium lengths (100– 500km) (Usma-Oviedo et al.,
2013). Some of the most famous migratory species in the Magdalena-Cauca River
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
76 L. F. JIMÉNEZ-SEGURA ET AL.
are P. magdalenae,Brycon moorei Steindachner 1878, Salminus afnis Steindachner
1880, C. magdalenae,T. magdalenae,C. mivartii,L. muyscorum,I. longirostris,
Pimelodus blochii Valenciennes 1840, Pimelodus grosskopi Steindachner 1879,
P. magdaleniatum and S. cuspicaudus. Recent estimations of migration distances
made by López-Casas (2015; submitted to Journal of Fish Biology, May 2015)
show that migrations in the Magdalena-Cauca River are from 0·8 to 1223·0 km long;
individuals of P. magdalenae may swim almost 1224 km, S. afnis from 24 to 130 km
and I. longirostris up to 198km.
Rains and water level are the main cues for migratory movements. The hydrological
cycle in the northern river basins is mainly determined by the ITCZ and its interactions
with the Andes. During the 12 months of the year, some basins (i.e. Atrato, Sinú and
Ranchería Rivers) have 6 months of heavy rain (rainy season) and 6 months of reduced
rain (dry season), but the Magdalena-Cauca Basin is bi-modal and has two rainy
(AprilJune and SeptemberNovember) and two dry seasons (DecemberMarch and
JulyAugust). The rainy cycle of the Magdalena-Cauca is a result of the back and
forth movements across the equator of the ITCZ throughout the year, and the position
of the three cordilleras. During the summer in the northern hemisphere (July and
August) the ITCZ moves to the north, and in December moves to the south. These
two movements of the wet winds over the slopes of the three cordilleras generate this
climatic pattern.
During the last ve decades, knowledge about migration dynamics came from oral
sher information and from sheries report data. Based on 10 years of ichthyoplankton
monitoring in the main channel of the Magdalena River and on migratory routes of
some tagged shes, different phases in the migratory process occur between four main
aquatic systems: oodplain lakes, connection channels between lakes and rivers, main
river channels and tributaries (Fig. 4).
During the dry season, most of the migratory sh (P. magdalenae,T. magdalenae,
C. mivartii and L. muyscorum) move towards the free owing channel because water
conditions in the oodplain lakes became unfavourable (i.e. low dissolved oxygen,
higher water temperatures, area and depth reduction and higher predation). In the rst
phase of the migratory cycle, shes move from the lake to the channel that connects
with the free owing channel; some shes stay in the connection channel and do not
move to the main river. The shes that get out of the lake move to the main river and
begin to move against the ow at the same time that gonad maturation starts (second
phase). As the rainy season begins and the water level rises, the third phase begins:
shes that stayed in the main river channel move to the tributaries to spawn, as do
those that stayed in the tributaries during the dry season. The fourth phase begins
when, as the ows increase, adults and embryos of sh species such as P. magdalenae,
S. cuspicaudus,P. magdaleniatum and Pimelodus spp. drift downstream along the river
channel, as the embryos develop. In the fth phase, with the maximum ows, the river
overows into the oodplain lakes carrying embryos and larvae of these migratory sh
species. Since during high water periods these lakes provide abundant shelter and food,
some of the adults of some species (P. magdalenae and I. longirostris) stay in the trib-
utaries, but most of them return to the lakes and others (mainly pimelodids) stay in the
river channels, where they remain until the next period of low water, when the cycle
starts again.
This migratory cycle associated with reproduction, larvae drift and recruitment
has been described for many tropical rivers around the world (Welcomme, 1985;
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 77
Lateral migration (Connection channels)
Upstream migration (River channel)
Adults ripening (River channel)
Spawning (River channel and tributaries)
Downstream drift and embryo incubation (River and connection channel)
Feeding and growth areas for sh larvae (Floodplain lakes)
Feeding areas for adults (lakes, river channel, tributaries)
Fishery effort
In the river channel and tributaries
in the connection channel
in the oodplain lakes
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
River discharge
F. 4. Habitat linkage in sh migration, reproduction and recruitment and sheries in the Magdalena-Cauca
River basin over the annual cycle.
Bialetzki et al., 1999; Lucas & Baras, 2001; Baumgartner et al., 2004), but in the
Magdalena-Cauca River it happens twice in the year with consequences for sh
population recruitment and artisanal sheries.
Feeding groups
Most of the sh species in the northern basins of South America are generalist feeders
and specialized feeding on limited resources is rare. Most of the evidence comes from
research on the ecology of individual sh species and there is little published data on
interaction between sh species or about trophic webs. Matthews (1998) states that
feeding strategies in shes are so diverse that it is hard to dene groups, so simple and
broad trophic groups are proposed here (herbivores, omnivores and carnivores) and
following Bowen (1983) the detritivorous group is included (mud and detritus feeders)
(Table III). In the herbivorous group, shes eat plants, seeds and algae. Carnivores eat
all invertebrate groups (i.e. insects, molluscs and worms) and shes; in this group, are
included the scale eater Roeboides dayi (Steindachner 1878) and the hematophagous
Paravandellia phaneronema (Miles 1943).
Body features of the sh species are important for foraging. Mouth position (ventral
or terminal), body form (depressed or compressed) and caudal peduncle size have been
identied as the main body features than inuence diet (K. Aguirre, unpub. data). In
the herbivorous group, most of the species belong to the family Loricariidae. These
armoured catshes are attened dorso-ventrally and have a ventral sucker-mouth disc
with soft teeth they use to scrape the biolm, thus feeding is done by ploughing along
the substratum and using the thick-lipped, toothy mouth to scrape plant material (l-
amentous algae and diatoms) from hard structures (rocks, trees, roots and boats) or
to suck up ne sediments. The detritivorous group mainly consists of prochilodontids
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
78 L. F. JIMÉNEZ-SEGURA ET AL.
T III. Fish composition in the trophic groups in each aquatic system in the Magdalena-Cauca River basin
Trophic
group Omnivore Carnivore Herbivorous Detritivorous Reference
Andean
streams
Astroblepus spp.,Astyanax spp.,
Brycon spp.,Characidium
spp.,Creagrutus brevipinnis,
Hemibrycon spp.,Saccodon
dariensis,Trichomycterus
spp.,Xiphophorus helleri,
Hyphessobrycon poecilioides,
Bryconamericus spp.
Andinoacara latifrons,
Apteronotus eschmeyeri,
Brachyhypopomus
occidentalis,Par a ch rom i s
loisellei,Trichomycterus
chapmani,Trichomycterus
retropinnis,Parodon
magdalenensis,Poecilia
spp.
Chaetostoma spp.,
Lasiancistrus caucanus
García-Alzate &
Roman-Valencia
(2008), Roman-P
et al. (2014), D.
Restrepo-Santamaria
(unpubl. data).
River
channel
Acestrocephalus anomalus,
Andinoacara latifrons,Brycon
spp.,Astyanax spp.,
Bryconamericus spp.,
Argopleura magdalenensis,
Cetopsis othonops,
Cetopsorhamdia spp.,
Characidium spp., Creagrutus
magdalenae,Cynopotamus
magdalenae,Characidium
spp., Microgenys spp.,
Parodon magdalenensis,
Trichomycterus spp.,
Pimelodus spp., Pimelodella
spp., Roeboides magdalenae,
Saccoderma spp., Saccodon
spp., Xiliphius magdalenae,
Leporinus muyscorum,
Leporellus vittatus,
Triportheus magdalenae
Apteronotus mariae,
Astroblepus homodon,
Caquetaia kraussii,
Caquetaia spp.,
Ctenolucius hujeta,
Eigenmannia virescens,
Gasteropelecus spp.,
Geophagus steindachneri,
Hoplias malabaricus,
Poecilia caucana,Poecilia
spp., Potamotrygon
magdalenae,
Pseudoplatystoma
magdaleniatum,Rivulus
spp., Salminus afnis,
Sorubim cuspicaudus,
Sternopygus aequilabiatus,
Paravendellia
phaneronema
(hematophague)
Ancistrus spp.,
Chaetostoma spp.,
Cordylancistrus spp.,
Hypostomus spp.,
Panaque spp.,
Pterygoplichthys spp.,
Rineloricaria spp.,
Sturisoma spp.,
Spatuloricaria spp.
Ichthyoelephas longirostris,
Prochilodus magdalenae,
Cyphocharax
magdalenae,Curimata
mivartii
Jiménez-Segura et al.
(2014b)
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 79
T III. Continued
Trophic
group Omnivore Carnivore Herbivorous Detritivorous Reference
Floodplain
lake
Brycon spp., Pimelodus spp.,
Hoplosternum magdalenae,
Cynopotamus magdalenae,
Centrochir crocodili,
Leporinus muyscorum,
Astyanax spp., Leporellus
vittatus,Pimelodus spp.,
Pseudopimelodus bufonius
Gilbertolus alatus,Hoplias
malabaricus,
Pseudoplatystoma
magdaleniatum,
Ageneiosus pardalis,
Triportheus magdalenae,
Trachelyopterus insignis,
Abramites eques,
Andinoacara latifrons,
Geophagus steindachneri,
Caquetaia kraussi,
Apteronotus mariae,
Eigenmannia virescens,
Ctenolucius hujeta,
Plagioscion surinamensis,
Sorubim cuspicaudus,
Roeboides dayi
(lepidophague)
Hypostomus spp.,
Crossoloricaria spp.,
Dasyloricaria
lamentosa,
Pterygoplichthys spp.,
Squaliforma tenuicauda,
Sturisoma spp.
Prochilodus magdalenae,
Cyphocharax
magdalenae,Curimata
mivartii
K. Rivera-Coley & D.
Arenas (unpubl..
data), A. Arango
(unpubl. data)
Reservoir Andinoacara latifrons,Astyanax
microlepis,Hoplosternum
magdalenae,Brycon henni
Roeboides dayi
(lepidophague)
Coptodon rendalli
(algivore)
D. Restrepo-Santamaria
(unpubl. data), Y.
Rondon (unplubl.
data)
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
80 L. F. JIMÉNEZ-SEGURA ET AL.
and curimatids. The terminal mouth of I. longirostris (Prochilodontidae) can be pro-
jected forward forming a sucker disc with soft teeth that graze on detritus and biolm
present on hard structures. The migratory P. magdalenae (Prochilodontidae) also uses
its mouth with soft teeth on their lips to scrape biolm from hard substrata in the
rivers it use when it migrates, but this species as well as C. mivartii (Curimatidae), and
C. magdalenae mainly eat mud accumulated on the bottom of the oodplain lakes or
by sucking the roots of aquatic plants (A. Bermúdez, unpubl.data).
Intraspecic morphological differences have been described as ‘trophic polymor-
phism’ being related to the structures responsible for food and which can confer advan-
tages in the use of the habitat and specic resources (Olsson & Eklöv, 2005). Roberts
(1974) has noted ve oral and dental polymorphisms for Saccodon dariensis (Meek &
Hildebrand 1913) (Parodontidae) in tributaries of the Rivers Sinú, Magdalena, upper
Cauca and Atrato, and Restrepo-Gómez & Mancera-Rodríguez (2014) suggest that the
coexistence of two of these oral polymorphisms in the Guatape River (Magdalena River
basin) may be related to a trophic polymorphism that confer advantages in different
trophic habits and differential access to the items that constitute their diet.
Although a sh species may be allotted to a trophic group, foraging and feeding
strategies are so diverse because of dynamic environmental conditions and changes in
the diel and annual cycles, that it is necessary to describe its particular feeding strat-
egy. Foraging and diet turnover of sh species during rainy seasons and in response to
the diel cycle are poorly known. It has only been reported in this region for the diet
of the cachegua Trachelyopterus insignis (Steindachner 1878). During the rainy sea-
son, this sh feeds on different sources and is an omnivore, but in the dry season, it
feeds mainly on other shes and hence is a piscivore (S. López-Casas & J. G. Ospina,
unpubl. data). Although the omnivorous group is by far the most diverse, taxa compo-
sition is strongly dependent on the species assemblage in the different aquatic systems
(Table III). In oodplain lakes Hernández-Serna et al. (2015) also found that there is a
foraging segregation during the diel cycle by body size and trophic group: small shes
forage during the day while larger shes do so at night, and carnivores and detritivores
forage during the night and omnivores by day.
The unique characteristics of the aquatic system (depth, substratum structure and
water velocity) may be denitive for trophic group species richness because of food
availability. Higher species composition turnover due to the aquatic system type is
observed in the Loricariidae family. In Andean streams, species of Chaetostoma are
the most important in the herbivore group. Their at bodies, sucker-shaped mouth and
strong pectoral ns let them thrive in this shallow and turbulent aquatic system. In
deeper and quiet oodplain lakes, other Loricariidae species such as Hypostomus spp.
and Pterygoplichthys spp. with higher and shorter bodies are successful. The absence
of substrata for biolm growth in reservoirs may be one of the reasons loricariids are
mostly absent from those habitats. More research is needed as well as further analyses
of carbon ux and food webs to advance knowledge of functional feeding groups in
the region.
