Article

Disturbance of zinc and glucose homeostasis by methyl tert-butyl ether (MTBE); evidence for type 2 diabetes

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

1. The prevalence of diabetes and the other metabolic disorders has noticeably increased worldwide. A causal link between increasing risk of type 2 diabetes and exposure to environmental pollutants has been reported. 2. We hypothesized that exposure to methyl tert-butyl ether (MTBE), an oxygenate additive to gasoline would hinder zinc and glucose homeostasis in rats. 3. Male Sprague–Dawley rats received MTBE in drinking water for 90 days. At the end of the treatment, pancreas and blood samples were collected for biochemical and molecular examinations. Expression of four candidate genes, including Insulin1, Insulin2, MT1A, SLC30A8 by Real-Time Quantitative PCR (Q-PCR) as well as biochemical parameters, including fasting blood glucose (FBS), triglycerides (TG), cholesterol (CHO), low-density lipoprotein (LDL), high-density lipoprotein (HDL), copper (Cu2+) and calcium (Ca2+) levels as well as High-sensitive C-reactive protein were assessed as endpoints. 4. This study suggested that MTBE exposure can be associated with disruption in zinc homeostasis and glucose tolerance.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Two typical petrochemicals, propylene oxide and methyl tert-butyl ether (PO/MTBE), have been widely used as oxygenating alternatives of lead tetraethyl to reduce carbon monoxide released in vehicle exhaust gases, and consequently, more than 25 million tons MTBE are produced every year [4]. It has been reported that MTBE poses serious risks to human health [5,6]. Therefore, the MTBE containing petrochemical wastewater produced during PO/MTBE production has to be treated before emitting it to the municipal sewage system. ...
Article
One industrial scale plant has been constructed for annual treatment of 657,000 m³ real petrochemical wastewater of 4649 ± 651 mg/l COD and more than 50 mg/l petrochemicals. The plant system is divided into four parts, and the treatment process mainly functions in a 2200 m³ anaerobic expanded granular sludge bed (EGSB) bioreactor and a 10,000 m³ aerobic activated sludge (AS) bioreactor with the hydraulic retention time (HRT) of 62.8 h and 133.3 h, respectively. The plant has been successfully operated for more than 450 days, and the overall COD and petrochemical removal efficiencies of the plant are 85.6 ± 2.5% and 81.5 ± 4.8%, respectively. The removal efficiency of the aerobic AS bioreactor was higher than that of the anaerobic EGSB bioreactor, and most COD and petrochemicals were removed in the aerobic AS bioreactor. Further microbial diversity analysis revealed that the dominant microbes in the EGSB and AS bioreactors were assigned to Proteobacteria and Firmicutes and 4 dominant OTUs related with COD or petrochemicals removal were enriched in the bioreactors, showing that the microbial communities had been adapted to the petrochemical wastewater treatment. Based on the results, the newly built industrial plant exhibited good performance in petrochemical wastewater treatment and enriched microbes towards petrochemical wastewater treatment during operation. This strategy also has potential applications for other industrial wastewater treatment in the future.
Article
The biosafety of methyl tertiary-butyl ether (MTBE), mainly used as a gasoline additive, has long been a contentious topic. In addition to its routine toxicities, MTBE has been demonstrated to disrupt glucose and lipid metabolism and contribute to the development of type 2 diabetes as well as obesity. As one of the morbidities related to dyslipidemia, atherosclerosis is worthy of being investigated under MTBE exposure. Since foam cells derived from macrophages play pivotal roles during atherosclerosis development, we studied the effects of MTBE on macrophages in vitro and assessed the effect of MTBE on atherosclerosis plaque formation with the ApoE−/− mouse model in vivo for the first time. Our results demonstrated that exposure to MTBE at environmentally relevant concentrations decreased the expression of ABCA1 and ABCG1, which are responsible for macrophage cholesterol efflux, at both mRNA and protein levels in THP-1 macrophages. Consequently, treatment with MTBE inhibited the transport of cholesterol from macrophages to High-density lipoprotein. ApoE−/− mice exposed to MTBE at environmentally relevant concentrations (100, 1000 μg/kg) displayed significant increases in lesion area in the aorta and aortic root compared to vehicle-treated ones. Further analysis indicated that MTBE exposure enhanced the macrophage-specific marker Mac-2 contents within plaques in the aortic root, implying that MTBE could promote macrophage-derived foam cell formation and thus accelerate atherosclerosis plaque formation. We for the first time demonstrated the pro-atherogenic effect of MTBE via eliciting disruption of macrophage cholesterol efflux and accelerating foam cell formation and atherosclerosis plaque development.
Article
Methyl tert-butyl ether (MTBE), as a widely used gasoline additive, is suspected of being environmentally toxic. MTBE accumulates mainly in adipose tissue, but its effect on obesity or obesity-related metabolic disorders has not been well understood yet. Therefore, we examined the effect of MTBE on the adipose function and the related metabolic processes with both 3T3-L1 cell line and C57BL/6J mice model. We found that exposure to MTBE at the environmental relevant concentration (100 μmol/L) could significantly induce differentiation of preadipocyte and disturb insulin-stimulated glucose uptake of mature adipocyte. The in vivo observation in male mice showed a positive correlation of visceral white adipose tissue (vWAT) expansion and cell size increase with MTBE treatment in 14 weeks. Glucose tolerance and insulin sensitivity tests demonstrated that MTBE at 1000 μg/(kg·day) disturbed the systemic glucose metabolism in a gender-specific manner, which might be partly attributed to the alterations of gut microbiota community at genus level with respect to Akkermansia, Clostridium XlVb, and Megamonas. In summary, our study characterized the effect of MTBE on adipose tissue function and glucose homeostasis in vitro and in vivo, and revealed that systemic disorders of the glucose metabolism might be modulated by the related gut microbiota.
Article
Full-text available
1. The prevalence of diabetes and the other metabolic disorders has noticeably increased worldwide. A causal link between increasing risk of type two diabetes and exposure to environmental pollutants has been reported. 2. We hypothesized that exposure to methyl tert-butyl ether (MTBE), an oxygenate additive to gasoline would hinder zinc and glucose homeostasis in rats. 3. Male Sprague-Dawley rats were received MTBE in drinking water for 90 days. At the end of treatments, pancreas and blood samples were collected for biochemical and molecular examinations. Expression of four candidate genes, including Insulin1, Insulin2, MT1A, SLC30A8 by Real-Time Quantitative PCR (Q-PCR) as well as biochemical parameters, including fasting blood glucose (FBS), triglycerides (TG), cholesterol (CHO), low-density lipoprotein (LDL), high-density lipoprotein (HDL), copper (Cu2+) and calcium (Ca2+) levels as well as High-sensitive C-reactive protein were assessed as endpoints. 4. This study suggested that MTBE exposure can be associated with disruption in zinc homeostasis and glucose tolerance.
Article
Full-text available
1. Methyl tert-butyl methyl ether (MTBE) is commonly used as an octane booster and oxygenate additive to gasoline. The assumed toxic effects of MTBE on human health are a matter of great debate. Exposure to MTBE has been shown to induce oxidative damage and no mechanistic explanation is available so far. Our goals were to determine whether MTBE is a mitochondrial toxicant, if so, what mechanism(s) is involved. 2. Male Sprague-Dawley rats were received MTBE in drinking water for 3 months. At the end of treatments, animals were killed, liver and blood samples were collected for biochemical and histopathological studies, and oxidative stress biomarkers. The rat liver mitochondria were isolated and several mitochondrial indices were measured. 3. We found that zinc plasma levels were remarkably declined with MTBE and N, N, N′, N′-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN; a zinc chelator) exposure. MTBE induced oxidative damage and caused mitochondrial dysfunctions in rats. Supplementation with zinc was able to protect against MTBE-induced cellular and sub-cellular toxicity. 4. Our results demonstrated that long-term exposure to MTBE is associated with zinc deficiency, oxidative stress, and mitochondrial energy failure in rat.
