ArticlePDF Available

Chemical Compositions of Pine Resin, Rosin and Turpentine Oil from West Java

Authors:

Abstract

This study was conducted to identify chemical composition of merkus pine resin, rosin and turpentine oil. Initially, pine resin was separated into neutral and acidic fractions with an aqueous 4% sodium hydroxide solution. After methylation, the fraction containing turpentine oil and rosin were analyzed by gas chromatography (GC), and gas chromatograph mass spectrometry (GC-MS), respectively. The neutral fraction of pine resin and turpentine oil mainly consisted of a-pinene, D-3-carene and b-pinene. Based on mass spectral comparison, the major constituents of the acidic fraction and rosin were identified as sandaracopimaric acid, isopimaric acid, palustric acid, dehydroabietic acid, abietic acid, neoabietic acid, and merkusic acid. The major component of the acidic fractions was palustric acid, while that of rosin was abietic acid. Using TC (tough column) 1 and TC 5 columns, levopimaric acid could not be separated from rosin or acidic fraction of pine resin of Indonesian Pinus merkusii.
7
'
F
o
r
es
t
P
ro
du
cts
Re
se
arc
h
a
n
d
D
eve
l
o
p
m
e
nt
Cente
r
,
B
ogor
,
Indone
si
a
2
Fac
ul
ty
of
Ag
ri
cui
tw:e
,
E
hime
Univer
si
ty
,
3
-5-7
T
arumi
,
Mat
s
u
y
am
a,
Ehim
e,
790
-
8
5
66
J
APAN
Pinus
merk
u
sii
h
as
been
u
se
d
for
r
e
fo
r
es
t
a
tion in
In
don
es
i
a
s
inc
e a
l
o
n
g
time
.
I
t
s
w
ood
i
s
utilize
d as
ra
w
m
aterial for
p
ul
p
an
d
p
a
p
e
r
in
d
u
s
tri
es.
T
his
s
p
e
ci
es also
p
ro
duc
es
gum
o
l
eoresin,
w
hi
c
h
i
s
bett
e
r than
o
th
ers
an
d
co
ntain
s
a
hi
g
h
qu
ali
ty
of
turp
e
n
tin
e
o
il
(
Sudio
n
o
,
:i
983
)
.
Almos
t all
provinc
es in
J
ava
I
s
l
a
nd
h
ave
p
in
e
fore
s
t
s
.
P
in
e
for
es
t in
Eas
t
Ja
va
provin
ce
i
s
a
bo
ut 64,630
h
a,
cove
rin
g
Jom
b
an
g, Lawu
D
S,
Ke
diri
,
Bli
t
ar
,
P
as
uruan
,
Probo
lin
ggo,
J
e
m
b
e
r
,
B
ond
owoso,
a
nd
B
a
n
yuwangi.
Whe
r
ea
s,
pin
e
fo
r
es
t in
C
e
n
tral
J
ava
i
s
aro
un
d
1
08
,
000
h
a,
di
stri
bu
t
e
d in
2
0
for
es
t
di
s
trict
s
.
Th
e
a
r
ea
of
p
in
e
fores
t in
W
es
t
J
av
a
an
d
B
a
n
t
e
n
pro
vin
ce
s
i
s
a
b
ou
t
63,
0
00
ha
.
P
i1111s
merkusii
p
ro
du
ces
gum
ol
eo
r
es
in,
w
hi
c
h
i
s
u
se
d
a
s
a
ra
w
m
a
t
er
i
al for rosin and
turpe
n
tine
produ
c
tion for
in
t
e
rn
a
ti
o
n
al
an
d
n
ati
o
n
al
m
a
r
kets.
T
hro
ug
h
di
s
till
ation
p
ro
cess
,
gum
o
l
eo
r
esin is
co
nv
e
r
te
d
in
to
ro
s
in and
turpe
ntin
e.
R
osin
i
s a
co
mpl
e
x
mix
tu
r
e
th
a
t
m
os
tl
y
co
n
t
ain
s
res
in
acid
s
an
d a
li
ttl
e
am
oun
t
o
f
n
e
utr
al
fr
ac
tio
n
.
R
osin
m
o
s
tl
y
co
nt
ain
s
a
b
i
etic type
(a
b
i
e
tic
,
l
e
v
opimaric
,
p
all
u
stri
c
,
neoab
i
eti
c
,
d
e
h
y
dr
oa