Reproductive seasonality
The reproductive season is mostly determined by parental condition related to fat
reserves stored during the previous season of higher food availability, as well as
suitable habitat conditions favourable for egg fertilization and embryo development
and subsequently food availability for larvae (Munro, 1990; Lowe-McConnell 1995;
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 81
Vazzoler 1996; Wootton, 1999). In Andean aquatic systems, the hydrological pattern
and nutrient transport generated by the rainy season are denitive cues for selec-
tion of optimal reproduction timing (Jiménez-Segura, 2007; Kerguelen-Durango &
Atencio-Garcia, 2015). Most of the sh species breed during the rains, a few during
the dry seasons and others throughout the year (Table IV). This variation is mainly
inuenced by the interaction between rains and particular environmental conditions
in each type of aquatic system that offers food for adults and favours spawning
success. Thus, while in oodplains and the main river channel favourable conditions
for reproduction are much more suitable during high waters; in the Andean streams
reproduction is much more common during low waters to avoid egg and larval drift
during the rainy season. Reservoirs are the exception to this pattern, sh species
reproduce throughout the year. The main reason is that there is no drastic change in the
water level as a result of the rain patterns as happens in natural aquatic systems, so sh
species only have to nd favourable habitat conditions to spawning and recruitment.
Rainy season changes in habitat conditions and their direct inuence is greater
in some aquatic systems than in others; ow magnitude, frequency and amplitude
are important. In the rainy season, Andean streams are highly disturbed by frequent
ushing, water turbulence and sediment transport. The cumulative effect of small
streams ooding at the same time, causes the amplitude and magnitude of river ows
to increase, but their frequency diminishes. Finally, when the ow discharge exceeds
the storage capacity of the river channel, the river spills onto the lateral plain and water
enters the oodplain lakes. This physico-chemical stage generated by rains in the
aquatic systems of the Andean mountains causes favourable environmental conditions
for sh reproduction and recruitment in the oodplains.
To reproduce, adults need extra energy for gonad growth and spawning, and
favourable conditions for offspring survival (Munro, 1990). Rains and oods enhance
food for adult shes in every aquatic system (Welcomme, 1985; Junk et al., 1989;
Lowe McConnell, 1995; Jiménez-Segura et al., 2010b), but each sh needs specic
environmental conditions for spawning and maximum offspring survival. Although
rains and oods provide favourable conditions to feed adults and larvae, there is a
time lag after the rains and oods for sh spawning in the Magdalena-Cauca River
(Jiménez-Segura et al., 2010a) and food availability for sh larvae on the oodplains
(Jiménez-Segura et al., 2010b). The hypothetical relationship between spawning area
location for migratory species, optimal drift distances of the larvae related to water
velocity in the river channel and the timing of plankton blooms (food for sh larvae)
in oodplain lakes needs to be veried.
In Andean streams, oods carry nutrients from nearby soils, and rains carry insects,
leaves and seeds from the gallery forest, so extra allochthonous food enters the system,
allowing shes to store energy in adipose tissue that will be used for gonad growth.
In these aquatic systems, some sh species spawn in the dry season and others at the
beginning of the rains (Table IV). To increase embryo and larval survival, some shes
develop parental care and parents carry the eggs (i.e. loricariids) or keep them inside
crevices, submerged trees or make nests to keep them away from the inuence of cur-
rents and safe from predators. When the embryos hatch, in some species the larvae
develop a cephalic sucker to attach to rocky substrata (e.g. B. henni) or stay in pools
to avoid ow. Most of the non-migratory shes in the oodplain lakes of the Mag-
dalena River feed during the oods, their gonads mature in the dry season, they spawn
in the lake as the water level rises, and their larvae nd shelter and food under the
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
82 L. F. JIMÉNEZ-SEGURA ET AL.
T IV. Climatic periods for sh spawning in the aquatic systems in the Magdalena-Cauca River basin
Climatic period
Aquatic system Dry Rains (*) Rains and dry References
Streams Andinoacara latifrons,Characidium
caucanum,Trichomycterus
chapmani,Bryconamericus huilae,
Hemibrycon boquiae,Microgenys
minuta,Creagrutus guanes,
Roeboides dayi
Astroblepus spp., Brachyhypopomus
occidentalis,Chaetostoma spp.,
Characidium grupo zebra,Hemibrycon spp.,
Lasiancistrus spp., Brycon henni,Astyanax
fasciatus,Trichomycterus spp.,Saccodon
dariensis,Bryconamericus caucanus
Astyanax microlepis,Poecilia
caucana,Pimelodus grosskopi,
Astroblepus homodon,
Lasiancistrus caucanus,Astyanax
aurocaudatus
Cala (1997), Román-Valencia & Muñoz
(2001), Román-Valencia et al. (2003),
Román-Valencia & Ruiz (2005),
Román-Valencia & Botero (2006),
Maldonado-Ocampo et al. (2005),
Román-Valencia et al. (2008),
Briñez-Vásquez & Francis-Turner
(2006), Román-Valencia & Samudio
(2007), Torres-Mejía & Ramírez-Pinilla
(2008), Jiménez-Segura et al. (2015), N.
Mancera-Rodríguez et al. (2016), L.F.
Jiménez-Segura (unpubl. data),
River channel Bryconamericus caucanus,Caquetaia
kraussi,Caquetaia umbrifera,
Chaetostoma milesii,Crossoloricaria
variegata,Dasyloricaria lamentosa,
Hypostomus hondae,Trichomycterus
banneaui,Geophagus steindachneri
Characidium phoxocephalum,Leporinus
muyscorum,Pseudoplatystoma
magdaleniatum,Sorubim cuspicaudus,
Parodon magdalenensis,Pimelodus blochii,
Prochilodus magdalenae,Roeboides dayi,
Salminus afnis
Creagrutus brevipinnis,Ctenolucius
hujeta,Trichomycterus caliense,
Trichomycterus chapmani,
Trichomycterus striatus,Poecilia
spp.,Apteronotus magdalenensis
Maldonado-Ocampo et al. (2005),
Rangel-Serpa & Torres-Mejia (2015),
Jiménez-Segura et al. (2009),
Jiménez-Segura et al. (2014b), L.F.
Jiménez-Segura (unpubl. data),
Floodplain lakes Sturisoma panamense Abramites eques,Cyphocharax magdalenae,
Prochilodus magdalenae,Leporinus
muyscorum,Pimelodus blochii,Centrochir
crocodili,Trachelyopterus insignis,Astyanax
caucanus,Astyanax fasciatus,Astyanax
magdalenae,Roeboides dayi,Eigenmannia
virescens,Gilbertolus alatus,Triportheus
magdalenae,Plagioscion magdalenae
Caquetaia kraussi,Andinoacara
latifrons,Geophagus
steindachneri,Hoplias
malabaricus,Rhamdia quelen
Atencio-García et al. (2001),
Maldonado-Ocampo et al. (2005);
Jiménez-Segura et al. (2010b),
Olaya-Nieto et al. (2010).
Reservoirs Brycon henni,Poecilia caucana Andinoacara latifrons,Astyanax
microlepis,Coptodon rendalli,
Oreochromis spp.,Hoplosternum
magdalenae,Roeboides dayi,
Caquetaia kraussi,Caquetaia
umbrifera
Maldonado-Ocampo et al. (2005),
Solano-Peña et al. (2013), J. Londoño
(unpublished data), A. Loaiza
(Unpublished data), L.F. Jiménez-Segura
(unpubl. data),
(*) in the beginning of the rainy period
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 83
140 000
(a)
(b)
120 000
100 000
80 000
60 000
40 000
20 000
0
Yield (t)
Yield (%)
90
60
30
0
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
Year
F. 5. (a) Fisheries yield in Colombia ( , marine landings; , freshwater landings) and (b) percentage of
freshwater yield of each river basin ( , Upper Amazonas; , Atrato River; , Upper Orinoco River; ,
Magdalena-Cauca River) from 1995 to 2014.
aquatic macrophytes (Jiménez-Segura et al., 2010b). Andean reservoirs offer food for
shes throughout the year, allowing native shes that persist in the assemblage to spawn
throughout the year. So, adults of riverine species ripen during the dry season and spawn
at the beginning of the oods, species in the lowland lakes ripen in the dry season, but
spawn after the oods during the high water season, species in streams ripen during
the oods, but spawn during the dry season, and shes in reservoirs spawn any time,
throughout the year.
FISHERIES
Colombia’s shery production comes mainly from marine resources. Freshwater pro-
duction represented 20% (mean value) of the total production in the years 1995– 2014
(Fig. 5). During that time period, catches from trans-Andean rivers represented 80%
of freshwater production. The Magdalena-Cauca Basin is the most productive river for
artisanal sheries; its yield comprised between 72 and 94% of the sheries yield of
trans-Andean basins and it supplies the protein demand of the local population (67%)
and populations in major cities such as Bogotá, Medellin and Barranquilla (Escobar
et al., 2014). Yield data from the Ranchería River do not exist because the shery is
poorly developed and there is no data recording (Mojica et al., 2006a).
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
84 L. F. JIMÉNEZ-SEGURA ET AL.
T V. Fish species and shing gear ranking according their percentage to sheries yield in the Caribbean Basins (Mojica et al., 2006a,b; Gutiérrez
et al., 2011a,b; Gutiérrez, 2011; Escobar et al., 2014). Fishing gear data from AUNAP (2014a,b)
River Basin
Rank Magdalena-Cauca Sinú Atrato Ranchería
Species 1Prochilodus magdalenae Prochilodus magdalenae Prochilodus magdalenae Prochilodus reticulatus
2Pseudoplatystoma
magdaleniatum
Hoplias malabaricus Leporinus muyscorum Ichthyoelephas longirostris
3Pimelodus blochii Cyphocharax magdalenae Hoplias malabaricus Salminus afnis
4Plagioscion magdalenae Leporinus muyscorum Mugil curema
5Pimelodus grosskopi Caquetaia kraussii Centropomus spp.
Fishing gears 1 Gillnet Cast nets Gillnet NR
2 Beach seines Gill nets Hooks and lines NR
3 Cast nets Beach seines Cast nets NR
4 Trawl nets Harpoon Traps NR
5 Surrounding net Hooks and lines NR
6 Hooks and lines Surrounding net
Species number 224 55 118 50
Species in sheries 26 27 40 NR
Fisher number 43 730 3 442 1 242 NR
NR, not reported.
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 85
Fisheries in trans-Andean river basins is artisanal and multispecies (Gutiérrez et al.,
2011a). The sher population was reported as 50 600 individuals (Gutiérrez, 2011;
Gutiérrez et al., 2011a,b). Catch methods are mainly nets (gillnets, cast nets, sur-
rounding nets, trawl nets and beach seines), hooks, lines and traps. Their size, mass and
methods vary locally and depend on the characteristics of the freshwater system and on
the hydrological cycle (Table V). Boat size is highly variable, they may be 28 m long
(most frequently 5 m) and 0·4–1 m wide (most frequently 0·8 m), and most of them are
made of wood or breglass.
Prochilodontids are the main source for artisanal sheries in all trans-Andean basins.
Although 45 species are used by shers in the trans-Andean river basins (Lasso et al.,
2011a,b), P. magdalenae is the main target of the artisanal catch and represents
8095% of catches (Gutiérrez, 2011; Gutiérrez et al., 2011a,b). Pimelodid species
[e.g. P. magdaleniatum,P. blochii,S. cuspicaudus and Pseudopimelodus bufonius
(Valenciennes 1840)] and Bryconidae (e.g. B. moorei,B. henna and Brycon rubricauda
Steindachner 1879) are also used, but their yield does not exceed 30% of the total.
The number of sh species used by shers changes between river basins, e.g. the
Sinú River shery is highly diverse, and shers use 45% of the total number of sh
species, but although some species may be used in all trans-Andean river basins, their
importance differs slightly from one to another (Table V).
Freshwater sheries yield in the trans-Andean Basins is highly seasonal because it is
based mainly on migratory sh species (Lasso et al., 2011b). The higher shing effort
is during the low water period because shes of migratory species move to the main
river channel from oodplain lakes for upstream migration. The magnitude of sheries
yield differs between the trans-Andean basins and there is a production pattern associ-
ated with the river water level in each basin (Fig. 6). Although there is a clear pattern
between yield and discharge, Escobar et al. (2014) describes a change in sheries yield
associated with the geomorphic characteristics of the river basins. The higher produc-
tion comes from the medium and lower sectors where the lateral oodplain is well
developed, the slope is low, oodplains lakes are numerous and their connection with
the main channels is permanent.
Riverine sheries production in the Magdalena-Cauca River fell from 60 000 t in
1975 to 10 000t in 2014 (Fig. 7). Although the observed pattern should be viewed with
caution because through the years, government agencies have changed the methodol-
ogy used to record landings, shers and environmental agencies recognize a substantial
reduction in landings. Besides the reduction in sher landings, some other worrisome
characteristics were detected: changes in the type of exploited sh species and reduc-
tion in the species size harvested by sheries, variables characteristic of overshing
described by Welcomme (1999) in other multispecies artisanal sheries.
For the last 40 years, the number and composition of species in the catch has changed.