Article
Full-text available
Aims/hypothesis: Mitochondria-associated endoplasmic reticulum membranes (MAMs) are regions of the endoplasmic reticulum (ER) tethered to mitochondria and controlling calcium (Ca(2+)) transfer between both organelles through the complex formed between the voltage-dependent anion channel, glucose-regulated protein 75 and inositol 1,4,5-triphosphate receptor (IP3R). We recently identified cyclophilin D (CYPD) as a new partner of this complex and demonstrated a new role for MAMs in the control of insulin's action in the liver. Here, we report on the mechanisms by which disruption of MAM integrity induces hepatic insulin resistance in CypD (also known as Ppif)-knockout (KO) mice. Methods: We used either in vitro pharmacological and genetic inhibition of CYPD in HuH7 cells or in vivo loss of CYPD in mice to investigate ER-mitochondria interactions, inter-organelle Ca(2+) exchange, organelle homeostasis and insulin action. Results: Pharmacological and genetic inhibition of CYPD concomitantly reduced ER-mitochondria interactions, inhibited inter-organelle Ca(2+) exchange, induced ER stress and altered insulin signalling in HuH7 cells. In addition, histamine-stimulated Ca(2+) transfer from ER to mitochondria was blunted in isolated hepatocytes of CypD-KO mice and this was associated with an increase in ER calcium store. Interestingly, disruption of inter-organelle Ca(2+) transfer was associated with ER stress, mitochondrial dysfunction, lipid accumulation, activation of c-Jun N-terminal kinase (JNK) and protein kinase C (PKC)ε and insulin resistance in liver of CypD-KO mice. Finally, CYPD-related alterations of insulin signalling were mediated by activation of PKCε rather than JNK in HuH7 cells. Conclusions/interpretation: Disruption of IP3R-mediated Ca(2+) signalling in the liver of CypD-KO mice leads to hepatic insulin resistance through disruption of organelle interaction and function, increase in lipid accumulation and activation of PKCε. Modulation of ER-mitochondria Ca(2+) exchange may thus provide an exciting new avenue for treating hepatic insulin resistance.
Article
Full-text available
Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case-control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing beta-cells, and two linkage disequilibrium blocks that contain genes potentially involved in beta-cell development or function (IDE-KIF11-HHEX and EXT2-ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.
Article
Full-text available
Diabetes mellitus is increasing at an alarming rate and has become a global challenge. Insulin resistance in target tissues and a relative deficiency of insulin secretion from pancreatic β-cells are the major features of type 2 diabetes (T2D). Chronic low-grade inflammation in T2D has given an impetus to the field of immuno-metabolism linking inflammation to insulin resistance and β-cell dysfunction. Many factors advocate a causal link between metabolic stress and inflammation. Numerous cellular factors trigger inflammatory signalling cascades, and as a result T2D is at the moment considered an inflammatory disorder triggered by disordered metabolism. Cellular mechanisms like activation of Toll-like receptors, Endoplasmic Reticulum stress, and inflammasome activation are related to the nutrient excess linking pathogenesis and progression of T2D with inflammation. This paper aims to systematically review the metabolic profile and role of various inflammatory pathways in T2D by capturing relevant evidence from various sources. The perspectives include suggestions for the development of therapies involving the shift from metabolic stress to homeostasis that would favour insulin sensitivity and survival of pancreatic β-cells in T2D.
Article
Full-text available
The serum concentrations of copper (Cu) and zinc (Zn) are strictly regulated by compensatory mechanisms that act to stabilize them within certain ranges of nutritional intake. However, there are mechanisms that are built to decrease serum concentration of Zn and to increase serum concentration of Cu in the presence of inflammatory conditions, so that a common feature of several age-related chronic diseases is an increase of the Cu to Zn ratio (CZr). Although the clinical potential of CZr has been extensively investigated, few authors addressed the mechanisms that mainly contribute to the increase of CZr in serum during aging, which signals drive this change and how cells respond to these changes. This review focuses on this topic and discusses how an increase of CZr during aging could reflect the homeostatic shade from a general systemic "growth and reproduction" status typical of juvenile age to a "repair and maintenance" status that evolved to preserve health status during old age. Copyright © 2015. Published by Elsevier Ireland Ltd.
Article
Full-text available
Recent studies in both humans and animals suggest that air pollution is an important risk factor for type 2 diabetes mellitus (T2DM). However, the mechanism by which air pollution mediates propensity to diabetes is not fully understood. While a number of epidemiologic studies have shown a positive association between ambient air pollution exposure and risk for T2DM, some studies have not found such a relationship. Experimental studies in susceptible disease models do support this association and suggest the involvement of tissues involved in the pathogenesis of T2DM such as the immune system, adipose, liver, and central nervous system. This review summarizes the epidemiologic and experimental evidence between ambient outdoor air pollution and T2DM. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Article
Full-text available
Objective Though exposure to organochlorine pollutants (OCPs) is considered a risk factor for type 2 diabetes (T2DM), epidemiological evidence for the association remains controversial. A systematic review and meta-analysis was applied to quantitatively evaluate the association between exposure to OCPs and incidence of T2DM and pool the inconsistent evidence. Design and Methods Publications in English were searched in MEDLINE and WEB OF SCIENCE databases and related reference lists up to August 2013. Quantitative estimates and information regarding study characteristics were extracted from 23 original studies. Quality assessments of external validity, bias, exposure measurement and confounding were performed, and subgroup analyses were conducted to examine the heterogeneity sources. Results We retrieved 23 eligible articles to conduct this meta-analysis. OR (odds ratio) or RR (risk ratio) estimates in each subgroup were discussed, and the strong associations were observed in PCB-153 (OR, 1.52; 95% CI, 1.19–1.94), PCBs (OR, 2.14; 95% CI, 1.53–2.99), and p,p′-DDE (OR, 1.33; 95% CI, 1.15–1.54) based on a random-effects model. Conclusions This meta-analysis provides quantitative evidence supporting the conclusion that exposure to organochlorine pollutants is associated with an increased risk of incidence of T2DM.
Article
Full-text available
Type 2 diabetes (T2D) is a complex metabolic disorder characterized by hyperglycemia in the context of insulin resistance, which precedes insulin deficiency as a result of β-cell failure. Accumulating evidence indicates that β-cell loss in T2D results as a response to the combination of oxidative stress and endoplasmic reticulum (ER) stress. Failure of the ER's adaptive capacity and further activation of the unfolded protein response may trigger macroautophagy (hereafter referred as autophagy) as a process of self-protection and inflammation. Many studies have shown that inflammation plays a very important role in the pathogenesis of T2D. Inflammatory mechanisms and cytokine production activated by stress via the inflammasome may further alter the normal structure of β-cells by inducing pancreatic islet cell apoptosis. Thus, the combination of oxidative and ER stress, together with autophagy insufficiency and inflammation, may contribute to β-cell death or dysfunction in T2D. Therapeutic approaches aimed at ameliorating stress and inflammation may therefore prove to be promising targets for the development of new diabetes treatment methods. Here, we discuss different mechanisms involved in stress and inflammation, and the role of antioxidants, endogenous and chemical chaperones, and autophagic pathways, which may shift the tendency from ER stress and apoptosis toward cell survival. Strategies targeting cell survival can be essential for relieving ER stress and reestablishing homeostasis, which may diminish inflammation and prevent pancreatic β-cell death associated with T2D.
Article
Full-text available
Zinc is an essential trace element that plays a vital role in maintaining many biological processes and cellular homeostasis. Dysfunctional zinc signaling is associated with a number of chronic disease states including cancer, cardiovascular disease, Alzheimer's disease, and diabetes. Cellular homeostasis requires mechanisms that tightly control the uptake, storage, and distribution of zinc. This is achieved through the coordinated actions of zinc transporters and metallothioneins. Evidence on the role of these proteins in type 2 diabetes mellitus (T2DM) is now emerging. Zinc plays a key role in the synthesis, secretion and action of insulin in both physiological and pathophysiological states. Moreover, recent studies highlight zinc's dynamic role as a "cellular second messenger" in the control of insulin signaling and glucose homeostasis. This suggests that zinc plays an unidentified role as a novel second messenger that augments insulin activity. This previously unexplored concept would raise a whole new area of research into the pathophysiology of insulin resistance and introduce a new class of drug target with utility for diabetes pharmacotherapy.
