Content uploaded by Matt R Cross
Author content
All content in this area was uploaded by Matt R Cross on Jul 09, 2016
Content may be subject to copyright.
OPTIMAL LOAD PROFILING FOR
MAXIMIZING POWER IN SLED
RESISTED SPRINTING
Matt R. Cross, MSpEx
Matt Brughelli, PhD
Pierre Samozino, PhD
Jean-Benoît Morin, PhD
Improving acceleration
How do we effectively train sprint acceleration?
Horizontal POWER = Key
•Physical + Technical (e.g. Morin & Rabita 2016)
•Optimized increase = unknown…
Resisted'sprints
‘The'Big'3’
UL'sprints
Eccentrics
?
! " # $ %
Resisted sprinting
•Specific horizontal overload stimulus
•Common + easy to implement (e.g. sleds)
Basis for loading prescription
•‘Optimal’ = max load without kinematic disruption
(i.e. <12.6% BM or ~10% vDec) (Alcaraz 2006; Lockie 2010)
•‘Heavier’ = better acc. stimulus? (Petrakos 2016)
•No current kinetic basis for
resisted sprint prescription
OPTIMIZING'HORIZONTAL'POWER
‘Optimal profiling’ for power
= Determining kinetic conditions
which maximize power
(e.g. Sargeant 1984; Linosier 1996)
Assess using multiple trials
•Jumps/sprints with ↑load
Find optimal conditions + training load
•Use load to train & maximize power
Previous research & studies
•Cycling, jumping, treadmill sprinting
•No research for over-ground sprinting
Requires practical training tool
RESEARCH QUESTIONS
1. Can FvP relationships be
profiled using multiple sled
sprints?
2. What is the optimal load that
maximizes power?
3.
?
Soccer
Football
vs.
& " # $ %
# " ' $ ( ) #
*+,- ) #
.
Assessment of power at vmax
assumed zero
Furusawa 1927
/0$ #
1
234 5 ) /0467 5
€90
Equipment
•Common sled + harness
•Radar for assessing vmax
Procedures
•Recreational (N=12) +
Sprinters (N=15)
•6-7 sprints, 5 min rest
•Progressive loading:
0-120% of BM
•+20% BM increments until
>50% decrement in UL vmax
•Variable distance: 20-45 m
Data analysis
888888888889:;<
=>" #
*+,- ) #.
&>" %?*@ $ #A
Individual composite
relationships compiled
•Fv = Least square linear
•Pv = 2nd order polynomial
•#B, %B8C8!
?*@ calculated
•=DEF, 9DEF8C8G-HI
Statistical processes
•MBIs: ES±90% CIs, likelihood
•Reliability: ICC, CV% + standardized change (ES)
Calculated for each
trial & plotted
Results
The method WORKS
•FvP relationships well fitted with linear &
poly. regressions
•Good test-retest reliability (ICC=0.73-0.97;
CV=1.0-5.4%, trivial-small)
R2≥0.977
P<0.001
!"#$%&'()*
à
&')"+*,)&
%B(m·s-1
)
8.35
±0.38 17% v. large***
9.75
±
0.36
#B(N·kg-1
)
6.6 ±0.5 9% moderate** 7.3 ±0.7
!
?*@ (W·kg-1
)
13.8 ±1.5 27% v. large*** 17.4 ±1.8
#-HI (N·kg-1
)
3.4 ±0.3 7% moderate*3.6 ±0.4
%-HI (m·s-1
)
4.19
±0.19 17% V. l arg e***
4.90
±
0.18
G-HI
(kg)
64 ±11 -1% 64 ± 7
G-HI
%BM
78 ± 6 5% small* 82 ± 8
*likely; **very likely; ***extremely likely
Lopt ='46-82'kg
-./.-0%12%3!444
-.5.60 785.-0
Summary
•Optimal loading for max
power can be profiled with
sleds
•Loads appear individualized and greater
magnitudes than used in the literature
>69% vs. <42.6% BM
our findings current research*
Practical applications
•If aiming to ↑'horizontal power…
‘heavy’loads may provide greater stimulus
•NOTE: Technique not considered
àLongitudinal effects of training
need to be assessed
•FRICTION IS KEY vs. vs.
…So'what…?
Training using optimal load
•Test on each training surface
•Build to vmax
•HOLD for extended period
e.g. 15m acc. àhold for 15m
More coming soon…
•In review & in prep. studies:
àProof of concept
àFriction experiments
à‘Simple’ method for
assessing optimal load
àTraining studies…
Single'vs.'multi.
9,& þ
Acknowledgements
Coaches + Athletes
SKIPP group @AUT
Supervisors + Colleagues
Jean-Benoit Morin
Pierre Samozino
Matt Brughelli
Scott R. Brown
mcross@aut.ac.nz
@GearsetCross
cross.matt.r
Matt_Cross2
Masters thesis: AUT Summons (Matt R. Cross)
Thank'you!!
References:
Alcaraz, P. E., Palao, J. M., & Elvira, J. L. (2009). Determining the optimal load for resisted
sprint training with sled towing. Journal of Strength and Conditioning Research, 23(2), 480-485.
doi:10.1519/JSC.0b013e318198f92c
Linossier, M. T., Dormois, D., Fouquet, R., Geyssant, A., & Denis, C. (1996). Use of the force-
velocity test to determine the optimal braking force for a sprint exercise on a friction-loaded
cycle ergometer. European Journal of Applied Physiology and Occupational Physiology, 74(5),
420-427. doi:10.1007/bf02337722
Lockie, R. G., Murphy, A. J., & Spinks, C. D. (2003). Effects of resisted sled towing on sprint
kinematics in field-sport athletes. Journal of Strength and Conditioning Research, 17(4), 760-
767. doi:10.1016/s1440-2440(02)80129-3
Morin, J. B., Slawinski, J., Dorel, S., de Villareal, E. S., Couturier, A., Samozino, P., Brughelli,
M., & Rabita, G. (2015). Acceleration capability in elite sprinters and ground impulse: Push
more, brake less? Journal of Biomechanics, 48(12), 3149-3154.
doi:10.1016/j.jbiomech.2015.07.009
Petrakos, G., Morin, J. B., & Egan, B. (2016). Resisted sled sprint training to improve sprint
performance: A systematic review. Sports Medicine, 46(3), 381-400. doi:10.1007/s40279-015-
0422-8
Rabita, G., Dorel, S., Slawinski, J., Saez-de-Villarreal, E., Couturier, A., Samozino, P., & Morin,
J. B. (2015). Sprint mechanics in world-class athletes: a new insight into the limits of human
locomotion. Scandinavian Journal of Medicine & Science in Sports, 25(5), 583-594.
doi:10.1111/sms.12389
Sargeant, A. J., Dolan, P., & Young, A. (1984). Optimal velocity for maximal short- term
(anaerobic) power output in cycling. International Journal of Sports Medicine, 5(supplement 1),
124-S125. doi:10.1055/s-2008-1025973
120%
80%
40%
UL
%-HI
G-HI*
Load'(kg)
Velocity' (m.s-1)
0.5·vmax
~1.5%'bias