The number of shed species has increased, in the 1970s, populations of ve species
were the most exploited but in the last decade, shers have utilized nine species. Dur-
ing the 1970s, species of high commercial value such as P. magdaleniatum,B. moorei
and S. afnis were the most important species in the sheries catch; during the 1980s,
P. magdalenae became the most important, and in the last decade new species of lower
commercial value such as L. muyscorum,C. mivartii,C. magdalenae,H. malabar-
icus and S. aequilabiatus, and some exotic species such as C. rendalli,Colossoma
macropomum (Cuvier 1816) and Piaractus brachypomus (Cuvier 1818) have become
important in the riverine sheries yield. Most of the important native species used by
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
86 L. F. JIMÉNEZ-SEGURA ET AL.
12 000 (a)
(b)
(c)
10 000
8000
6000
4000
2000
0
1000
800
600
400
200
0
14 000
12 000
10 000
8000
6000
4000
2000
0
250
200
150
100
50
0
600
500
400
300
200
100
0
Jan Feb Mar Apr MayJun
Month
JulAug Sep Oct NovDec
80
60
40
20
0
Discharge (m3 s−1)
Yield (t)
F. 6. Fisheries yield ( ) and monthly mean discharge ( ) for (a) Magdalena-Cauca River, (b) Atrato
River and (c) Sinú River. Yield data were taken from periods 1993–1999, 2006 –2009 and 2012 –2014, and
discharge data were obtained from 2000 to 2013.
artisanal shers make short or medium length migrations, have higher fecundities, per-
form pelagic spawning without parental care, but some of the recent additions to the
shery are non-migratory, build nests and have parental care. Fisheries based on such
kstrategist shes may be a threat to conservation. Also the diversity of catch methods
used by shers makes the sizes of harvested shes vary widely, and many individuals
are harvested at a size below the mean size of rst reproduction (Table VI). These bad
shing practices have also led to the capture size reduction of exploited species; mean
catch size of P. magdalenae has been reduced by 13 cm in the last 30 years (CCI, 2007).
Poverty, few possibilities for economic support and low education level of shers may
be considered as the basic causes of the improper use of the sh resource.
Hydropower development requires the formation of reservoirs, new aquatic habitats
that favour the population growth of some sh species. There are 34 reservoirs in
the trans-Andean river basins, 15 are used only for hydropower (power capacity
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 87
80 000
70 000
60 000
50 000
40 000
30 000
20 000
10 000
0
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
Production (t. year–1)
Year
Pseudoplatystoma magdaleniatum
Brycon moorei
Salminus afnis
Prochilodus magdalenae
Sorubim cuspicaudus
Prochilodus magdalenae
Pseudoplatystoma magdaleniatum
Sorubim cuspicaudus
Brycon moorei
Salminus afnis
Prochilodus magdalenae
Pseudoplatystoma magdaleniatum
Pimelodus blochii
Leporinus muyscorum
Curimata mivartii
Brycon moorei
Sternopygus aequilabiatus
Salminus afnis
Coptodon rendalli
F. 7. Riverine sheries production for the last 40 years in the Magdalena-Cauca River basin and the most
important sh species in landings.
higher than 100 MW), one for crop irrigation, nine for water supply and nine are
multi-purpose (i.e. hydropower, water supply and crop irrigation). Seven sustain
important artisanal sheries (Escobar et al., 2014) that are poorly known because
landings are not monitored. Although some native shes are important in riverine
sheries production, non-native sh species are the mainstay of catches in most of
the reservoirs (Table VII). Life-history strategies of these species (i.e. low fecundity,
parental care, nest building, fast growth and low trophic levels) favours the colonization
and success of these articial aquatic systems (Gomes & Miranda, 2001).
CONSERVATION THREATS
Fifty per cent of the sh fauna of the trans-Andean Rivers has been included in
the Red List of the UICN (Mojica et al., 2012) and depletion in the riverine sh-
eries yield in the Magdalena-Cauca River basin has been observed. This situation is
the result of interacting causes, originating in the non- sustainable success of Colom-
bian society. The growth of the Colombian population, the economic development
of the country based on some legal industries (i.e. oil, mining, hydropower, exten-
sive agriculture and cattle, sh culture to protein supply and enhancement) and illegal
business (i.e. illicit crops) cause ever increasing demands for a large number of envi-
ronmental services (i.e. animal protein, wood and water). So, aquatic habitat change,
water pollution, deforestation, introduced sh species and overshing are considered
the main causes of the observed reduction in sh catches in the trans-Andean river
basins (Mancera-Rodríguez & Álvarez-León, 2005, 2006; Galvis & Mojica, 2007;
Barletta et al., 2010; Gutiérrez et al., 2010; Anderson & Maldonado-Ocampo, 2011;
Jiménez-Segura et al., 2014a). All these causes, common to all trans-Andean river
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
88 L. F. JIMÉNEZ-SEGURA ET AL.
basins, interact synergistically to modify the dynamics, connectivity and structure of
the aquatic systems, reduce their water quality and affect the natural ow pattern.
Growth of Colombian population and sher effort
Population size is now ve times higher than in 1950 so protein demand has increased
proportionately. In 2014 there were 48 813 328 Colombians (DANE, 2015) and sh
consumption per capita in Colombia was estimated between 4 and 5 kg (FAO, 2014).
Although artisanal shers increased their effort shing with non-sustainable techniques
and shing in all aquatic systems throughout the year, their landings fall far short of
satisfying the Colombian demand. Protein supply has been satised instead by the pro-
duction of sh farms in the last decade. In 2011 sh farms produced 82 733 t; sadly,
sh farm production is based mainly on exotic species as Cichlidae, C. macropomum
(Serrasalmidae), Onchorhynchus mykiss (Walbaum 1792) (Salmonidae) and, recently,
Pangasius hypophthalmus (Sauvage 1878) (Pangasiidae).
Sediment yield and deforestation
Erodible soils, slopes steeper than 40and the change in the forest cover are one of
the main causes of the higher sediment yield in the Magdalena-River Basin. Restrepo
& Kjerfve (2000) estimated sediment production of 560 t km2year1in the basin;
this is higher than numbers reported for the Amazon, Orinoco and Negro Rivers
combined. The deforestation rate in Colombia is one of the highest in tropical basins
around the world (Tucker & Townshend, 2000). Between 1990 and 2010, Colombia
lost 5·8 million ha; in 1990 forest cover was 51·6% of total Colombian land (equal to
64 417 248 ha), in 2010 it was 58 633 631 ha (González et al., 2011). Although there
has been a reduction in the last 4 years, there must be moderate optimism based on
recent data (MADS, 2014).
Because of the high rates of sediment transport in the Magdalena-Cauca River, ood-
plain lakes have been losing depth, their connectivity with the main river has been
reduced and as a result, their buffering capacity during the oods has diminished.
Rather than focusing on the recovery of forest and land use to provide a reasonable
solution to the problem of erosion and sedimentation in the lowlands, the Colombian
Government is directing its resources to specic actions with doubtful effects, e.g.
a long-term solution such as dredging the main channel of the Magdalena River to
increase its depth. Of course, this action has been promoted by the Ministry of Trans-
port to improve transport of larger ships along the river channel and, not by the Ministry
of Environment to protect oodplain lakes and their connectivity channels as the prime
habitats for freshwater fauna, migratory shes and shers.
Water pollution and eutrophication
Ten million people live in Bogotá, the capital city of Colombia. Daily, citizens and
industries discharge wastes into the Bogotá River (a tributary of the Magdalena River)
including among many sewage water, nitrogen and phosphorus-based fertilizers and
xenobiotic substances (e.g. organochlorines, cadmium and lead). Upstream the mouth
of the Bogotá River, the Magdalena River has already received residuals of pesticides
used for insect control in rice crops (e.g. DDT, Lindane, dieldrin, B-BHC, Endosulfan,
Aldrin, Dimethoate, Chlorpyrifos, Malathion and Dazinon) (Villa, 1992) the amounts
of which increase downstream due to pest control on extensive oil palm crops. Added to
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 89
T VI. Some characteristics of the sh species recruited to artisanal sheries in the Magdalena-Cauca River
Fish species LSmax mean LSLSrange LMM % Migratory strategy Mean fecundity References
Pseudoplatystoma magdaleniatum 100 58 20 – 131 80 85 M-Migrant 493 752 Jiménez Segura et al. (2008)
Sorubim cuspicaudus 80 43 6 –93 45 60 M-Migrant 78 943 Jiménez Segura et al. (2008)
Ageneiosus pardalis 44 36 35 44 S-Migrant 21 808 Perez et al. (2005)
Pimelodus grosskopi 22* 23 7– 48 20 22 M-Migrant 28 500 Cala et al. (1993)
Pimelodus blochii 35 15 7–48 18 82 M-Migrant 10 743 Ramírez et al. (2013)
Pseudopimelodus bufonius 47·9* 20 45 100 M-Migrant ?
Hoplias malabaricus 55·2 26 13– 37 25 28 non-migrant ?
Leporinus muyscorum 25·7 24 8 –40 25 52 S-Migrant 63 900 Arguello et al. (2001)
Prochilodus magdalenae 30 23 7– 55 25 67 M-Migrant 53 535 Atencio-García et al. (2013)
Salminus afnis 100 36 35 44 M-Migrant 67 500 Mojica et al. (2012)
Brycon moorei 50 35 35 17 M-Migrant ?
Plagioscion surinamensis 70 32 8– 62 30 49 M-Migrant ?
Caquetaia kraussii 26 15 11 24 20 97 non-migrant 1732 Solano-Peña et al. (2013)
LS, max maximum standard length (cm) reported in Froese & Pauly (2015); Mean LS, mean standard length (cm) in sher catch; LMM, mean length (cm) of rst reproduc-
tion; LSrange, standard length range (minimum–maximum); %, percentage of the sher capture under LMM . * Jiménez-Segura & Ortega-Lara (2010) and Jiménez-Segura
& Villa-Navarro (2011).
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
90 L. F. JIMÉNEZ-SEGURA ET AL.
T VII. Characteristics of some Colombian reservoirs and artisanal sheries. Data taken from Jiménez-Segura et al. (2011) and Escobar et al.
(2014). Fish species are rank by their importance in landings
Reservoir & Basin
Urra II Amani Guajaro Betania Prado Tominé Porce II Salvajina
Basin Ranking Sinú Magdalena Magdalena Magdalena Magdalena Magdalena Magdalena Cauca
Area (ha) 7 800 1 230 16 000 7 424 3 410 3 830 890 2 031
Altitude (m) 70 250 9 561 361 2 580 540 1 100
Maximum
depht (m)
73 188 91 90 20 118 148
Yiel d
(t year1)
75·9 (2012) 11·7 (2012) 387 (2014) 493 (2008) 126 (2010) NR NR 10·9 (1996)
Fished species 1Caquetaia kraussi Oreochromis
niloticus *
Oreochromis
niloticus *
Oreochromis
niloticus *
Caquetaia kraussi Cyprinus
carpio *
Oreochromis
niloticus *
Oreochromis
niloticus *
2Andinoacara
latifrons
Caquetaia
umbrifera
Triportheus
magdalenae
Caquetaia kraussi Chyphocharax
magdalenae
Oreochromis
mykiss *
Coptodon rendalli
*
Pseudopimelodus
buffonius
3Hoplias
malabaricus
Sternopygus
aequilabiatus
Plagioscion
magdalenae
Pimelodus
grosskopf
Caquetaia
umbrifera
Eremophilus
mutissi
Oreochromis spp. *
4Panaque gibbosus Ichtyoelephas
longirostris
Prochilodus
magdalenae
Pimelodus blochii Oreochromis
niloticus *
5Trachelyopterus
badeli
Pimelodus zungaro
6Ageneiosus
pardalis
7Rhamdia spp.
Gears 1 Gillnets Gillnets Gillnets Gillnets Gillnets Hooks and lines Gillnets Gillnets
2 Hooks and lines Hooks and lines Hooks and lines Hooks and lines Hooks and lines Gillnets Hooks and lines Hooks and lines
3 Cast nets Cast nets Cast nets Cast nets
*, no native sh species; NR, not reported.
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 91
this, gold mining wastes (e.g. mercury and arsenic) and heavy metals (e.g. Cd, Pb and
Ni) are being incorporated into sh tissues throughout the food web (Alvarez et al.,
2012). Effects of these substances on freshwater shes are poorly known in Colom-
bia, but some data have been published or compiled in Cala & Sodergren (1999),
Mancera-Rodríguez & Álvarez-León (2013), Marrugo-Negrete et al. (2007, 2008a,b),
Álvarez et al. (2012), Noreña et al. (2012), Trujillo et al. (2010) or are contained in
unpublished technical papers.
Reservoirs and hydropower
Sixty-seven per cent of the energy supply in Colombia comes from hydropower
(Jiménez-Segura et al., 2014a) produced by 32 reservoirs. In the Magdalena-Cauca
River, most of these reservoirs are located in tributaries of the main channel; Urrá
I reservoir was built in the main channel of the Sinú River and in the Atrato River
there are no reservoirs to date. Reservoirs block the upstream– downstream migrations
of some sh species, change natural ow regimes (affecting the environmental cues
for migratory sh species spawning and the seasonal oods important for early stages
recruitment in the oodplain lakes), and reduce the sediment load on the oodplain.
Hence, the future is uncertain for migratory shes and remains a challenge because
government agencies plan to double hydropower production by the year 2027. Further
analyses are detailed in Jiménez-Segura et al. (2014a).
Non-native species introduction
The presence of alien species in the current assemblages in the Caribbean
trans-Andean basins are the result of escapes from sh farms. Escapes from these
farms are common and individuals of these species have colonized the trans-Andean
rivers. Their success in these aquatic systems is so high that these species have been
recently included in the report of the artisanal shery catch. Álvarez-León et al.
(2013) and Mancera-Rodríguez & Álvarez-León (2013) mention that the introduction
of the carnivore O. mykiss is highly correlated with the disappearance of the endemic
trichomycterid Rhizosomichthys totae (Miles 1942) from Andean lakes. Threats to
conservation from alien shes are poorly understood in Colombia. Recently, Gutiér-
rez et al. (2012) compiled a list of 29 alien sh species, including the piscivorous
Arapaima gigas (Schinz 1822) and Micropterus salmoides (Lacépède 1802). The
impact of these alien sh species on native sh assemblages is unknown and research
is needed.