Article
Full-text available
The ovarian reserve (number and quality of oocytes) is correlated with reproductive potential as well as somatic health, and is likely to have multiple genetic and environmental determinants. Several reproductive hormones are closely linked with the oocyte pool and thus can serve as surrogate markers of ovarian reserve. However, we know little about the underlying genes or genetic variants. We analyzed genetic variants across the genome associated with two hormonal markers of ovarian reserve, FSH and anti-Mullerian hormone, in a reproductively normal population of Caucasian (n = 232) and African American (n = 200) women, aged 25-45 years. We also examined the effects of environmental or lifestyle factors on ovarian reserve phenotypes. We identified one variant approaching genome-wide significance (rs6543833; P= 8.07 × 10⁻⁸) and several nominal variants nearby and within the myeloid-associated differentiation marker-like (MYADML) gene, that were associated with FSH levels in African American women; these were validated in Caucasian women. We also discovered effects of smoking and oral contraceptive use on ovarian reserve phenotypes, with alterations in several reproductive hormones. This work is the largest study on ovarian reserve in women of reproductive age and is the only genome-wide study on ovarian reserve markers. The genes containing or near the identified variants have no known roles in ovarian biology and represent interesting candidate genes for future investigations. The discovery of genetic markers may lead to better long-range predictions of declining ovarian function, with implications for reproductive and somatic health.
Article
Full-text available
It is well known that zinc is required in pancreatic beta-cells in the process of insulin biosynthesis and the maturation of insulin secretory granules. In fact, the zinc level in pancreatic islets is amongst the highest in the body and reduction in its levels in the pancreas has been associated with diabetes. High concentrations of zinc can also be toxic because of enhanced oxidative damage. The link between zinc, diabetes and islet dysfunction has recently been reiterated by genomewide association studies that identified an islet cell membrane zinc transporter, SLC30A8 (ZnT8), as one of the risk loci for type 2 diabetes. Here we explore the importance of both zinc and ZnT8 to islet biology and whole body glucose homeostasis.
Article
Full-text available
Zinc transporter 8 (ZnT8) has been identified as a β-cell-specific Zinc transporter expressed in insulin-secretory granules. Recent genome wide association studies indicated that Arg325Trp polymorphism of Slc30a8 encoding ZnT8 is associated with susceptibility to type 2 diabetes. As a first step towards understanding the pathogenic role of ZnT8 in diabetes, we evaluated the expression of ZnT8 in mouse pancreas. A rabbit polyclonal antibody specific to ZnT8 was raised. The raised ZnT8 antibody reacted with mouse, rat and human ZnT8 expressed in β-cells without cross-reacting with other ZnTs. ZnT8 was expressed in α-, β- and PP-cells, but not in δ-cells, in adult mouse islets. During mouse pancreas development, ZnT8 expression was detected as early as embryonic day 15.5 when β-cells started to appear in large numbers. Finally, the expression level of ZnT8 was compared with pancreas of two diabetic model mice, db/db mice and Akita mice. In both animal models of diabetes, ZnT8 expression was remarkably downregulated in the early stage of diabetes. As a conclusion, ZnT8 is expressed in multiple lineages of endocrine cells in the pancreas. Our findings suggest that downregulation of ZnT8 may be associated with impaired function of β-cells in diabetes.
Article
Full-text available
Zinc is highly concentrated in pancreatic beta cells, is critical for normal insulin storage and may regulate glucagon secretion from alpha cells. Zinc transport family member 8 (ZnT8) is a zinc efflux transporter that is highly abundant in beta cells. Polymorphisms of ZnT8 (also known as SLC30A8) gene in man are associated with increased risk of type 2 diabetes. While global Znt8 knockout (Znt8KO) mice have been characterised, ZnT8 is also present in other islet cell types and extra-pancreatic tissues. Therefore, it is important to find ways of understanding the role of ZnT8 in beta and alpha cells without the difficulties caused by the confounding effects of ZnT8 in these other tissues. We generated mice with beta cell-specific (Znt8BKO) and alpha cell-specific (Znt8AKO) knockout of Znt8, and performed in vivo and in vitro characterisation of the phenotypes to determine the functional and anatomical impact of ZnT8 in these cells. Thus we assessed zinc accumulation, insulin granule morphology, insulin biosynthesis and secretion, and glucose homeostasis. Znt8BKO mice are glucose-intolerant, have reduced beta cell zinc accumulation and atypical insulin granules. They also display reduced first-phase glucose-stimulated insulin secretion, reduced insulin processing enzyme transcripts and increased proinsulin levels. In contrast, Znt8AKO mice show no evident abnormalities in plasma glucagon and glucose homeostasis. This is the first report of specific beta and alpha cell deletion of Znt8. Our data indicate that while, under the conditions studied, ZnT8 is absolutely essential for proper beta cell function, it is largely dispensable for alpha cell function.
Article
Full-text available
This study was carried out to determine whether a short-term zinc supplementation contributes to beneficial changes in glycemic control among type 2 diabetic patients. Seventy-six diabetic subjects and 72 normal adults participated in this study. Subjects were divided into supplemented and control groups. Forty-four diabetic patients and 34 normal subjects were supplemented with 50 mg zinc daily as zinc gluconate for 4 weeks. Zinc status was assessed from fasting plasma levels and urinary excretion. The effects of zinc supplementation on fasting blood glucose, HbA(1c), insulin, and C-peptide were measured at the beginning of the study and after 4 weeks of supplementation. The changes in glycemic control indicators were compared between diabetic groups, classified by baseline HbA(1c) levels, and by diabetic duration. At baseline, the incidence of marginal zinc deficiency in the diabetic group, as determined by plasma zinc level, was approximately twice as high as in the normal adult group. The changes of HbA(1c) concentration, and fasting blood glucose following supplementation were not statistically significant in diabetic subjects. In normal subjects, a significant decrease of HbA(1c) occurred only in the zinc supplemented group. No significant changes were observed for serum insulin and C-peptide in diabetic as well as normal subjects. However, when the changes were compared by baseline HbA(1c) level, we found that diabetic subjects with HbA(1c) >/= 7.5% showed significantly improved levels of HbA(1c) and fasting glucose after Zn supplementation. While such improvement in fasting blood glucose was significant among diabetics with shorter diabetic duration, significant levels of increase in serum insulin and C-peptide were observed in zinc supplemented subjects with longer diabetic duration. Fasting blood glucose was significantly decreased, whereas serum insulin and C-peptide were increased in diabetics with marginal zinc status. Therefore, we suggest that Zn supplementation for a short-term period may improve glycemic control in diabetic patients with higher HbA(1c) levels and marginal zinc status.
Article
Full-text available
Zinc co-crystallizes with insulin in dense core secretory granules, but its role in insulin biosynthesis, storage and secretion is unknown. In this study we assessed the role of the zinc transporter ZnT8 using ZnT8-knockout (ZnT8(-/-)) mice. Absence of ZnT8 expression caused loss of zinc release upon stimulation of exocytosis, but normal rates of insulin biosynthesis, normal insulin content and preserved glucose-induced insulin release. Ultrastructurally, mature dense core insulin granules were rare in ZnT8(-/-) beta cells and were replaced by immature, pale insulin "progranules," which were larger than in ZnT8(+/+) islets. When mice were fed a control diet, glucose tolerance and insulin sensitivity were normal. However, after high-fat diet feeding, the ZnT8(-/-) mice became glucose intolerant or diabetic, and islets became less responsive to glucose. Our data show that the ZnT8 transporter is essential for the formation of insulin crystals in beta cells, contributing to the packaging efficiency of stored insulin. Interaction between the ZnT8(-/-) genotype and diet to induce diabetes is a model for further studies of the mechanism of disease of human ZNT8 gene mutations.