Lost area of the oodplain lakes
Although wetlands are vital for sustaining aquatic biota and associated environmen-
tal services, the aquatic systems in the Caribbean river basins of Colombia are one
of the most threatened habitats as they are the nal receptors of all the changes in
their basin. Mismanagement of the territory by the Colombian Government is the main
cause. At local level, entire villages were built on oodplain areas that are ooded
historically by the river in a recurring ood cycle of c. 50 years. The economic activ-
ities of this population (e.g. crops and cattle) are developed on the surrounding ood-
plains. Although there is no ofcial data, an important area once covered by the lakes
has been lost because many lakes have been drained or their connection channels to
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
92 L. F. JIMÉNEZ-SEGURA ET AL.
40
30
20
10
0
–10
–20
–30
–40
80 000
60 000
40 000
20 000
0
Landing (t) SOI
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
Year
30
25
20
15
10
5
0
2003
2004
2005
2006
2007
2008
2009
2010
2011
111
108
105
102
Individuals m–3
Water level (cm)
(a)
(c)
(b)
F. 8. (a) Southern Oscillation Index (SOI; , mean monthly values; , average for four periods of the monthly
values), (b) weekly ichthyoplankton densities ( ) and water level ( ) between 2004 and 2011 and (c)
riverine sheries landings ( ) of the Magdalena-Cauca River in the last four decades.
the main river were closed to increase croplands and cattle pasture area around them
and, in the last 5 years, illegal gold mining is disruptively modifying the land. At a
regional level, the increase in deforestation rate increases the sediment runoff carried
in the water, so lowland wetlands progressively lose depth. As the oodplain lakes get
shallower, land-owners surrounding these aquatic systems construct levees across the
natural connection channels to stop the inuence of the river ooding into the lake.
So, as the lake loses depth and connectivity with the basin, they dry out and nally
disappear.
Climate change
As sh reproduction and recruitment in tropical areas is highly correlated with rain
patterns and oods, changes in air temperatures and rains associated with ENSO cycles
may have impacts on freshwater sh conservation and artisanal sheries landings. In
Colombia, El Niño causes long periods of low water levels and La Niña long periods
of oods in the trans-Andean rivers (SOI, 2014). Although there is no clear associ-
ation between El Niño periods and the freshwater sher landings (Fig. 8), in some
years, higher landings have occurred during the El Niño period, higher densities of
ichthyoplankton at the beginning of the immediate oods and a new period of high
sher landings, with a positive time lag of one and a half years. If the observed cycles
of droughts-rains-oods change because of variations in the frequency and intensity of
ENSO, population sizes of migratory shes may also change and so impact the artisanal
sheries’ sustainability. Ichthyoplankton monitoring may be a useful biological vari-
able for several research questions about migratory sh recruitment in tropical rivers
and the impact of climatic change.
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 93
FUTURE DIRECTIONS FOR FISH CONSERVATION
The economic activities that have increased the gross domestic product of Colom-
bia are modifying the aquatic ecosystems where the shes live and the livelihoods of
artisanal shers. Modications of the freshwater aquatic systems and their connectiv-
ity to the trans-Andean river basins are the origin of a silent degradation that threatens
freshwater sh conservation in Colombia. Cumulative effects of the human activities
described above may lead to a signicant reduction in the population size of the sh
fauna and perhaps even the extinction of some rare species.
After the Rio Convention in 1992, the Colombian Government created the Minis-
terio de Medio Ambiente y Desarrollo Sostenible MADS (Law 33 of 1993) as the
agency responsible for the environmental management of Colombia. Fish protection
and management are function of the MADS and the Autoridad Nacional de Pesca y
Acuicultura (AUNAP). MADS protects sh diversity and AUNAP the sh as a human
food source. Some MADS advances in environmental protection includes the system of
National Parks, institutions for environmental research (IDEAM, Instituto Alexander
von Humboldt, SINCHI, among others) and the Agencia Nacional para Licenciamiento
Ambiental ANLA. Sadly, although the law, its articles and paragraphs of the Law 33
are well intentioned for the protection of environmental resources, in the real scenario
other ministries related to the economy (Energy, Transport and Agriculture) advance
faster on the exploration and use of resources (water, oil, gas and soil) than MADS
on protecting the terrestrial and aquatic systems as habitat for biota restricted to the
northern regions of South America.
Almost 10% of the terrestrial Colombian area is protected by the Parques Nacionales
Naturales Agency (c. 12 877 086 ha) (Parques Nacionales Naturales, 2015). Fifty per
cent of this protected area is located in the trans-Andean River basins, but most of them
are in the highlands, above 1000m altitude and they do not include the river basin as
a unit. MADS is also constructing a system for compensating the loss of biodiversity
as a result of infrastructure and energy development of the Colombian Government
(MADS, 2012), and after the consequences of the oods by the ENSO cycle of the
year 20092011 on human population, this institution is moving to dene the wetland
limits in Colombia (Vilardy et al., 2014).
As already noted, the available information about shes for each river basin is
different; most is from the Magdalena-Cauca with few scattered studies in the other
basins. Those basins, although smaller than the Magdalena-Cauca, are just as impor-
tant for local people as the main basin. More systematic and regional research must be
focused on sh conservation; shes are the source for several environmental services
provided to human populations in Colombia. Although more information is always
needed about shes, there is no time to wait for answers to all the scientic questions
before proposing some simple conservation actions. Freshwater sh conservation
and the artisanal sheries are threatened by the economic development of some
industries. The river basin must be the basic management unit for sh protection.
Actions for protecting and restoring their aquatic habitat quality and their connectivity
must be the main objective for environmental agencies during the next 50 years.
If the aquatic systems are not restored and protected, there is no future for the sh
fauna or for artisanal shers, one of the economically poorest groups in Colombian
society.
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
94 L. F. JIMÉNEZ-SEGURA ET AL.
We are grateful to all our undergraduate and post-graduate students for their enthusiasm for
discovering and knowing more about Colombian shes; this enterprise could not have been done
without them. We also thank the Colombian energy producers ISAGEN S.A. E.S.P. (Agree-
ment 46/3296, Contract No 7/4346) and Empresas Públicas de Medellín EPM (Agreement
201100334) for nancial support to collect some of the data included here. We also thank to
D. Taphorn for improving the English language and to unknown reviewers for their opportune
suggestions for improving the manuscript.
Supporting Information
Supporting Information may be found in the online version of this paper:
Table S1. List of freshwater sh species in the Caribbean rivers in the northern of South
America.
References
Abell, R., Thieme, M., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B.,
Mandrak, N., Contreras-Balderas, S., Bussing, W., Stiassny, M., Skelton, P., Allen, G.,
Unmack, P., Naseka, A., Sindorf, N., Robertson, J., Armijo, E., Higgins, J., Heibel, T.,
Wikramanayake, E., Olson, D., López, H., Reis, R., Lundberg, J., Sabaj Pérez, M. &
Petry, P. (2008). Freshwater ecoregions of the world: a new map of biogeographic units
for freshwater biodiversity conservation. BioScience 58, 403–414.
Agostinho, A. A., Gomes, L. C. & Pelilice, F. M. (2007). Ecologia e manejo de recursos
pesqueiros em reservatorios do Brasil. Maringa: Editorial da Universidade Estadual de
Maringa.
Albert, J. & Reis, R. (2011). Historical Biogeography of Neotropical Freshwater Fishes.Berke-
ley, CA: University of California Press.
Albert, J., Petri, P. & Reis, R. (2011). Major biogeographic and phylogenetic patterns. In His-
torical Biogeography of Neotropical Freshwater Fishes (Albert, J. & Reis, R., eds), pp.
2156. Berkeley, CA: University of California Press.
Anderson, E. & Maldonado-Ocampo, J. A. (2011). A regional perspective on the diversity and
conservation of tropical Andean shes. Conservation Biology 25, 30– 39.
Alvarez, A., Kolok, A., Jiménez-Segura, L. F., Granados, C. & Palacio, J. (2012). Mercury con-
centrations in muscle and liver tissue of sh from marshes along the Magdalena River,
Colombia. Bulletin of Environmental Contamination and Toxicology 89, 836 840.
Álvarez-León, R., Orozco-Rey, R. H., Páramo-Fonseca, M. E. & Restrepo-Santamaría, D.
(2013a). Peces fósiles y actuales de Colombia: distribución, diagnosis de referencia y
nombres comunes e indígenas. Bogotá: Ecoprints Diseño Gráco y Audiovisual Ltda.
Arango-Rojas, A., Jiménez-Segura, L. F. & Palacio-Baena, J. A. (2008). Variación espacio-
temporal de la asociación de especies de peces en la laguna de cachimbero, un humedal
en la cuenca media del río magdalena, Colombia. Actualidades Biológicas 30, 161169.
Arguello, L. E., González, H. & Atencio-García, V. (2001). Reproducción inducida de la liseta
Leporinus muyscorum (Steindachner, 1902) con extracto pituitario de carpa (EPC).
Revista MVZ Córdoba 6, 97–101.
Atencio García, V., Bello Sierra, B., Bello Sierra, L. & Espinosa, J. (2005). Producción de alevi-
nos de especies nativas. Revista MVZ-Córdoba 6, 9 14.
Atencio-García, V., Kerguelén, E., Naar, E. & Petro, R. (2013). Desempeño reproductivo del
bocachico Prochilodus magdalenae inducido dos veces en un mismo año. Revista MVZ
Córdoba 18, 3304– 3310.
Baumgartner, G., Nakatani, K., Gomes, L. C., Bialetzki, A. & Sanches, P. (2004). Identica-
tion of spawning sites and natural nurseries of shes in the upper Paraná River, Brazil.
Environmental Biology of Fishes 71, 115–125.
Barletta, M., Jaureguizar, A. J., Baigun, C., Fontoura, N. F., Agostinho, A. A., Almeida-Val, V.
M. F., Val, A. L., Torres, R. A., Jiménez-Segura, L. F., Giarizzo, T., Fabré, N. N., Batista,
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 95
V. S., Lasso, C., Taphorn, D. C., Costa, M. F., Chaves, P. T., Vieira, J. P. & Correa, M. F.
(2010). Fish and aquatic habitat conservation in South America: a continental overview
with emphasis on Neotropical systems. Journal of Fish Biology 76, 2118–2176.
Bowen, S. (1983). Detritivory in neotropical sh communities. Environmental Biology of Fishes
9, 137144.
Briñez-Vásquez, G. N. & Francis-Turner, L. (2006). Aspectos reproductivos de Astroblepus
homodon (Regan, 1914) (Pisces, Siluriformes) en la cuenca del río Coello, Tolima.
Revista Tumbaga 1, 520.
Cala, P. (1987). La ictiofauna dulceacuícola: una visión histórica y su estado actual. Revista
Colombiana Ciencias Exactas y Naturales 16, 69–84.
Cala, P. (1997). Espermatogénesis y ciclo anual reproductivo del capaz Pimelodus grosskopi
(Pisces: Pimelodidae) en alto río Magdalena (Colombia). Caldasia 19, 4553.
Cala, P. (2001a). Ictiofauna neotropical de Colombia en el contexto global neotropical y su
estado actual: una revisión bibliográca. Dahlia 4, 3– 14.
Cala, P. (2001b). Occurrence of mercury in some commercial sh species from the Magdalena
and Meta rivers in Colombia. Dahlia 4, 15–19.
Cala, P. & Sodergren, A. (1999). Occurrence and distribution of organochlorine residues in
sh from the Magdalena and Meta rivers in Colombia. Toxicological and Environmental
Chemistry 71, 185195.
Cala, P., Pérez, C. & Rodríguez, I. (1993). Aspectos bioecológicos de la población de capaz,
Pimelodus grosskopf (Pisces: Pimelodidae), en el embalse de Betania y parte alta del río
Magdalena, Colombia. Revista de la Academia Colombiana de Ciencias 20, 319– 330.
Carvajal-Quintero, J. D., Escobar, F., Alvarado, F., Villa-Navarro, F. A., Jaramillo-Villa, Ú.
& Maldonado-Ocampo, J. A. (2015). Variation in freshwater sh assemblages along a
regional elevation gradient in the northern Andes, Colombia. Ecology and Evolution 5,
26082620.
Galvis, G. & Mojica, J. I. (2007). The Magdalena River fresh water shes and sheries. Aquatic
Ecosystem Health & Management 10, 127139.
García-Alzate, C. & Roman-Valencia, C. (2008). Biología Alimentaria y Reproductiva de
Hyphessobrycon poecilioides (Pisces:Characidae) en la Cuenca del Río La Vieja, Alto
Cauca Colombia. Revista Museo Argentino de Ciencias Naturales 10, 1727.
Gomes, L. C. & Miranda, L. E. (2001). Riverine Characteristics dictate composition of sh
assemblages and limit sheries in reservoirs of the upper Paraná River basin. Regulated
Rivers: Research & Management 17, 6779.
Granado-Lorencio, C., Gulfo, A., Alvarez, F., Jiménez-Segura, L. F., Carvajal-Quintero, J. D.
& Hernández-Serna, A. (2012a). Fish assemblages in oodplain lakes in a Neotropical
river during the wet season (Magdalena River, Colombia). Journal of Tropical Ecology
28, 271279.
Granado-Lorencio, C., Hernández-Serna, A., Carvajal, J. D., Jiménez-Segura, L. F., Gulfo, A.
& Alvarez, F. (2012b). Regionally nested patterns of sh assemblages in oodplain lakes
of the Magdalena river (Colombia). Ecology and Evolution 2, 1296–1303.