Article
Full-text available
Studies have demonstrated ubiquitous human exposure to persistent organic pollutants (POPs) such as p,p'-diphenyldichloroethene (DDE) and polychlorinated biphenyls (PCBs). Although there is considerable evidence that POP exposures are associated with prevalent diabetes, these studies do not establish causality because the cross-sectional study design does not allow for assessment of temporality of the exposure-disease association. Prospective studies, however, have been lacking. This study was designed to determine whether POP body burdens are related to incidence of diabetes in a cohort of Great Lakes sport fish consumers. The cohort was established in the early 1990s and followed through 2005. We tested serum for DDE and PCB congeners and assessed diabetes diagnosis, demographics, and fish consumption. Associations of diabetes with exposures were examined prospectively in participants without diabetes in 1994-1995, followed through 2005. Annual percent changes in DDE and PCB-132/153 from 1994 to 2005 were examined by diabetes status. DDE exposure was associated with incident diabetes. Incident diabetes was not associated with mono-ortho PCB-118, total PCBs, or years of sport fish consumption. Annual percent change in DDE and PCB-132/153 did not differ significantly by diabetes status. This study demonstrates an association between DDE exposure and incident diabetes. The findings of an association of DDE with incident diabetes and the lack of effect of diabetes on annual percent change in POPs do not support the hypothesis that associations of POPs with diabetes are attributable to reverse causality. Additional studies should address the biological pathways by which DDE could affect glucose homeostasis.
Article
Full-text available
Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele. Slc30a8 null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles were undertaken using standard protocols. ZnT8(-/-) mice displayed age-, sex-, and diet-dependent abnormalities in glucose tolerance, insulin secretion, and body weight. Islets isolated from null mice had reduced granule zinc content and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion, and insulin crystal dissolution, assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8(-/-) islets. Insulin processing was normal. Molecular modeling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn(2+) transport activity than W325 ZnT8 by fluorescence-based assay. ZnT8 is required for normal insulin crystallization and insulin release in vivo but not, remarkably, in vitro. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risks.
Article
Full-text available
The SLC30A8 gene codes for a pancreatic beta-cell-expressed zinc transporter, ZnT8. A polymorphism in the SLC30A8 gene is associated with susceptibility to type 2 diabetes, although the molecular mechanism through which this phenotype is manifest is incompletely understood. Such polymorphisms may exert their effect via impacting expression level of the gene product. We used an shRNA-mediated approach to reproducibly downregulate ZnT8 mRNA expression by >90% in the INS-1 pancreatic beta cell line. The ZnT8-downregulated cells exhibited diminished uptake of exogenous zinc, as determined using the zinc-sensitive reporter dye, zinquin. ZnT8-downregulated cells showed reduced insulin content and decreased insulin secretion (expressed as percent of total insulin content) in response to hyperglycemic stimulus, as determined by insulin immunoassay. ZnT8-depleted cells also showed fewer dense-core vesicles via electron microscopy. These data indicate that reduced ZnT8 expression in cultured pancreatic beta cells gives rise to a reduced insulin response to hyperglycemia. In addition, although we provide no direct evidence, these data suggest that an SLC30A8 expression-level polymorphism could affect insulin secretion and the glycemic response in vivo.
Article
Full-text available
The Slc30a8 gene encodes the islet-specific zinc transporter ZnT-8, which provides zinc for insulin-hexamer formation. Polymorphic variants in amino acid residue 325 of human ZnT-8 are associated with altered susceptibility to Type 2 diabetes and ZnT-8 autoantibody epitope specificity changes in Type 1 diabetes. To assess the physiological importance of ZnT-8, mice carrying a Slc30a8 exon 3 deletion were analysed histologically and phenotyped for energy metabolism and pancreatic hormone secretion. No gross anatomical or behavioural changes or differences in body weight were observed between wild-type and ZnT-8-/- mice, and ZnT-8-/- mouse islets were indistinguishable from wild-type in terms of their numbers, size and cellular composition. However, total zinc content was markedly reduced in ZnT-8-/- mouse islets, as evaluated both by Timm's histochemical staining of pancreatic sections and direct measurements in isolated islets. Blood glucose levels were unchanged in 16-week-old, 6 h fasted animals of either gender; however, plasma insulin concentrations were reduced in both female (approximately 31%) and male (approximately 47%) ZnT-8-/- mice. Intraperitoneal glucose tolerance tests demonstrated no impairment in glucose clearance in male ZnT-8-/- mice, but glucose-stimulated insulin secretion from isolated islets was reduced approximately 33% relative to wild-type littermates. In summary, Slc30a8 gene deletion is accompanied by a modest impairment in insulin secretion without major alterations in glucose metabolism.
Article
While insulin has long been known to modulate intracellular metabolism by altering the activity or intracellular location of various enzymes, it is only in the past 10 years that the regulation of gene expression by insulin has been recognized as a major action of this hormone. This review principally focuses on the regulation of gene transcription by insulin, although recent progress in the understanding of insulin-regulated mRNA stability and translation is also summarized. The identification of cis-acting elements and associated trans-acting factors through which insulin either increases or decreases the transcription of specific genes is reviewed in detail. Recent advances in the understanding of the mechanisms of insulin signaling are discussed in the context of insulin-regulated gene transcription, and emphasis is placed on the gaps that remain between the upstream signaling molecules and the downstream trans-acting factors whose binding/transactivation potential is ultimately regulated. Finally, potential gene expression defects that may contribute to the pathophysiology of non-insulin-dependent diabetes mellitus and hypertriglyceridemia are considered.
Article
Use of the real-time polymerase chain reaction (PCR) to amplify cDNA products reverse transcribed from mRNA is on the way to becoming a routine tool in molecular biology to study low abundance gene expression. Real-time PCR is easy to perform, provides the necessary accuracy and produces reliable as well as rapid quantification results. But accurate quantification of nucleic acids requires a reproducible methodology and an adequate mathematical model for data analysis. This study enters into the particular topics of the relative quantification in real-time RT-PCR of a target gene transcript in comparison to a reference gene transcript. Therefore, a new mathematical model is presented. The relative expression ratio is calculated only from the real-time PCR efficiencies and the crossing point deviation of an unknown sample versus a control. This model needs no calibration curve. Control levels were included in the model to standardise each reaction run with respect to RNA integrity, sample loading and inter-PCR variations. High accuracy and reproducibility (<2.5% variation) were reached in LightCycler PCR using the established mathematical model.
Article
Type 2 diabetes (T2D) and insulin resistance have attracted ever-increasing attention from biomedical researchers because of astonishing increase in its prevalence. Decreased capacity of oxidative metabolism and mitochondrial dysfunction are a major contributor to the development of T2D. Recent studies indicate that alteration of Ca2+ level and downstream Ca2+-dependent signaling pathways can modulate the insulin signaling cascade, resulting in insulin resistance of  cells and adipocytes. Mitochondria and ER play an important role in the maintenance of intracellular Ca2+ homeostasis and their defects may be an etiology factor of insulin resistance and T2D. It is established that mitochondria-associated ER membranes (MAMs) are essential for efficient communication between the ER and mitochondria. Thus, the abnormalities in the structure and function of MAMs in affected tissue cells in T2D and other metabolic disorders are an important subject of study. Recently, we have demonstrated that deficiency of Cisd2, an iron-sulfur protein localized to the ER and mitochondrial outer membranes, could lead to mitochondrial dysfunction and disturbance of intracellular Ca2+ homeostasis. Moreover, we first elucidated that defects in the function of MAMs in Ca2+ uptake resulted in insulin insensitivity of adipocytes, and this scenario plays an important role in the pathogenesis of diabetes in Cisd2 knockout mice. Based on these observations we suggest that to improve the bioenergetic function of mitochondria and the function of MAMs in the maintenance of Ca2+ homeostasis is a novel strategy for the development of new therapeutics for the prevention and treatment of insulin resistance and T2D.
Article
High exposures of Vietnam veterans to 2,3,7,8-Tetrachlorodi- benzo-p-dioxin, a dioxin contained in the herbicide mixture Agent Orange, have previously been demonstrated to be associated with an increased prevalence of diabetes and hyperinsulinemia in non- diabetic subjects. Sixty-nine persons were identified who were in good health and had normal glucose levels during glucose toler- ance testing. These subjects lived within 25 miles of the Vertac/ Hercules Superfund site located in Jacksonville, Arkansas. The blood sera lipid concentrations of TCDD for the 69 subjects ranged between 2 and 94 ppt. When subjects with blood sera lipid TCDD levels in the top 10% (TCDD > 15 ppt, n 5 7) were compared to subjects with lower levels (2-15 ppt, n 5 62), there were no group differences in age, obesity, gender distribution, total lipids, or glucose levels. However, plasma insulin concentrations, at fasting and 30, 60, and 120 min following a 75 g glucose load, were significantly higher in the group with high blood TCDD levels. These finding could not be explained by other known risk factors for hyperinsulinemia. The finding of the TCDD-hyperin- sulinemia relationship is consistent with studies of Vietnam vet- erans and suggests that high blood TCDD levels may cause insulin resistance.
Article
Background: Diabetes is associated with long-term damage, dysfunction and failure of various organs, especially the eyes, kidneys, nerves, heart and blood vessels. The risk of developing type 2 diabetes increases with age, obesity and lack of physical activity. Insulin resistance is a fundamental aspect of the aetiology of type 2 diabetes. Insulin resistance has been shown to be associated with atherosclerosis, dyslipidaemia, glucose intolerance, hyperuricaemia, hypertension and polycystic ovary syndrome. The mineral zinc plays a key role in the synthesis and action of insulin, both physiologically and in diabetes mellitus. Zinc seems to stimulate insulin action and insulin receptor tyrosine kinase activity. Objectives: To assess the effects of zinc supplementation for the prevention of type 2 diabetes mellitus in adults with insulin resistance. Search methods: This review is an update of a previous Cochrane systematic review published in 2007. We searched the Cochrane Library (2015, Issue 3), MEDLINE, EMBASE, LILACS and the ICTRP trial register (from inception to March 2015). There were no language restrictions. We conducted citation searches and screened reference lists of included studies. Selection criteria: We included studies if they had a randomised or quasi-randomised design and if they investigated zinc supplementation compared with placebo or no intervention in adults with insulin resistance living in the community. Data collection and analysis: Two review authors selected relevant trials, assessed risk of bias and extracted data. Main results: We included three trials with a total of 128 participants in this review. The duration of zinc supplementation ranged between four and 12 weeks. Risk of bias was unclear for most studies regarding selection bias (random sequence generation, allocation concealment) and detection bias (blinding of outcome assessment). No study reported on our key outcome measures (incidence of type 2 diabetes mellitus, adverse events, health-related quality of life, all-cause mortality, diabetic complications, socioeconomic effects). Evaluation of insulin resistance as measured by the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) showed neutral effects when comparing zinc supplementation with control (two trials; 114 participants). There were neutral effects for trials comparing zinc supplementation with placebo for total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglycerides (2 studies, 70 participants). The one trial comparing zinc supplementation with exercise also showed neutral effects for total cholesterol, HDL and LDL cholesterol, and a mean difference in triglycerides of -30 mg/dL (95% confidence interval (CI) -49 to -10) in favour of zinc supplementation (53 participants). Various surrogate laboratory parameters were also analysed in the included trials. Authors' conclusions: There is currently no evidence on which to base the use of zinc supplementation for the prevention of type 2 diabetes mellitus. Future trials should investigate patient-important outcome measures such as incidence of type 2 diabetes mellitus, health-related quality of life, diabetic complications, all-cause mortality and socioeconomic effects.
Article
Evidence now exists supporting the hypothesis that endocrine-disrupting chemicals (EDCs) can harmfully impact glucose metabolism. Thus, EDCs are beginning to be considered important contributors to the increased incidence of diabetes, obesity, or both. The possible effect of exposure to EDCs during pregnancy on glucose homeostasis in mothers later in life is presently unknown. Here we show that several months after delivery, mothers treated with the widespread EDC bisphenol-A (BPA) during gestation, at environmentally relevant doses, exhibit profound glucose intolerance and altered insulin sensitivity as well as increased body weight. These mice presented a decreased insulin secretion both in vivo and in vitro together with reduced pancreatic β-cell mass. The proliferation capacity was decreased in association with a diminished expression of the cell cycle activators: cyclin D2 and cyclin-dependent kinase-4. In addition, the rate of β-cells apoptosis was increased as well as the expression of the cell cycle inhibitors p16 and p53. Conversely, no effects on glucose metabolism or insulin sensitivity were observed when female nonpregnant mice were treated with BPA at the same doses. Taken together, these findings reveal that BPA exposure during gestation has harmful long-term implications in glucose metabolism for the mother. This finding highlights a new window of susceptibility for EDC exposure that may be important for the development of type 2 diabetes.
Article
Systemic low-grade inflammation, as measured by high-sensitive C-reactive protein (hsCRP), may contribute to the risk of type 2 diabetes in patients with manifest arterial disease. Cohort study in 4072 patients with manifest arterial disease without diabetes. The relation between quartiles of hsCRP and type 2 diabetes was assessed with Cox regression analyses, taking age, smoking and blood pressure-lowering medication and lipid-lowering medication into account. Insulin resistance was estimated with homeostasis model of insulin resistance (HOMA-IR). In exploratory models, adjustments were performed for body mass index (BMI) and visceral and subcutaneous adipose tissue thickness. During a median follow-up of 5·0 (IQR 2·5-8·2) years, 288 subjects developed diabetes. High hsCRP was independently associated with incident diabetes (Q4 vs. Q1 males: HR 1·62; 95% CI 1·06-2·48; females: HR 3·12; 95% CI 1·57-6·21). HOMA-IR at baseline is related to hsCRP plasma levels (Q4 vs. Q1: males: β 0·27; 95% CI 0·19-0·36; females: β 0·35; 95% CI 0·22-0·48). The risk of diabetes associated with hsCRP was abolished in males (Q4 vs. 1 HR 1·23; 95% CI 0·80-1·88) and attenuated in females (Q4 vs. 1 HR 2·32; 95% CI 1·14-4·75) after adding BMI to the model, but not modified by statin use (P for interaction: 0·61). Patients with manifest arterial disease with high hsCRP plasma levels are at increased risk to develop type 2 diabetes and are more insulin resistant as compared to those with low hsCRP levels. This increase in risk is more pronounced in females than in males and is not modified by statin use.
Article
The occurrence of zinc deficiency in man remained unsuspected until the 1960s. Since then, however, our understanding of the clinical importance of human zinc deficiency has grown rapidly. Zinc depletion has been demonstrated or suggested to be responsible for a variety of clinical features, ranging from minor aberrations of normal growth patterns and subtle impairments of taste perception to life-threatening disease states. The latter have been observed most frequently as a result of an inherited defect in zinc absorption and from feeding intravenously without adding zinc to the infusates. Notable clinical features of severe zinc deficiency states include a florid acro-orificial rash, behavioural changes, poor appetite, severe disturbance of normal growth and development, impaired reproductive performance, and frequent infections associated with abnormalities of the immune system. In general, the biochemical correlates of these clinical features remain poorly defined. While the clinical and laboratory diagnosis of severe zinc deficiency states is quite straightforward, existing techniques are inadequate for the detection of sub-optimal zinc nutrition. This difficulty presents a major challenge as there is evidence that mild or moderate zinc deficiency states are quite common in certain population groups. Though there is reason for particular concern about the zinc status of some socially deprived groups, inadequate zinc intake is also a potential problem in more affluent population groups. The occurrence of zinc deficiency is frequently associated with dietary factors that have an unfavourable effect on zinc absorption, for example phytate, and with a variety of special circumstances including premature delivery. There is evidence that the absorption of zinc from human milk is especially favourable. There is an outstanding need for further research to achieve a clearer understanding of the origins, incidence and effects of human zinc deficiency.