Gutiérrez, F. (2011). Diagnóstico de la pesquería en la cuenca del río Sinú y Canalete. In Cat-
alogo de los recursos pesqueros continentales de Colombia (Lasso, C. A., Gutiérrez, F.
P., Morales-Betancourt, M. A., Agudelo, E., Ramírez-Gil, H. & Ajiaco-Martínez, R. E.,
eds), pp. 75100. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander
von Humboldt (IAvH).
Gutiérrez, F. P., Lasso, C. A., Sánchez-Duarte, P. & Gil, D. L. (2010). Análisis de riesgo para
especies acuáticas continentales y marinas. In Análisis de riesgo y propuesta de catego-
rización de especies introducidas para Colombia (Baptiste, M. P., Castaño, N., Cárdenas,
D., Gutiérrez, F. P., Gil, D. L. & Lasso, C. A., eds), pp. 73 148. Bogotá: Instituto de
Investigación de Recursos Biológicos Alexander von Humboldt.
Gutiérrez, F., Barreto, C. & Mancilla, B. (2011a). Diagnóstico de la pesquería en la cuenca del
río Magdalena-Cauca. In Catalogo de los recursos pesqueros continentales de Colombia
(Lasso, C. A., Gutiérrez, F. P., Morales-Betancourt, M. A., Agudelo, E., Ramírez-Gil, H.
& Ajiaco-Martínez, R. E., eds), pp. 3573. Bogotá: Instituto de Investigación de Recur-
sos Biológicos Alexander von Humboldt (IAvH).
Gutiérrez, F., Rivas-Lara, T. & Rincón-López, C. (2011b). Diagnóstico de la pesquería en la
cuenca del río Atrato. In Catalogo de los recursos pesqueros continentales de Colombia
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
96 L. F. JIMÉNEZ-SEGURA ET AL.
(Lasso, C. A., Gutiérrez, F. P., Morales-Betancourt, M. A., Agudelo, E., Ramírez-Gil,
H. & Ajiaco-Martínez, R. E., eds), pp. 103118. Bogotá: Instituto de Investigación de
Recursos Biológicos Alexander von Humboldt (IAvH).
Gutiérrez, F., Lasso, C., Baptiste, M., Sánchez-Duarte, P. & Díaz, A. M. (2012). Catálogo de la
biodiversidad acuática exótica trasplantada en Colombia: moluscos, crustáceos, peces,
anbios, reptiles y aves. Bogotá: Universidad de Bogotá Jorge Tadeo Lozano, Instituto
de Investigación de Recursos Biológicos Alexander von Humboldt Ltda.
Hernández-Camacho, J. (1992). Caracterización geográca de Colombia. In La diversidad
biológica en Iberoamérica (Halffter, G., ed), pp. 4554. Ciudad de México: CYTED-B,
Programa iberoamericano de ciencia y tecnología para el desarrollo.
Hernández-Serna, A., Márquez-Velásquez, V., Carvajal-Quintero, J. D., Gulfo, A., Granado-
Lorencio, C. & Jiménez-Segura, L. F. (2014). Length–weight relationships of 38 sh
species of the Magdalena River oodplain lakes. Journal of Applied Ichthyology 30,
549551. doi: 10.1111/jai.12379
Hernández-Serna, A., Granado-Lorencio, C. & Jiménez-Segura, L. F. (2015). Diel cycle
size-dependent trophic structure of neotropical shes: a three year case analysis from 35
oodplain lakes in Colombia. Journal of Applied Ichthyology 31, 638– 645. doi: 10.1111/
jai.12748
IGAC (2003). Atlas de Colombia. Quinta edición,revisada,actualizada y aumentada. Bogotá:
Imprenta Nacional de Colombia.
Jaramillo-Villa, U., Maldonado-Ocampo, J. A. & Escobar, F. (2010). Altitudinal variation in
sh assemblage diversity in streams of the central Andes of Colombia. Journal of Fish
Biology 76, 24012417.
Jaramillo-Villa, U. & Jiménez-Segura, L. F. (2008). Algunos aspectos biológicos de la población
de Prochilodus magdalenae en las ciénagas de Tumaradó (Río Atrato), Colombia. Actu-
alidades Biológicas 30, 5566.
Jaramillo, U., Cortes-Duque, J. & Flórez, C. (2015). Colombia anbia. Un país de humedales.
Vol I. Instituto de investigación de recursos hidrobiológicos Alexander von Humboldt.
Jiménez-Segura, L. F. (2007). Ictioplancton y reproducción de los peces en la cuenca media del
río Magdalena (sector de Puerto Berrio, Antioquia). PhD Thesis. Universidad de Antio-
quia. Colombia.
Jaramillo, U., Pelaez, S., Aponte, C., Flórez-Ayala, C., Avella, C., Manrique, O., Velasquez,
W., Millán, S. & Rodríguez, A. (2015a). Hacía un inventario completo de humedales. In
Colombia anbia. Un país de humedales. Vol I. (Jaramillo, U., Cortes-Duque, J. & Flórez,
C. eds), pp. 108109. Instituto de investigación de recursos hidrobiológicos Alexander
von Humboldt. Bogotá, Colombia.
Jiménez-Segura, L. F., Palacio, J. & López, R. (2009). Características biológicas del Blanquillo
Sorubim cuspicaudus Littmann, Burr y Nass, 2000 y Bagre Rayado Pseudoplatystoma
magdaleniatum Buitrago-Suárez y Burr, 2007 (Siluriformes: Pimelodidae) relacionadas
con su reproducción en la cuenca media del río Magdalena (Colombia). Actualidades
Biológicas 31, 53–66.
Jiménez-Segura, L. F., Palacio, J. & Leite, R. (2010a). River ooding and reproduction of migra-
tory sh species in the Magdalena River Basin, Colombia. Ecology of Freshwater Fish
19, 178186.
Jiménez-Segura, L. F., Carvajal-Quintero, J. D. & Aguirre, N. (2010b). Las ciénagas como
hábitat para los peces: estudio de caso en la ciénaga de Ayapel (Córdoba), Colombia.
Actualidades Biológicas 32, 5364.
Jiménez-Segura, L. F. & Ortega-Lara, A. (2010). Pseudopimelodus buffonius (Siluriformes,
Pimelodidae). In Catalogo de los recursos pesqueros continentales de Colombia (Lasso,
C. A., Gutiérrez, F. P., Morales-Betancourt, M. A., Agudelo, E., Ramírez-Gil, H. &
Ajiaco-Martínez, R. E., eds), pp. 544546. Serie Editorial Recursos Hidrobiológicos y
Pesqueros Continentales de Colombia. Instituto de Investigación de Recursos Biológicos
Alexander von Humboldt (IAvH). Bogotá, D. C., Colombia.
Jiménez-Segura, L. F. & Villa-Navarro, F. A. (2011). Pimelodus grosskopi (Siluri-
formes,Pimelodidae). In Catálogo de los Recursos Pesqueros Continentales de
Colombia (Lasso, C. A., Agudelo Córdoba, E., Jiménez-Segura, L. F., Ramírez-Gil, H.,
Morales-Betancourt, M., Ajiaco-Martínez, R. E., Gutiérrez, F. de P., Usma Oviedo, J. S.,
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 97
Muñoz Torres, S. E. & Sanabria Ochoa, A. I., eds), pp. 466471. Bogotá: Instituto de
Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).
Jiménez-Segura, L. F., Restrepo-Santamaría, D., López-Casas, S., Delgado, J., Valderrama, M.,
Álvarez, J. & Gómez, D. (2014a). Ictiofauna y desarrollo del sector hidroeléctrico en la
cuenca del río Magdalena Cauca, Colombia. Biota Colombiana 15, 325.
Jiménez-Segura, L. F., Maldonado-Ocampo, J. A. & Pérez, C. (2014b). Gradiente de recu-
peración longitudinal en la estructura de la ictiofauna en un río andino regulado. Biota
Colombiana 15, 6180.
Jiménez-Segura, L. F., Álvarez, J., Ochoa, L. E., Loaiza, A., Londoño, J. P., Restrepo,
D., Aguirre, K., Hernández, A., Correa, J. D. & Jaramillo-Villa, U. (2015). Guía
Ilustrada Peces Cañón del río Porce, Antioquia. Medellín: Empresas Públicas de
Medellín-Universidad de Antioquia.
Junk, W. J., Bayley, P. B. & Sparks, R. E. (1989). The ood pulse concept in river-oodplain
systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106, 110–127.
Kerguelen-Durango, E. & Atencio-García, V. (2015). Environmental characterization of the
reproductive season of migratory sh of the Sinú river (Córdoba, Colombia). Revista
MVZ Córdoba 20, 4766– 4778.
Lasso, C. A., Gutiérrez, F. P., Morales-Betancourt, M. A., Agudelo, E., Ramírez-Gil, H. &
Ajiaco-Martínez, R. E. (2011a). Catálogo de los recursos pesqueros continentales de
Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von
Humboldt (IAvH).
Lasso, C., Morales-Betancourt, M. & Sanchez-Duarte, P. (2011b). Recursos pesqueros conti-
nentales de Colombia. In Catalogo de los recursos pesqueros continentales de Colombia
(Lasso, C. A., Gutiérrez, F. P., Morales-Betancourt, M. A., Agudelo, E., Ramírez-Gil, H.
& Ajiaco-Martínez, R. E., eds), pp. 5768. Bogotá: Instituto de Investigación de Recur-
sos Biológicos Alexander von Humboldt (IAvH).
Lewis, W. M. (2008). Physical and chemical features of tropical owing waters. In Tropical
Stream Ecology (Dudgeon, D., ed), pp. 1–21. London: Academic Press.
López-Casas, S. (2015). Magdalena potadromous migrations: effects of regulated and natural
hydrological regimes. Doctoral thesis. Instituto de Biología, Universidad de Antioquia.
Medellín, Colombia.
Lowe-McConnell, R. H. (1995). Ecological Studies in Tropical Fish Communities. Cambridge:
Cambridge University Press.
Lucas, M. & Baras, E. (2001). Migration of Freshwater Fishes. Oxford: Blackwell Science.
Mancera-Rodríguez, N. J. & Álvarez-León, R. (2005). Estado del conocimiento de las con-
centraciones de hidrocarburos y residuos organoclorados en los peces dulceacuícolas de
Colombia. Dahlia 8, 89103.
Mancera-Rodríguez, N. J. & Álvarez-León, R. (2006). Estado del conocimiento de las concen-
traciones de metales pesados en los peces dulceacuícolas de Colombia. Acta Biologica
Colombiana 11, 323.
Maldonado-Ocampo, J. A., Ortega-Lara, A., Usma, J. S., Galvis, G., Villa-Navarro, F., Vásquez,
L., Prada-Pedreros, L. & Rodríguez, C. A. (2005). Peces de los Andes de Colombia:
guía de campo. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander
von Humboldt.
Maldonado-Ocampo, J. A., Vari, R. & Usma, J. S. (2008). Checklist of the freshwater shes in
Colombia. Biota Colombiana 9, 143237.
Maldonado-Ocampo, J. A., Usma, J. S., Villa-Navarro, F., Ortega-Lara, A., Prada-Pedreros, S.,
Jiménez-Segura, L. F., Jaramillo-Villa, U., Arango, A., Rivas, T. & Sánchez, G. C. (2013).
Peces Dulceacuícolas del Choco Biogeográco. Bogota: WWF Colombia, Instituto de
Investigaciones Recursos Biológicos IAvH, Universidad del Tolima, Autoridad Nacional
de Acuicultura y Pesca (AUNAP), Ponticia Universidad Javeriana.
Mancera-Rodríguez, N. J. & Álvarez-León, R. (2013). Colombia, la pesca en un país en desar-
rollo. In La Pesca: entre sus circunstancias y consecuencias (Castro-Hernández, J. J.,
ed), pp. 305341. Las Palmas de Gran Canaria: Colección Textos Universitarios Anroat
Ediciones, S.L.
Mancera-Rodríguez, N. J., Márquez, E. J. & Hurtado-Alarcón, J. C. (2013). Uso de citogenética
y técnicas moleculares en estudios de diversidad genética en peces Colombianos. In Uso
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
98 L. F. JIMÉNEZ-SEGURA ET AL.
de Biología Molecular en Producción Animal y Conservación de Especies Silvestres
(López Herrera, A., ed), pp. 237312. Medellín: Centro de publicaciones, Universidad
Nacional de Colombia.
Mancera-Rodríguez, N. J., Castellanos-Barliza, J. & Urrego-Ballestas, D. (2016). Biología
Reproductiva de Saccodon dariensis (Teleostei: Parodontidae) en auentes del río
Guatapé, cuenca del río Magdalena, Colombia. Revista de Biología Tropical 64. doi:
10.15517/rbt.v64i2.20691
Marrugo-Negrete, J., Lans, E. & Benitez, L. (2007). Finding of mercury in sh from the Ayapel
marsh, Cordoba, Colombia. Revista MVZ Córdoba 12, 878–886.
Marrugo-Negrete, J., Olivero-Verbel, J., Lans, E. & Benitez, L. (2008a). Total mercury and
methylmercury concentrations in sh from the Mojana region of Colombia. Environ-
mental Geochemistry and Health 30, 21–30.
Marrugo-Negrete, J., Benitez, L. & Olivero-Verbel, J. (2008b). Distribution of mercury in
several environmental compartments in an aquatic ecosystem impacted by gold mining
in northern Colombia. Archives of Environmental Contamination and Toxicology 55,
305316.
Matthews, W. (1998). Patterns in Freshwater Fish Ecology. New York, NY: Springer.