Article
Methyltertiary-butyl ether (MTBE) is widely used in gasoline as an oxygenate and octane enhancer. The aim of this study was to evaluate the uptake, distribution, metabolism, and elimination of MTBE in humans. Ten healthy male volunteers were exposed to MTBE vapor (5, 25, and 50 ppm) on three different occasions during 2 h of light physical exercise (50 W). MTBE and the metabolitetertiary-butyl alcohol (TBA) were monitored in exhaled air, blood, and urine. Blood and urine were collected at selected time intervals, during and up to 3 days after the exposure, and analyzed by head space gas chromatography. MTBE in exhaled air was collected with sorbent sample tubes and subsequently analyzed by gas chromatography. The respiratory uptake of MTBE was rather low (42–49%), and the respiratory exhalation was high (32–47%). A relatively low metabolic blood clearance (0.34–0.52 L/h/kg) was seen compared to many other solvents. The kinetic profile of MTBE in blood could be described by four phases, and the average half-lives were 1 min, 10 min, 1.5 h, and 19 h. The post-exposure decay curve of MTBE in urine was separated into two linear phases, with average half-lives of 20 min and 3 h. The average post-exposure half-lives of TBA in blood and urine were 10 and 8.2 h, respectively. The urinary excretion of MTBE and TBA was less than 1% of the absorbed dose, indicating further metabolism of TBA, other routes of metabolism, or excretion. The kinetics of MTBE and TBA were linear up to the highest exposure level of 50 ppm. We suggest that TBA in blood or urine is a more appropriate biological exposure marker for MTBE than the parent ether itself.
Article
It is no exaggeration to claim that the 'diabetes epidemic' has become a 'runaway train' causing huge health and economic consequences, especially in the developing nations. Traditionally, the risk factors for diabetes have largely focused on genetics and lifestyle. Great emphasis is placed on lifestyle measures and finding novel pharmacological treatment options to combat diabetes, but there is increasing evidence linking environmental pollutants, especially pesticides, to the development of insulin resistance and Type 2 diabetes. Pesticide use has increased dramatically worldwide and the effects of pesticides on glucose metabolism are too significant for a possible diabetogenic link to be dismissed. The aim of this review article was to assess the links between pesticides and human diabetes with the goal of stimulating further research in this area. This article is protected by copyright. All rights reserved.
Article
Housekeeping genes are widely used as internal controls for gene expression normalization for western blotting, northern blotting, RT-PCR, etc. They are generally thought to be expressed in all cells of the organism at similar levels because it is assumed that these genes are required for the maintenance of basic cellular function as constitutive genes. However, real-time RT-PCR experiments revealed that their expression may vary depending on the developmental stage, type of tissue examined, experimental condition, and so on. To date, no histological data on their expression are available for embryonic development. In the present study, we compared the histological expression profile of two commonly used housekeeping genes, GAPDH and beta-actin, in the developing chicken embryo by using section and whole mount in situ hybridization supplemented by RT-PCR. Our results show that neither GAPDH mRNA nor beta-actin mRNA is expressed in all cell types or tissues at high levels. Strikingly, expression levels are very low in some organs. Moreover, the two genes show partially complementary expression patterns in the liver, the vascular system and the digestive tract. For example, GAPDH is more strongly expressed in the liver than beta-actin, but at lower levels in the arteries. Vice versa, beta-actin is more strongly expressed in the gizzard than GAPDH, but it is almost absent from cardiac muscle cells. Researchers should consider these histological results when using GAPGD and beta-actin for gene expression normalization in their experiments.
Article
Zinc transporters (ZnT) form an important class of zinc efflux proteins in mammals. Nine ZnT transporters, designated ZnT1-ZnT8 and ZnT10, have been identified to date. Recent reports have established that the ZnT transporters are localized to various intracellular compartments and the plasma membrane. They play essential roles in multiple biological processes and are involved in zinc-related human diseases. The ZnT transporters function as Zn(2+)/H(+) exchangers. Based on the X-ray structures of and sequence homology to bacterial homologues, they are thought to form dimers possessing one essential zinc-binding site within the transmembrane domains of each monomer, and a binuclear zinc-sensing and binding site in the cytoplasmic C-terminal region. This chapter summarizes the molecular characteristics of ZnT transporters and reviews our current knowledge of their structure, biological functions, and regulation, with the emphasis on the most recent advances. Molecular characterization of the ZnT homologues of bacteria, yeast, plant and model organisms are also described, because they have contributed to the major advances in our understanding of the ZnT protein function.
Article
Phenolic estrogen pollutants, a class of typical endocrine-disrupting chemicals, have attracted public attention due to their estrogenic activities of imitating steroid hormone 17β-estradiol (E(2)) effects. Exposure to these pollutants may disrupt insulin secretion and be a risk factor for type 2 diabetes. In this study, we investigated the direct effects of phenolic estrogen diethylstilbestrol (DES), octylphenol (OP), nonylphenol (NP), and bisphenol A (BPA) on rat pancreatic islets in vitro, whose estrogenic activities were DES>NP>OP>BPA. Isolated β-cells were exposed to E(2), DES, OP, NP, or BPA (0, 0.1, 0.5, 2.5, 25, and 250 μg/l) for 24 h. Parameters of insulin secretion, content, and morphology of β-cells were measured. In the glucose-stimulated insulin secretion test, E(2) and DES increased insulin secretion in a dose-dependent manner in a 16.7 mM glucose condition. However, for BPA, NP, or OP with lower estrogenic activity, the relationship between the doses and insulin secretion was an inverted U-shape. Moreover, OP, NP, or BPA (25 μg/l) impaired mitochondrial function in β-cells and induced remarkable swelling of mitochondria with loss of distinct cristae structure within the membrane, which was accompanied by disruption of mRNA expression of genes playing a key role in β-cell function (Glut2 (Slc2a2), Gck, Pdx1, Hnf1α, Rab27a, and Snap25), and mitochondrial function (Ucp2 and Ogdh). Therefore, these phenolic estrogens can disrupt islet morphology and β-cell function, and mitochondrial dysfunction is suggested to play an important role in the impairment of β-cell function.
Article
Zinc is a trace metal and acts as an active component of various enzymes. Zinc deficiency has been suggested to be associated with the development of diabetes. The present study investigated the role of zinc supplementation on prevention of diabetic conditions. A double-disease model mimicking hyperlipidemia and type 2 diabetes was created by applying high-fat diet and streptozotocin (STZ) to Wistar rats. We demonstrated that zinc supplementation improved symptoms of diabetes such as polydipsia and increased serum level of high-density lipoprotein cholesterol, indicating that zinc supplementation has a potential beneficial effect on diabetic conditions. The level of maldondialdehyde (MDA), an oxidative stress marker, was reduced in liver by zinc supplementation in high fat-fed rats with or without STZ injection. Meanwhile, we observed an increase in the expression of metallothioneins (MTs) in liver of rats treated with zinc. This suggests that the induction of MTs in liver, which has been shown to be important in scavenging free radicals, could be one of the underlying mechanisms of zinc supplementation on reducing MDA levels in liver. Finally, we found that zinc levels in liver were increased while there was no change in serum zinc levels, indicating that local zinc level might be a critical factor for the induction of MTs. Also, the level of MTs could potentially be an index of zinc bioavailability. Taken together, these results suggest that both zinc and MT could play an important role in balancing nutrition and metabolism to prevent diabetic development.
Article
Homeostasis of trace elements can be disrupted by diabetes mellitus. On the other hand, disturbance in trace element status in diabetes mellitus may contribute to the insulin resistance and development of diabetic complications. The aim of present study was to compare the concentration of essential trace elements, zinc, copper, iron, and chromium in serum of patients who have type 2 diabetes mellitus (n = 20) with those of nondiabetic control subjects (n = 20). The serum concentrations of zinc, copper, iron, and chromium were measured by means of an atomic absorption spectrophotometer (Shimadzu AA 670, Kyoto, Japan) after acid digestion. The results of this study showed that the mean values of zinc, copper, and chromium were significantly lower in the serum of patients with diabetes as compared to the control subjects (P < 0.05). Our results show that deficiency of some essential trace elements may play a role in the development of diabetes mellitus.