Mojica, J. I. (2002). Las pesquerías de la cuenca del Magdalena: Ejemplo a no repetir. In Libro
rojo de peces dulceacuícolas de Colombia (Mojica, J. I., Castellanos, C., Usma, S. &
Álvarez-León, R., eds), pp. 35– 41. Bogotá: Instituto de Ciencias Naturales Universidad
Nacional de Colombia, Ministerio del Medio Ambiente.
Mojica, J. I., Usma, J. S., Álvarez-León, R. & Lasso, C. A. (2012). Libro rojo de peces dulceacuí-
colas de Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander
von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia,
WWF Colombia y Universidad de Manizales.
Mojica, J. I., Castellanos, C., Sánchez-Duarte, P. & Díaz, C. (2006a). Peces de la cuenca del río
Ranchería, La Guajira Colombia. Biota Colombiana 7, 129142.
Mojica, J. I., Galvis, G., Sánchez-Duarte, P., Castellanos, C. & Villa-Navarro, F. (2006b). Peces
del valle medio del Río Magdalena, Colombia. Biota Colombiana 7, 23– 38.
Munro, A. D. (1990). General Introduction. In Reproductive Seasonality in Teleosts: Environ-
mental Inuences (Munro, A. D., Scott, A. P. & Lam, T. J., eds), pp. 1– 11. Boca Raton,
FL: CRC Press Inc.
Noreña, R. D. A., Arenas, T. A. M., Murillo, P. E., Guío, D. A. J. & Méndez, A. J. J. (2012).
Heavy metals (Cd, Pb and Ni) in sh species commercially important from Magdalena
river, Tolima tract, Colombia. Revista Tumbaga 7, 61–76.
Olaya-Nieto, C., Hernández-Rosso, D. & Ayarza-Pérez, E. (2010). Reproductive Biology of
Liso Rhamdia quelen (Pisces: Heptapteridae) in the Sinu River, Colombia. Acta Biológica
Colombiana 15, 6174.
Olsson, J. & Eklöv, P. (2005). Habitat structure, feeding mode and morphological reversibil-
ity: factors inuencing phenotypic plasticity in perch. Evolutionary Ecology Research 7,
11091123.
Ortega-Lara, A., Usma, J. S., Bonilla, P. & Santos, N. (2006). Peces de la cuenca alta del río
Cauca, Colombia. Biota Colombiana 7, 3954.
Perez, A. N., Olaya-Nieto, C. W., Segura-Guevara, F. F., Tordecilla-Petro, G. & Bru-Cordero,
S. (2005). Relaciones longitud-peso de la doncella, Ageneiosus pardalis (Pisces:
Auchenipteridae), en la cuenca del río Sinú, Colombia. Dahlia 9, 5361.
Ramírez, J., Cifuentes, C. Y. & Avilés, M. (2013). Evaluación de la reproducción inducida de
nicuro Pimelodus blochii (Teleostei: Pimelodidae) utilizando diferentes inductores hor-
monales. Revista MVZ Córdoba 18, 3512–3517.
Rangel-Serpa, F. & Torres-Mejia, M. (2015). Reproductive seasonality of Geophagus stein-
dachneri Eigenmann & Hildebrand, 1922 (Perciformes: Cichlidae) in a tropical mountain
river. Neotropical Ichthyology 13, 421– 430. doi: 10.1590/1982-0224-20140091
Restrepo, J. D. & Kjerfve, B. (2000). Magdalena river: interannual variability (1975–1995)
and revised water discharge and sediment load estimates. Journal of Hydrology 235,
137149.
Restrepo-Gómez, A. M. & Mancera-Rodríguez, N. J. (2014). Trophic ecology of Saccodon
dariensis (Pisces: Parodontidae) in Guatapé River tributaries, Magdalena River Basin,
Colombia. Revista MVZ Córdoba 19, 3930–3943.
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 99
Ríos-Pulgarín, M. I., Jiménez-Segura, L. F., Palacio, J. A. & Ramírez-Restrepo, J. J. (2008).
Comunidad de peces en la Ciénaga de Ayapel, Río Magdalena (Córdoba) Colom-
bia: cambios espacio-temporales en su asociación. Actualidades Biológicas 30,
2953.
Roberts, T. R. (1974). Dental polymorphism and sistematics in Saccodon, a neotropical
genus of fresh water shes (Parodontidae, Characoidei). Journal of Zoology 173,
301321.
Roman-P, C., Román-Valencia, C. & Taphorn, C. (2014). Trophic and reproductive ecology of a
neotropical Characid sh Hemibrycon brevispinnis (Teleostei: Characiformes). Caldasia
36, 289304.
Román-Valencia, C. & Botero, A. (2006). Trophic and reproductive ecology of a species of
Hemibrycon (Pisces: Characidae) in Tinajas creek, Quindío River drainage, upper Cauca
Basin, Colombia. Revista Museo Argentino de Ciencias Naturales 8, 1–8.
Román-Valencia, C. & Muñoz, A. (2001). Ecología tróca y reproductiva de Bryconameri-
cus caucanus (Pisces: Characidae). Bolletino Museum Regionalli Science Naturalli 18,
459467.
Román-Valencia, C. & Ruiz, R. (2005). Diet and reproduction aspects of Astyanax aurocaudatus
(Teleostei: Characidae) from the upper part of the rio Cauca, Colombia. Dahlia 8, 9–17.
Román-Valencia, C., Botero, A. & Ruiz, R. (2003). Trophic and reproductive ecology of Roe-
boides dayi (Teleostei: Characidae) from upper Rio Cauca, Colombia. Bolletino Museum
Regionalli Science Naturalli 20, 487–496.
Román-Valencia, C. & Samudio, H. (2007). Dieta y reproducción de Lasiancistrus caucanus
(Pisces: Loricariidae) en la cuenca del río La Vieja, Alto Cauca, Colombia. Revista del
Museo Argentino de Ciencias Naturales nueva serie 9, 95– 101.
Román-Valencia, C., Ruiz, R. & Giraldo, A. (2008). Dieta y reproducción de dos especies
sintópicas: Hemibrycon boquiae yBryconamericus caucanus (Pisces: Characidae) en
la quebrada Boquía, río Quindío, Alto Cauca, Colombia. Revista del Museo Argentino
Ciencias Naturales 10, 55– 62.
Solano-Peña, D., Segura-Guevara, F. & Olaya-Nieto, C. (2013). Crecimiento y reproducción
de la mojarra amarilla (Caquetaia kraussii Steindachner, 1878) en el embalse de Urrá,
Colombia. Revista MVZ Córdoba 18, 3525–3533.
Torres-Mejía, M. & Ramírez-Pinilla, M. (2008). Dry-season breeding of a characin in a neotrop-
ical mountain river. Copeia 2008, 99– 104.
Trujillo, F., Lasso, C. A., Diazgranados, M. C., Farina, O., Pérez, L. E., Barbarino, A., González,
M. & Usma, J. S. (2010). Evaluación de la contaminación por mercurio en peces de
interés comercial y de la concentración de organoclorados y organofosforados en el agua
y sedimentos de la Orinoquia. In Biodiversidad de la Cuenca del Orinoco. Bases cien-
tícas para la identicación de áreas prioritarias para la conservación y uso sostenible
de la biodiversidad (Lasso, C. A., Usma, J. S., Trujillo, F. & Rial, A., eds), pp. 175191.
Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt,
WWF Colombia, Fundación Omacha, Fundación La Salle e Instituto de Estudios de la
Orinoquia. Universidad Nacional de Colombia.
Rodríguez-Olarte, D., Mojica, J. I., Corzo, J. & Taphorn, D. (2011). Northern South America,
Magdalena and Maracaibo Basins. In Historical Biogeography of Neotropical Fresh-
water Fishes (Albert, J. & Reis, R., eds), pp. 243–258. Berkeley, CA: University of
California Press.
Tucker, C. J. & Townshend, J. R. G. (2000). Strategies for monitoring tropical deforestation
using satellite data. International Journal of Remote Sensing 21, 1461–1471.
Val, A. L. & Randall, D. J. (2005). The Physiology of Tropical Fishes, Vol. 21. London: Aca-
demic Press.
Vazzoler, A. M. (1996). Biologia da reprodução de peixes teleósteos: Teoria e prática. Nupelia:
DAUFSC, Editorial Universidade de Maringá.
Villa, F. (1992). La variable ambiental en el contexto de la pesquería de la cuenca del Mag-
dalena: Ibagué Fundación Rio Magdalena. Memorias del Seminario Presente y Futuro
del Rio Magdalena.
Villa-Navarro, F., Zúñiga-Upegui, P., Castro-Roa, D., García-Melo, J., García-Melo, L.
& Herrada-Yara, M. (2006). Peces del alto Magdalena, cuenca del río Magdalena,
Colombia. Biota Colombiana 7, 321.
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
100 L. F. JIMÉNEZ-SEGURA ET AL.
Welcomme R. L. (1985). River sheries. FAO Fisheries Technical Paper 262.
Welcomme, R. L. (1999). A review of a model for qualitative evaluation of exploitation levels
in multi-species sheries. Fisheries Management and Ecology 6, 1–19.
Welcomme, R. L., Winemiller, K. O. & Cowx, I. G. (2006). Fish environmental guilds as a tool
for assessment of ecological condition of rivers. River Research and Applications 22,
377396. doi: 10.1002/rra.914
Wootton, R. J. (1999). Ecology of Teleost Fishes. Dordrecht: Kluwer Academic Publishers.
Electronic References
Álvarez-León, R., Orozco-Rey, R.H., Páramo-Fonseca, M.E. & Restrepo-Santamaría, D.
(2013b). Peces fósiles y actuales de Colombia: distribución, diagnosis de referencia
y nombres comunes e indígenas. Bogotá :Ecoprints Diseño Gráco y Audiovisual
Ltda. Available at http://gerenciaecoprints.wix.com/eco-prints#!servicios2/c1m2r (last
accessed 19 March 2015).
AUNAP – Autoridad Nacional de Acuicultura y Pesca (2014a). Servicio Estadístico Pesquero
Colombiano SEPEC. Available at http://sepec.unimagdalena.edu.co/ (last accessed 27
December 2014).
AUNAP Autoridad Nacional de Acuicultura y Pesca (2014b). Estado de la pesca y la acuicul-
tura 2014. Available at http://www.aunap.gov.co/les/ESTADO_DE_LA_PESCA_Y_
ACUICULTURA_2014_.pdf (last accessed 15 March 2015).
Baptiste, M. P., Castaño, N., Cárdenas, D., Gutiérrez, F. P., Gil, D. L. & Lasso, C. A. (2010).
Análisis de riesgo y propuesta de categorización de especies introducidas para Colom-
bia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
Available at http://www.humboldt.org.co/component/k2/item/235-analisis-de-riesgo-y-
propuesta-de-categorizacion-de-especies-introducidas-para-colombia (last accessed 19
March 2015).
Bialetzki, A., P. Sanches, M. Cavicchioli, G. Baumgartner, R. Pereira, & Nakatani, K. (1999).
Drift of ichthyoplankton in two channels of the Paraná River, between Paraná and Mato
Grosso do Sul states, Brazil. Brazilian Archives of Biology and Technology 42 (1).
10.1590/S1516-89131999000100008
CCI Corporación Colombia Internacional (2007). Pesca y Acuicultura Colombia 2006. Avail-
able at http://cpps.dyndns.info/cpps-docsweb/planaccion/biblioteca/pordinario/Proceso
%20Ordinario/Fisheries/INCODER2006_InformePescaAcuicultura.pdf (last accessed
11 June 2015).
DANE – Departamento Administrativo Nacional de Planeación (2015). Censo poblacional.
Available at http://www.dane.gov.co/index.php/poblacion-y-demograa/ (last accessed
19 March 2015).
Eschmeyer W. & Fong, J. D. (2016). Catalog of Fishes. Available at http://researcharchive.cal
academy.org/research/ichthyology/catalog/shcatmain.asp (last accessed 27 December
2014)
Escobar, M. D., Olaya, H., Cusva, A., Lasso, C. A. & Londoño, M. C. (2014). Mapa de oferta
potencial de servicios ecosistémicos en complejos de humedales, asociados a la pesca
continental de Colombia. Bogotá: Instituto Alexander von Humboldt.
FAO – Food and Agriculture Organization of the United Nations. (2014). State of the World
Fisheries and Aquaculture. Available at http://www.fao.org/3/a-i3720e.pdf (last accessed
19 March 2015).
Froese, R. & Pauly, D. (2015). FishBase. Available at http://www.shbase.org/ (last accessed
25 March 2015).
González, J. J., Etter, A. A., Sarmiento, A. H., Orrego, S. A., Ramírez, C., Cabrera, E.,
Vargas, D., Galindo, G., García, M. C. & Ordoñez M. F. (2011). Análisis de tenden-
cias y patrones espaciales de deforestación en Colombia. Instituto de Hidrología,
Meteorología y Estudios Ambientales-IDEAM. Gobierno de Colombia. Available
at www.researchgate.net/ tendencias_y_patrones_espaciales Colombia/ (last
accessed 19 March 2015)
MADS Ministerio de Medio Ambiente y Desarrollo Sostenible (2012). Manual para
la asignación de compensaciones por pérdida de biodiversidad. Available at
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
FRESHWATER FISHES OF NORTH-WEST SOUTH AMERICA 101
http://www.tremarctoscolombia.org/pdf/MANUAL_compensaciones%20Final.pdf
(last accessed 23 March 2015)
MADS – Ministerio de Medio Ambiente y Desarrollo Sostenible (2014). Colombia revela
su primera tasa anual de deforestación. Available at https://www.minambiente.gov.co/
index.php/sala-de-prensa/2-noticias/1236-el-uso-sostenible-de-los-bosques-prioridad-
de-minambiente-531 http://www.parquesnacionales.gov.co/portal/colombia-revela-su-
primera-tasa-anual-de-deforestacion/ (last accessed 28 December 2014)
SOI Southern Oscillation Index (2014). Climate Prediction Center. Available at http://www.
cpc.ncep.noaa.gov/products/precip/CWlink/MJO/enso.shtml (last accessed 19 March
2015).
Usma-Oviedo S., Villa-Navarro, F., Lasso, C. A., Castro, F., Zuñiga, P. T., Cipamocha,
C. A., Ortega-Lara, A., Ajiaco, R. E., Ramirez-Gil, H., Jimenez-Segura, L. F.,
Maldonado-Ocampo, J. A., Muñoz J. & Suarez, J. T. (2013). Peces Dulceacuícolas
Migratorios. In Guía de las especies migratorias de la biodiversidad en Colombia,Vol.
2 (Zapata I.A. & Usma, J.S., eds), pp. 216485. Bogotá :Ministerio de Ambiente y Desar-
rollo Sostenible. WWF-Colombia. Available at http://awsassets.panda.org/downloads/
migratoriaspeces_42_web_nal.pdf (last accessed 19 March 2015).
Vilardy, S., Jaramillo, Ú., Flórez, C., Cortés-Duque, J., Estupiñán, L., Rodríguez, J. & Aponte,
C. (2014). Principios y criterios para la delimitación de humedales continentales: una
herramienta para fortalecer la resiliencia y la adaptación al cambio climático en Colom-
bia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
Available at https://www.siac.gov.co/documentos/GestCont/Cartilla_humedales_
inteactivo_1.pdf (last accessed 19 March 2015).
© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, 89, 65–101
... En Colombia se conocen cerca de 1610 especies (Donascimiento et al., 2020). El 76% de las 374 especies endémicas del país se encuentra en la zona hidrográfica del Magdalena-Cauca, donde los órdenes más diversos son Characiformes y Siluriformes con las familias Characidae, Curimatidae, Prochilodontidae y Pimelodidae (Jiménez-Segura et al., 2016). La mayor parte de las especies endémicas que allí habitan enfrentan alguna categoría de amenaza (Mojica et al., 2012). ...
... La Depresión Momposina se localiza en el Caribe colombiano entre los departamentos de Córdoba, Sucre y Bolívar (9° 06́ N; 74° 25́ W), ubicada por debajo de los 200 m de altitud. En este delta interior se da la fusión de los ríos Cesar, Magdalena, Cauca y San Jorge, con un flujo de 2.200 m 3 s −1 , donde convergen cerca del 80% de las ciénagas de la región, siendo el principal lugar de alimentación de las pesquerías de las cuencas Magdalena-Cauca (Galvis & Mojica, 2007;Lasso et al., 2011;Jiménez-Segura et al., 2016). Esta región permanece inundada durante siete meses al año entre abril y noviembre, constituyendo una de las más grandes áreas de inundación del mundo con una extensión estimada en 10.000 km 2 (Van der Hammen, 1986;Berrío et al., 2001; Rojas-Mora & Montejo-Gaitán, 2015) (Figura 1). ...
... Durante la estación seca, la mayoría de los peces migratorios se mueven hacia el canal de flujo libre porque las condiciones del agua en las ciénagas de la planicie de inundación se vuelven desfavorables, con bajo oxígeno disuelto y menor cantidad de agua, altas temperaturas, reducción de área y profundidad y mayor depredación. Algunas especies se quedan en el canal de conexión y no se mueven hacia el río principal, mientras que otras permanecen en los sistemas lénticos, lo que les otorga la categoría de residentes (Jiménez-Segura et al., 2016). ...
... Dietary components were separated and identified qualitatively and quantitatively according to volumetric and frequency of occurrence methods (Ricker, 1971;Hyslop, 1980), and the Alimentary Importance Index (AII) according to Kawakami & Vazzoler (1980 Feeding categories were identified at the lowest possible taxonomic level and AII data were analyzed using a non-parametric Kruskall-Wallis analysis of variance (Zar, 2010) to detect differences in consumption rates (AII) for each food category by sex, size classes, hydrological period and between the basins of Nare (high anthropogenic alteration) and Guatapé (low anthropogenic alteration) rivers. Post hoc comparisons were also made and evaluated through the Mann-Whitney test, using PAST software (Hammer et al. 2001). ...
... The above shows that the sabaleta is a fish species that exhibits opportunistic eating habits and easily adapts to the different environments and aquatic environments of the Colombian Andes (Jiménez-Segura et al. 2016), which has allowed it to adapt even to the lentic environments generated by the construction of reservoirs in various water courses where the species is spread (Martínez-Orozco & Vásquez-Zapata, 2001;Restrepo-Santamaría et al. 2022). ...
Article
Full-text available
La comprensión de la ecología trófica de los peces y la forma en que utilizan los recursos en el espacio y en el tiempo es importante para la toma de acciones para su conservación y manejo. Se determinó la ecología trófica de Brycon henni en los ríos Nare y Guatapé, cuenca del río Magdalena, Colombia. Se realizaron cinco muestreos entre octubre de 2007 y enero de 2010, en periodos de lluvia, seca y transición de seca a lluvia. Se recolectaron estómagos de 262 ejemplares. Para detectar diferencias en el índice de importancia alimentaria de cada categoría de alimentos entre sexo, clase de talla, período hidrológico y cuencas se realizó un análisis de Kruskall-Wallis y una prueba de Mann-Whitney. Se calculó la amplitud del nicho de Levin y el Índice de superposición de dieta de Morisita para establecer diferencias entre clases de talla en diferentes períodos hidrológicos. El material vegetal fue el alimento más importante, seguido de Insecta y peces. Los individuos de la cuenca del Guatapé consumieron más material vegetal y peces, y menos insectos. Se detectó mayor consumo de material vegetal y de peces en individuos de mayor tamaño. La amplitud de nicho fue menor y la superposición entre clases de talla fue mayor en temporada de lluvias porque la dieta se basó principalmente en material vegetal. La dieta de B. henni estuvo compuesta principalmente por material vegetal e insectos y en menor proporción de otros grupos como peces, crustáceos y arácnidos.
... The fragmentation of rivers by dam constructions modifies natural landscape and potentially impacts migratory rheophilic species [9][10][11][12]. The hydroelectric project Hidroituango in the Cauca River gives rise to multiple factors that potentially threaten the biodiversity of this basin [2,3,13,14]. This dam (here called the Ituango Dam) is in the Cauca River canyon, an area of rapids and slopes that naturally limit the upstream migration of species such as P. magdaleniatum, so populations of this fish are mainly found downstream of this hydroelectric site [4,15]. ...
... Although the migratory route of P. magdaleniatum is not considered interrupted, potential downstream effects may disturb the migration behavior of this species and might have impacts at population level, as migration is a key factor in the evolutionary processes of wild populations [16][17][18]. For instance, sediment retention upstream can alter the balance in sedimentation levels and reduce the availability of nutrients downstream [19,20], especially in floodplains, which are crucial places for completing the life cycle of migratory fishes in the basin [14]. Similarly, modification of water flow due to regulation of discharges can alter the endocrine response associated with the reproductive migration of fish downstream, as has been reported in P. magdalenae from La Miel River [21]. ...
Article
Full-text available
The striped catfish Pseudoplatystoma magdaleniatum is a large-sized migratory species from the north Andes region, endemic to Magdalena basin and one of the major fishery resources. Despite the estimated reduction of over 80% of the fisheries production of this species throughout the basin in recent decades, its population in the lower Magdalena-Cauca basin showed healthy genetics after molecular analyses. However, the current conservation status of this species and several habitat disturbances demand the re-evaluation of its population genetics to infer evolutionary risks and assess potential changes. This work analyzed a total of 164 samples from the Cauca River collected downstream the Ituango Dam between 2019–2021 using species-specific microsatellite markers to compare the genetic diversity and structure in samples collected between 2010–2014 from the lower Magdalena-Cauca basin, previously analyzed. Our results showed a relatively stable panmictic population over time (4 to 10 years), with high genetic diversity and evidence of recent bottleneck. Promoting habitat connectivity to conserve gene flow, characterizing diversity and genetic structure over the entire basin, and integrating the results with future monitoring are important aspects for the management planning for P. magdaleniatum in the Magdalena-Cauca basin.
... These ranges played a crucial role in determining the evolution of a unique species assemblage, constituting the ichthyofauna with the highest proportion of endemic species in Colombia 2,3 . This region encompasses a diverse array of aquatic environments along latitudinal and altitudinal gradients, forming a mosaic of habitats for a wide diversity of fish species, some of which are particularly significant in local fisheries [4][5][6] . The fish species in this region display a broad repertoire of adaptations to cope with vastly contrasting habitat conditions 7 . ...
Article
Full-text available
Progress in the acquisition of massive sets of molecular data and in the bioinformatic capabilities for their processing have revolutionised species identification, filling gaps in crucial areas such as taxonomy, phylogenetic inference, biogeography, and even biodiversity conservation. Advanced DNA sequencing and metabarcoding have uncovered previously hidden diversity, although their effectiveness is highly dependent on the accuracy of reference DNA databases at local and regional scales. The compilation of information on freshwater fishes from the Magdalena River basin is an important milestone in improving our knowledge of the genetic and taxonomic diversity of a highly endemic region in the Neotropical context. Here, we share DNA data from 1,270 specimens representing 183 species, cross-referenced with complete collecting and catalogue information, along with high resolution photographs of voucher specimens when alive. This collection of multiple sources of information based on fish specimen records not only contributes to future research on Neotropical fish systematics and ecology, but also to conservation decisions in one of the South American rivers with a highest level of endemism.
... No obstante, el crecimiento exponencial y acelerado de la población, la falta de planeación con respecto al uso de los suelos y a una visión de continuo desarrollo, ha traído como consecuencia una sobreexplotación de los recursos naturales, impactos negativos en los ecosistemas y perdida de la biodiversidad (Paniagua-Chávez et al., 2011). Con respecto a los ecosistemas dulceacuícolas, actividades como la minería, construcción de hidroeléctricas, sobreexplotación pesquera, la deforestación debido a la urbanización y el avance de la frontera agrícola, la contaminación industrial y doméstica, el cambio climático e introducción de especies exóticas, además de las pocas e inexistentes políticas sobre el uso sostenible del recurso hídrico, han disminuido las poblaciones de estos ecosistemas hasta en un 83% desde el año 1970 (Jimenez-Segura et al., 2016;Lasso et al., 2016). Debido a que los peces de agua dulce han sido subvalorados y pasados por alto, muchas especies van en camino hacia la extinción (Carvajal-Quintero et al., 2017). ...
Article
Full-text available
La acuicultura a nivel mundial cada vez toma más relevancia y se ha convertido en una fuente de alimento e ingresos económicos de muchas comunidades alrededor del mundo. Sin embargo, actividades como la sobreexplotación del recurso hídrico y pesquero, el aumento de la población humana, la contaminación ambiental, el cambio climático, entre otros factores, están poniendo en riesgo no solo la seguridad alimentaria del planeta, sino también la biodiversidad de organismos, entre ellos los peces. Una de las herramientas para salvaguardar los recursos biológicos acuáticos, es la crioconservación, que en peces se enfoca principalmente en la conservación de semen en nitrógeno líquido y esta, pesar de ser una técnica muy útil, es susceptible a mejoramiento, ya que se ha reportado que las bajas temperaturas usadas en la crioconservación pueden causar efectos negativos en las células espermáticas, debido a esto es necesario establecer protocolos especie específicos para sacarle todo el potencial a esta forma de conservación. Por lo tanto, el objetivo de esta revisión es recopilar información sobre los principales parámetros de calidad espermática que se ven afectados en el momento de crioconservar el semen, haciendo énfasis en las especies dulceacuícolas.
... M. muyscorum and P. magdalenae are migratory fish that spawn in main rivers and use coastal lagoon systems as nurseries during rainy seasons [88]. In addition, it has been suggested that these species use coastal lagoons as shelter and feeding areas, but no specific studies have assessed their cross-habitat utilization [83]. ...
Article
Full-text available
The temporal variability of fish habitat utilization is poorly understood in tropical deltaic systems due to high water turbidity, which limits visual censuses, and to the lack of long-term data incorporating climate variability events. We aimed to assess the influence of body size and El Niño Southern Oscillation (ENSO) variability on the cross-habitat utilization rate of 14 fish species of commercial relevance in the Ciénaga Grande de Santa Marta (CGSM). We estimated the utilization of mangroves and coastal lagoons based on relative catch frequencies from encircling gillnets used within a long-term catch monitoring program, and then tested for significant changes in each species’ habitat utilization as a function of body size and climate variability. Six species showed a high dependence on mangroves and four on coastal lagoons for most body size classes (including juveniles) and ENSO conditions. One species (Elops smithi) showed a high utilization of mangroves in some ENSO phases and body size classes, while three species showed a high utilization of both mangroves and coastal lagoons. Mangrove utilization by six species (Megalops atlanticus, E. smithi, Centropomus undecimalis, Mugil incilis, Mugil liza, and Ariopsis canteri) increased in larger body sizes at low depths, which usually occurs under dry ENSO conditions, when predatory risk is higher in coastal lagoons. Another species (Caquetaia kraussi) increased its mangrove utilization from the body size at which its feeding habits change. Mangroves and coastal lagoons are important nurseries and habitats for adults of the main commercial fish species in the CGSM. Seascape habitats and fringe/riverine mangroves must be conserved in tropical deltas to promote not only nurseries but also fish lifecycles.