Article
Disturbances of zinc homeostasis have been observed in several diseases, including diabetes mellitus. To further characterize the association between zinc and diabetes, we recruited 75 patients with type 1 or type 2 diabetes and 75 nondiabetic sex-/age-matched control subjects in order to analyze differences concerning human zinc transporter 8 (hZnT-8) expression, single nucleotide polymorphisms (SNPs) in the genes of hZnT-8 as well as metallothionein 1A and serum/intracellular zinc. Furthermore, we investigated the relation between insulin and zinc homeostasis in type 2 diabetic subjects and consolidated our results by in vitro analysis of the effect of insulin on cellular zinc status and by analysis of the modulation of insulin signal transduction by intracellular zinc homeostasis. Concerning the expression of hZnT-8 and the SNPs analyzed, we did not observe any differences between diabetic and control subjects. Serum zinc was significantly lower in diabetic patients compared to controls, and intracellular zinc showed the same tendency. Interestingly, type 2 diabetes patients treated with insulin displayed lower serum zinc compared to those not injecting insulin. In vitro analyses showed that insulin leads to an increase in intracellular zinc and that insulin signaling was enhanced by elevated intracellular zinc concentrations. In conclusion, we show that type 1 and type 2 diabetic patients suffer from zinc deficiency, and our results indicate that zinc supplementation may qualify as a potential treatment adjunct in type 2 diabetes by promoting insulin signaling, especially in zinc-deficient subjects.
Article
The abilities of the gasoline additives methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME) to cause liver damage following oral administration, dosed alone or in combination with model hepatotoxins, were investigated in the rat. Inducibility of liver drug-metabolizing enzyme activities was also studied. Exposure to these ethers (10-20mmol/kg) for 3 days resulted in hepatomegaly (13-30%) and induction of cytochrome P450 (CYP) activity towards N-nitrosodimethylamine (NDMAD), 7-pentoxyresorufin (PROD), and 7-ethoxyresorufin (EROD). Immunoinhibition assays with monoclonal antibodies showed that the ethers were equipotent as inducers of CYP2E1 activity (2-fold increase) but not of CYP2B1, which was elevated up to 260-fold in TAME-treated rats but only by 20-fold in MTBE rats. A slight or no modifying effect was observed on the NADPH:quinone oxidoreductase (NQO1), glutathione S-transferase (GST), and UDP-glucuronosyltransferase (UGT) activities. Alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) were elevated in blood plasma after administration of the ethers. No dramatic enhancement of liver damage could be detected by plasma enzyme analysis (ALT, AST, alkaline phosphatase, γ-glutamyltransferase) following ether administration (13.5mmol/kg) to rats pretreated with mildly hepatotoxic dosages of ethanol, pyrazole, phenobarbital, acetaminophen (paracetamol), or 13-cis-retinoic acid (13-cis-RA or isotretinoin). Plasma triglycerides increased in TAME-treated rats (1.7-fold) and in all 13-cis-RA-treated groups (2.1-2.8-fold). The findings that MTBE and TAME exhibited a clear but differential inducing effect on two ether-metabolizing CYP forms (2E1 and 2B1) with no marked effect on phase II activities may reflect the importance of these pathways in vivo. The observation that only TAME by itself induced hypertriglyceridemia while acetaminophen- and 13-cis-RA-induced hypertriglyceridemia were aggravated by both ethers, points to differences in their effects on lipid metabolism. TAME was clearly a more potent CNS depressant than MTBE. There was no marked potentiation of drug/chemical-induced acute liver damage either by MTBE or TAME.
Article
Organic oxygenates, namely, methyl tert-butyl ether (MTBE) and methyl tert-amyl ether (MTAE), are added to gasoline to reduce carbon monoxide in exhausts and to enhance the octane number. The aim of this study was to investigate road-tanker drivers' exposure to oxygenate vapors during road-tanker loading and unloading as well as to evaluate the measurements of these ethers and their metabolites in the urine as a means of assessing the uptake of the ethers. A total of 11 drivers in different parts of Finland were trained to monitor their exposure with personal samplers, to report their working conditions, and to collect their whole-day urine samples. Charcoal tubes of the air samples were analyzed for MTBE, MTAE, benzene, toluene, and aliphatic hydrocarbons. For biological monitoring purposes the two main oxygenates, tertiary ethers MTBE and MTAE, as well as their main metabolites, tertiary alcohols tert-butanol (TBA) and tert-amyl alcohol (TAA), were determined in urine specimens. On average the drivers were exposed to vapors for short periods (21 +/- 14 min) three times during a work shift. The mean concentrations of MTBE and MTAE (mean +/- SD) were 8.1 +/- 8.4 and 0.3 +/- 0.4 mg/m3. The total MTBE uptake during the shift was calculated to be an average of 106 +/- 65 mumol. The mean concentrations of MTBE, TBA, MTAE and TAA detected in the first urine after the work shift were 113 +/- 76, 461 +/- 337, 16 +/- 21, and 40 +/- 38 nmol/l, and those found the next morning, 16 h later, were 18 +/- 12, 322 +/- 213, 9 +/- 10, and 20 +/- 27 nmol/l. The good relationship (r = 0.84) found between MTBE exposure and postshift excretion suggests that urinary MTBE can be used for biological monitoring of exposure, but at the present low level of exposure the corresponding metabolite TBA is not equally reliable. The determination of MTAE and its metabolite TAA in urine is sensitive enough to detect the low degree of exposure to MTAE, but in this study the data were too scarce to allow calculation of the correlations due to very low levels of MTAE exposure.
Article
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal-thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.
Article
It has long been believed that heavy metals possess many adverse health effects. Uncontrolled industrialization has released heavy metal pollution in the world. Heavy metal pollutants damage organ functions and disrupt physiological homeostasis. Diabetes mellitus is growing in prevalence worldwide. Several studies have indicated that the deficiency and efficiency of some essential trace metals may play a role in the islet function and development of diabetes mellitus. Some toxic metals have also been shown to be elevated in biological samples of diabetes mellitus patients. In the present work, we review the important roles of heavy metals in islet function and diabetes development in which the in vitro, in vivo or human evidences are associated with exposure to zinc, arsenic, cadmium, mercury and nickel. Through this work, we summarize the evidence which suggests that some heavy metals may play an important role in diabetes mellitus as environmental risk factors.
Article
Prevention of diabetes is crucial to lowering disease incidence, and thus minimizing the individual, familial, and public health burden. The purpose of this review is to gather current information from meta-analyses on dietary and lifestyle practices concerning reduction of risk to develop type 2 diabetes. Low glycemic index dietary patterns reduce both fasting blood glucose and glycated proteins independent of carbohydrate consumption. Diets rich in whole-grain, cereal high fiber products, and non-oil-seed pulses are beneficial. Whereas, frequent meat consumption has been shown to increase risk. Regarding non-alcoholic beverages, 4 cups/day of filtered coffee or tea are associated with a reduced diabetes risk. In contrast, the consumption of alcoholic beverages should not exceed 1-3 drinks/day. Intake of vitamin E, carotenoids, and magnesium can be increased to counteract diabetes risk. Obesity is the most important factor accounting for more than half of new diabetes' cases; even modest weight loss has a favorable effect in preventing the appearance of diabetes. Also, physical exercise with or without diet contributes to a healthier lifestyle, and is important for lowering risk. Finally, there is a positive association between smoking and risk to develop type 2 diabetes. As far as secondary and tertiary prevention is concerned, for persons already diagnosed with diabetes, there is limited evidence of the effectiveness of diet or lifestyle modification on glycemic control, but further studies are necessary.