... Vertimientos de residuos orgánicos e inorgánicos, explotación minera, y alta demanda turística, son actividades recurrentes en la ribera del río Gaira, en el corregimiento de Minca, Galardonado como patrimonio ambiental. Actividades atropogénicas que deterioran los sistemas acuáticos, generando cambios en la calidad del agua, disminución significativa de la ictiofauna y en últimas afectando directamente su biodiversidad (8,9). Los cambios significativos de temperatura, concentración de oxígeno disuelto, aumento de salinidad y concentraciones de iones hidrógeno, por acción antropogénica, son adyuvantes para la presencia de parásitos, lo cual contribuye también a la disminución de la densidad poblacional de peces, (10,11). ...
Article
Full-text available
Objective. To determine the prevalence of helminth infection in Trichomycterus nigromaculatus captured in environments defined from the physicochemistry of the Gaira River, in Minca, Sierra Nevada de Santa Marta, Colombia. Material and Methods. We collected 476 specimens of T. nigromaculatus covering both climatic periods of the area, which were dissected to analyze the visceral cavity. Isolated parasites were fixed in 10% formalin for subsequent clarification. The specimens were identified by observation of adult stages under a stereoscopic microscope after clarification. Results. Specimens were found exclusively from the genus Spirocamallanus (Nematoda), the species Spirocamallanus sp. parasitic prevalence ranged from 0% in August to 28.57% in April with an abundance of 1.09 worms/host. Environmental parameters such as dissolved oxygen (Mean:5.65 mg. L-1, Max:7.5 mg. L-1, Min:4.41 mg. L-1); pH (Mean:7.2, Max: 9.3, Min: 5.7) and conductivity (Mean:72.82 µs.cm-1, Max: 123.7 µs.cm-1, Min: 40 µs.cm-1) presented statistically significant differences, the environment is eutrophicated. Conclusions. Spirocamallanus sp. were described in the areas of presence of the parasitic association in T. nigromaculatus, which constitutes a new record for the Colombian Caribbean and an extension of the geographic distribution and host range of the nematode.
Article
Full-text available
Freshwater fish migrations are an important natural process. All main river basins in South America have potamodromous fish that migrate upstream to spawn. Therefore, these species withstand fisheries and are socially, economically, and ecologically important. Hydropower dams cause one of the main threats to these fish’s survival. Hydropower is the main source of low-carbon electricity in South America, where the most diverse and endemic riverine fish fauna inhabit. However, hydropower development rarely considers spawning areas or cumulative impacts in fish migratory routes at a macro-basin scale in their environmental impact assessment (EIA) studies. In the present case study conducted in the Magdalena basin in Colombia, a distribution model of potential spawning areas of migratory fish species was developed. The objective of the current research is to demonstrate the potential use of early planning tools at the macro-basin scale to ensure that freshwater ecosystems remain functional in supporting fish migrations. Potential spawning areas for 15 migratory fish species were determined using ichthyoplankton sampling records, embryonic and larval time development, water velocity, and average flow time estimations. Our basin-wide model calculated spawning areas for all of the identified species in available ichthyoplankton samples, using available data on the duration for larval and embryonic development. The proposed model estimated the potential impacts of projected hydropower development in the Magdalena basin and revealed spawning grounds encompassing 11,370 km of rivers, spanning Strahler orders three to eight, which represented 11.2% of the entire river network. These areas overlapped with 80 hydropower projects (56.7% of the total), with a projected 45.0% loss experienced in reproduction areas for potamodromous species. Management measures to promote freshwater fish species conservation must avoid river fragmentation and critical habitat loss, while promoting habitat connectivity. This model provides a solution to analyze fragmentation impacts from hydropower dam development in data-limited basins. It supports science-based decision-making for choosing dam location arrangements that minimize impacts (connectivity and reproductive habitat loss), while ensuring that rivers continue to support migratory fish for better conservation and food security outcomes.
Chapter
Fish are hosts to symbiotic bacteria that form diverse communities, which play key functions for their host immunity, nutrition, development, and physiology. Numerous studies documented the existence of these bacterial communities in the guts, skin mucus, and gills of Amazonian fish. Dominated by Betaproteobacteria, Amazonian fish microbiotas play critical roles for their host, notably in the modulation of ionoregulatory processes, which enable fish to thrive in physiologically challenging acidic and ion-poor blackwater found throughout the Amazonian basin. In this report, we detail the composition and roles of Amazonian fish microbial symbionts, and we discuss their sensitivity to various host- and environment-specific factors such as host genotype, parasitism level, diet, and environmental physicochemistry and bacterioplankton composition. All these factors will be affected by future anthropogenic perturbations such as deforestation, dam construction, riverine agriculture, mining, oil exploitation, and climate change. Downstream effects on fish microbiotas are suspected to include a dysbiosis, an increase in the abundance of pathogenic bacteria, a shift in community diversity, and a perturbation of the equilibrium in fish-microbiota-parasite interactions. We conclude that Amazonian fish can instantly acquire adaptive functions via the recruitment of new microbial symbionts, which could benefit their ability to cope with present and future threats.
Article
Full-text available
The introduction of non-native species to a new environment poses a threat to local biological diversity, causing instability in the functioning of the ecosystem. The ecological effects caused by these species have been scarcely documented in the Magdalena basin. By studying predator–prey interactions, we characterized the trophic niche of three non-native species (Cyprinus carpio, Micropterus salmoides, and Oncorhynchus mykiss) that dominate a high Andean reservoir in the Magdalena basin. This study allows us to understand their specific feeding behaviors and how these behaviors facilitate their establishment in the reservoir. We evaluated the diversity of the prey they consume, their feeding strategy, and possible differences in the feeding scheme. Forty individuals were analyzed, with the highest representation of M. salmoides with 17 individuals, followed by C. carpio (13 individuals), and finally O. mykiss with 10 individuals. We identified twenty categories of food as prey for these species, with aquatic invertebrates and vegetation material being the predominant prey. The analysis of stomach contents in these samples suggested that they are representative for determining specialized or generalist feeding strategies. There were no differences in the number of prey items consumed by these three species. The analysis revealed that the feeding strategies are specific for each species. There was no overlap in the diet of C. carpio with the other two species, however, the composition of the diet is similar between M. salmoides and O. mykiss. Analyzing the diet of these non-native fish provides a useful tool for describing trophic interactions in this aquatic environment. Our results contribute information on the existing interactions amongst non-native species in the Magdalena basin, which is important for the development of strategies to manage and mitigate their impact.
Article
Full-text available
En este trabajo se discute la bioecología del silúrido Pimelodus grosskopfii del embalse de Betania en la parte alta del río Magdalena. La construcción del embalse, en la confluencia con el río Yaguará, separó la comunidad íctica del río Magdalena. La población de P. grosskopfii que quedó en el embalse y aguas arriba, principalmente en el brazo del río Magdalena, se está reproduciendo. De la muestra colectada de 152 adultos, 121 fueron hembras (80.1 %) y 31 machos (19.9%). Esta proporción se desvía significativamente de la relación 1:1. El capaz se reproduce en el área entre octubre y marzo. Su dieta consiste principalmente de insectos de origen alóctono, especialmente Formicidae, y material vegetal.
Article
Full-text available
Los cambios que tiene la biota que habita los cauces aguas abajo de las presas han sido objeto de numerosos estudios pero pocos se han focalizado a conocer los gradientes de recuperación aguas abajo de la presa e incluso la influencia de la estacionalidad en el pulso de caudal en este proceso. Desde el año 2000 la empresa de generación de energía Isagen S.A. E.S.P. ha venido monitoreando algunas características emergentes de la comunidad de especies de peces en la cuenca baja del río La Miel (cuenca del río Magdalena), aguas abajo de la presa para conocer la respuesta de la ictiofauna ante las nuevas condiciones ambientales. Con base en estos monitoreos se verificaron las hipótesis de que existe un gradiente de recuperación en las características del ensamblaje a lo largo del eje longitudinal, en dirección descarga de turbinas – desembocadura al río Magdalena, y que elevados valores en la dominancia estuvieron determinados por la llegada de especies migratorias al sitio de la descarga durante el periodo hidrológico de aguas bajas. Finalmente, se plantea la necesidad de considerar la ubicación de una presa teniendo en cuenta la posibilidad de que afluentes próximos aguas abajo amortigüen la influencia de la presa y de la operación de la central hidroeléctrica
Article
Full-text available
La asociación de peces fue estudiada en la Laguna de Cachimbero en diferentes momentos pluviométricos. Las capturas fueron realizadas en cuatro sitios; en cada uno de ellos se muestreo las zonas litoral y pelágica. Fueron capturadas con redes de espera: 23 especies de peces, 1.372 individuos y un peso total de 96.160,28 g. Las especies Caquetaia kraussii, Cyphocharax magdalenae, Hoplias malabaricus, Pimelodus blochii, Prochi-lodus magdalenae y Trachelyopterus insignis fueron las más importantes en abundancia y biomasa. La mayoría de las especies fueron capturadas en zonas litorales y en sitios de muestreo más próximos a los tributarios del humedal y del canal de salida al Río Magdalena y el Caño Cachimbero. La Captura por Unidad de Esfuerzo total (cpue, g/m2) fue diferente entre las zonas litoral y pelágica y entre sitios de muestreo. Los valores de diversidad no superaron en ningún caso a 0,8 bits. La equidad alcanzó valores significativamente altos en algunos muestreos. Cyphocharax magdalenae,Pimelodus blochii y Caquetaia kraussii fueron las especies más importantes en la asociación espacio-temporal. No se encontró una relación significativa entre las características del medio y la asociación de especies.
Article
Full-text available
Se colectaron 355 individuos de Prochilodus magdalenae provenientes de las capturas realizadas por los pescadores artesanales de las ciénagas de Tumaradó, ubicadas en la cuenca baja del río Atrato (Chocó), Colombia, dentro del Parque Nacional Natural Katios. Las colectas se realizaron entre julio y diciembre de 2004, durante el periodo de aguas altas. Las tallas de captura variaron entre 190-380 mm de longitud estándar (LE); aunque no se observaron diferencias significativas entre los meses de muestreo, en el mes de diciembre se registraron los individuos de mayor talla. Las proporciones sexuales mostraron diferencias significativas, predominando las hembras en todos los meses. La abundancia de individuos maduros, la relación gonadosomática, el factor de condición y el coeficiente de alometría evidencian que la época reproductiva de la especie en el bajo Atrato comienza entre diciembre y julio. El número de ovocitos promedio por hembra fue de 52.698; los diámetros presentaron un amplio rango de variación en los meses de muestreo. 22,25% de las capturas se encontraron por debajo de la talla mínima de captura reglamentaria.
Article
Full-text available
Los lagos someros presentes en los planos de inundación de sistemas fluviales tropicales son considerados como ambientes que ofrecen alimento y protección a los peces, en especial en las etapas de desarrollo inicial en la ontogenia de los individuos. Debido a la fuerte influencia que tiene el pulso de inundación sobre estos ambientes, algunos momentos son críticos (e. g., fuertes estiajes) para la fauna íctica. Basados en el análisis del factor de condición k y de la relación gonadosomática (RGS) de algunas especies de peces en la ciénaga de Ayapel (Córdoba), Colombia, y en la oferta de alimento y hábitat para la ictiofauna durante diferentes periodos hidrológicos entre los años 2004 y 2005, se encontró que el bienestar y la reproducción de las especies estuvieron asociados con la oferta de alimento y hábitat en el sistema. Y estos, a su vez fueron determinados por el cambio en el volumen de agua almacenado en la ciénaga.
Article
Full-text available
RESUMEN Objetivo. Evaluar el efecto de dos inductores hormonales en la reproducción inducida de nicuro Pimelodus blochii. Materiales y métodos. Para los procesos experimentales fueron utilizados adultos sexualmente maduros, sometidos a tres tratamientos aplicados vía intramuscular, en dosis única de 0.25 mL/kg Ovaprim® (OVAP) (T1), 0.5 mL/kg de OVAP (T2) y 6.25 mg/kg de Extracto de Hipófisis de Carpa (EHC) (T3), para este último tratamiento la inyección fue dividida en 20 y 80%, con un intervalo de 12 h entre aplicaciones. Previo a la extracción de los gametos, los animales fueron tranquilizados por inmersión en una solución de Metanosulfonato de Tricaina (90 mg/L). El desempeño reproductivo fue evaluado mediante el índice de ovulación (hembras ovuladas/hembras tratadas), fecundidad absoluta (Fa) (ovocitos/hembra), fecundidad relativa (Fr) en función del número de ovocitos desovados por gramo de peso. La fecundación se realizó en seco y seis horas post-fecundación (HPF) se determinó la tasa de fertilidad. Resultados. La ovulación (ºh) para el T1 fue a las 297.1±30.0, T2 294.6±32.9 y T3 247.3±13.1 ºh. En todos los tratamientos se obtuvieron hembras ovuladas, donde los mayores índices de ovulación fueron obtenidos con Ovaprim® (T1 y T2) con 36.4 y 50%, respectivamente. Las tasas de fecundación obtenidas fueron mayores a un 50%, para el tratamiento 1 y 2, con valores de 74.5 y 32.7%, respectivamente. Conclusiones. El uso de inductores hormonales puede ser efectivo para garantizar la reproducción inducida del nicuro, en dosis única de 0.25 y 0.5 mL/kg de Ovaprim®.