Article
Ethyl t-butyl ether (ETBE) is a motor fuel oxygenate used in reformulated gasoline. Knowledge of developmental and reproductive toxicity potential of ETBE is critical for making informed decisions about acceptance and regulations. This review discusses toxicology studies providing information about effects on reproduction and the conceptus. Seven GLP-compliant studies following widely accepted protocols have focused specifically on developmental and reproductive toxicity (DART) in rats and rabbits exposed to ETBE by gavage with doses up to 1,000 mg/kg body weight/day, the limit specified in standardized test guidelines. Other repeat-dose general toxicology studies have administered ETBE to rodents for up to 180 days, and included reproductive organ weights, histology, or other indications of reproductive system structure or function. DART potential of the main ETBE metabolite t-butyl alcohol and class-related MTBE has also been studied. More GLP-compliant studies exist for evaluating ETBE using well-established, currently recommended protocols than are available for many other chemicals used today. The database for determining ETBE DART potential is adequate, although not all study details are currently easily accessible for peer-review. ETBE does not appear to be selectively toxic to reproduction or embryofetal development in the absence of other manifestations of general toxicity. Studies using recommended methods for sample preservation and analysis have shown no targeted effect on the reproductive system. No embryofetal effects were observed in rabbits. Early postnatal rat pup deaths show no clear dose-response and have largely been attributed to total litter losses with accompanying evidence of maternal neglect or frank maternal morbidity.
Article
Methyl tert-butyl ether (MTBE) is an additive used to oxygenate gasoline to improve air quality by reducing tailpipe emissions of carbon monoxide and ozone precursors. Although several toxicity studies in rats have been conducted to examine the acute, subchronic, and chronic toxicities by employing various routes of exposure to MTBE, few data were available on the effects of MTBE exposure on blood. In this study, MTBE was administered to rats at dose levels of 0, 400, 800, and 1600 mg/kg/day, respectively. After 2- or 4-weeks treatment period, rats were euthanized and blood was collected for the assay of hematological indicators and blood biochemistry indicators. Some organs, including brain, heart, liver, spleen, lung, kidneys, testes, epididymis, thymus, and prostate, were immediately removed and weighed. Possible subchronic health effects of MTBE exposure by gavage were evaluated on mortality, body weight, relative organ weight, hematology, and blood biochemistry indicators in male Sprague-Dawley rats. The results indicated that MTBE did not disrupt the growth rate of rats. Relative organ weight showed change in heart, liver, kidney, testes, thymus, and prostate. In the 2-week treatment, MTBE exerted toxicity on white blood cell count, including lymphocyte, granulocyte, and eosinophil. This finding was especially strong at 1600 mg/kg/day MTBE. In the 4-week treatment, hemoglobin at high dose MTBE significantly increased. The results of the assay for the biochemistry indicators and relative organ weight indicated that MTBE could impair liver and kidney functions and also have adverse effects on lipid metabolism and immune system. It was conducted that subchronic MTBE exposure induced the adverse effects occurring in the relative organ weight, the hematological indicators, and the biochemistry indicators under high MTBE dose.
Article
MTBE is found in water supplies used for drinking and other purposes. These experiments follow up on earlier reports of reproductive tract alterations in male mice exposed orally to MTBE and explored oxidative stress as a mode of action. CD-1 mice were gavaged with 400-2000 mg/kg MTBE on days 1, 3, and 5, injected i.p. with hCG (2.5 IU/g) on day 6, and necropsied on day 7. No effect was seen in testis histology or testosterone levels. Using a similar dosing protocol, others had initially reported disruption of seminiferous tubules in MTBE-gavaged mice, although later conclusions published were consistent with our findings. Another group had also reported testicular and other reproductive system abnormalities in male BALB/c mice exposed for 28 days to 80-8000 microg/ml MTBE in drinking water. We gave these MTBE concentrations to adult mice for 28 days and juvenile mice for 51 days through PND 77. Evidence of oxidative stress was examined in liver homogenates from the juvenile study using MDA, TEAC and 8OH2hG as endpoints. MTBE exposures at the levels examined indicated no significant changes in the male mouse reproductive tract and no signs of hepatic oxidative stress. This appears to be the first oral MTBE exposure of juvenile animals, and also the first to examine potential for MTBE to cause oxidative stress in vivo using a typical route of human exposure.
Article
A finely tuned subcellular distribution of zinc (Zn), through the coordinated action of Zn transporters (ZnTs) and metallothioneins (MTs), is crucial for optimal cell function. Dysfunctions of these proteins might act as key causative or promoting factors in several chronic pathologies. Evidence of their involvement in the pathogenesis of type 2 diabetes (DM2) is emerging. The association of single nucleotide polymorphisms in genes encoding ZnT-8 and MT with DM2 has drawn attention to the relevance of Zn homeostasis for insulin secretory capacity and responsiveness. Here, we propose that potential mechanisms leading to altered subcellular Zn distribution rather than deficiency might be important in DM2. Increasing knowledge of the mechanisms of Zn homeostasis and signalling should promote the development of targeted interventions with the potential to reduce the burden of disease.
Article
The present review assesses published data relating to the main ethnic groups in the UK Prospective Diabetes Study (UKPDS), namely White Caucasians (WC; 82% of the cohort), Indian-Asians (IA; 10%) and Afro-Caribbeans (AC; 8%). At entry, the IA patients were younger than WC and AC patients, had a greater waist-hip ratio and more sedentary lifestyle, but had the lowest prevalence of hypertension and current smoking. The AC patients had the poorest glycaemic control but the most favourable lipid profile. The differences in modifiable vascular risk factors did not change over 9 years of follow-up. Consistent with UKPDS exclusion criteria, few patients had complications at baseline and there were no between-group differences. An interim analysis of incident fatal/non-fatal myocardial infarction (median follow-up 8.7 years) showed that the AC patients had a 70% lower risk than WC after adjustment for explanatory variables and that IA patients had a similar risk to WC. An analysis of complete albuminuria and renal failure data (median follow-up 15 years) showed that IA ethnicity was independently associated with an increased risk. There are sustained ethnic differences in the nature of diabetes, including vascular risk factors. AC patients had a substantially reduced risk of myocardial infarction that was not explained by their more favourable lipid profile, while IA patients were more likely to develop nephropathy than WC and IA patients. Longer follow-up is needed to determine whether the increased macrovascular risk observed in IA patients in other studies is replicated in the UKPDS cohort.
Article
The purpose of this study was to establish whether a relationship may exist between the hyperinsulinemia, the exaggerated insulin secretion, and the resistance to insulin characteristic of the obese-hyperglycemic syndrome and the zinc status of the ob/ob mouse. To this end, mice were given control and zinc-supplemented diets, and the effects of zinc supplementation on insulin secretion in vivo and in vitro as well as on glucose tolerance were studied. These data were compared with those obtained with oxytetracycline treatment, which is known to ameliorate the insulin sensitivity and glucose tolerance of these animals. The levels of zinc were measured in several tissues of lean and obese mice and the results show that zinc supplementation attenuated the exaggerated insulin secretion in vivo and in vitro without improving the tolerance to glucose. Zinc levels were significantly higher in the tissues of the obese than of the lean mice, with the exception of bone and pancreas. The results suggest a maldistribution of zinc in the tissues of the obese mouse.
Article
Two main diabetic groups were investigated, viz, one consisting of 19 diabetic children with newly diagnosed insulin-dependent diabetes mellitus (IDDM) (median age 10 years) where a prospective study was made, and one where a retrospective examination was performed of 73 patients (median age 14 years) with a mean duration of IDDM of 7 years; 83 healthy school children (median age 13 years) served as controls. In both groups of diabetic children more zinc was excreted in the urine than in the controls. At onset of IDDM, serum and blood clot zinc concentrations were reduced with a gradual increase towards normal within 1 month of insulin therapy. The zinc concentrations in hair did not differ from those of the controls. No correlation were found between zinc levels in serum, blood clots, urine and hair on one hand and the concentrations of albumin and glucose in serum and urine on the other.