bi
etic and
tetr
a
abie
ti
c
acid
s)
an
d
p
imar
i
c
type
(p
imari
c
a
n
d
i
so
p
im
aric
acid
s),
b
e
s
ide
s
n
e
u
tral
co
mp
on
e
n
t
s
.
I.
INTROD
U
C
TIO
N
K
ey
wor
d
s:
Pi1111s
1J1erk11sii
1
turp
e
ntin
e
o
il
,
r
os
in
,
neutr
al
fraction
,
ac
i
dic
fr
a
ction
Thi
s s
tu
dy was
conduct
e
d
t
o
id
e
ntify
ch
e
mical
compo
s
ition
of
me
r
ku
s
p
in
e
r
es
in,
ro
s
in and
turpentine
o
il
.
Initiall
y,
pin
e
r
es
in was
se
parated into
n
e
utral and
ac
i
di
c
fr
a
ction
s
w
ith an
a
qu
e
ou
s
4
%
sodium
h
y
dr
o
xi
d
e
so
l
u
ti
o
n.
Aft
e
r
m
e
th
y
l
a
tion, the
frac
tio
n
containin
g
turp
e
ntine oil and
ro
s
in
w
e
r
e
analyzed by gas
c
hr
o
matograph
y
(
G
C),
an
d
g
a
s
c
hr
o
m
atogr
a
p
h
mas
s s
p
e
ctr
o
metr
y
(GC
-
MS
)
,
respectively.
T
he
n
e
utral
fracti
o
n
of pin
e
re
s
in and
tur
p
e
ntin
e oil
mainl
y
c
o
n
s
i
s
t
ed
o
f
ix
-pine
n
e
,
Li
-
3-
c
arene and
P
-
pin
e
n
e.
B
ase
d
o
n
m
ass
s
p
e
ctral
co
mp
a
ri
so
n
,
th
e
ma
j
or
c
on
s
titue
nts
of
the
a
ci
di
c
fr
a
ction
and
ros
in were
id
en
tifi
e
d
a
s
s
an
d
ar
ac
o
pimaric
acid
,
i
so
pim
aric
a
c
i
d,
p
alu
s
tric
a
cid
,
d
e
h
y
droab
i
e
tic
a
ci
d
,
a
b
ietic
aci
d
,
neoabieti
c
a
cid
,
and
m
e
rk
us
ic
a
cid
.
T
h
e
ma
j
or
c
o
m
p
on
e
n
t of
th
e
aci
di
c
fractio
n
s
wa
s
palustr
ic
ac
i
d
,
while
th
a
t
of
ro
s
in was
abi
e
tic
acid
.
Usin
g
T
C
(
tou
g
h co
l
umn
)
1
a
n
d
T
C 5
co
l
umn
s,
l
ev
o
p
imaric
ac
id
co
ul
d
not
b
e
se
par
a
t
e
d
fr
o
m
ro
s
in
or
a
cidic fra
cti
o
n
of pin
e
re
s
in
of
Ind
o
n
es
ian
Pim1S
m
erk.I1Jii
.
ABSTRACT
Bamban
g
W
i
y
on
o'
,
S
anr
o
T
ac
hi
bana
2
an
d
D
jaban
T
in
am
b
una
n
'
CHEMICAL
COMPOSITIONS OF PINE RESIN,
ROS
IN
AND
T
URPENTINE OIL FROM
WEST JAVA
8
C
.
G
a
s
C
hr
om
a
t
ogr
a
phic
Analy
s
is
of
N
e
utral
Fra
c
tio
n
a
n
d
T
ur
p
e
n
tin
e
Th
e GC
a
nal
yses
of
n
e
u
tral
fra
ction
a
n
d
turp
e
ntin
e
o
il
w
e
r
e
p
e
r
fo
rm
e
d
u
s
in
g
a
~
HI
TAC
HI
3
000
Ga
s
c
hr
o
mato
g
rap
h
,
equipp
e
d
wi
th an
el
ectro
nic
Chromat
o
-
inte
g
rator
D
-
25
00
,
a
F
l
am
e
Ioniz
a
tion
D
e
t
e
ct
o
r
,
a
n
in
j
ec
t
or
,
and a TC-1
ca
p
ill
ar
y
co
l
umn
(3
0 m
b
y 0.
25 mm
1
i
.
d
.,
an
d
film
thi
c
kne
ss 0.25
µ
m
)
.
T
h
e
c
olumn
temp
e
ratur
e
wa
s
70
°
C
,
ri
s
ing at
2
°C
/
min to
2
00
°
C.
The
carrie
r
g
a
s
wa
s
He
li
um
d
e
li
ve
r
e
d
a
t a
fl
o
w
r
a
t
e
of
1
.
7
0
ml
/
min
wi
th a
s
p
li
t
rati
o
o
f
1
:
10. The
F
ID
detector
an
d
inj
e
ctor
port
we
r
e
maintain
e
d
a
t
a
t
e
m
p
e
rature
of
2
3
0°C.
'
J
B
.
Sa
mpl
es
Pr
e
p
a
r
ati
on
Approximatel
y
1
-
2 g
o
f
ea
ch
s
ample
of
th
e gum
o
l
eor
es
in
s
w
as
di
ss
o
l
ve
d in
dieth
y
l
e
th
e
r,
tran
s
ferr
e
d to a 50-ml
se
p
ara
tio
n
funn
e
l
,
an
d
th
e
n
a
d
d
e
d to an
a
qu
e
ou
s
4
%
s
o
di
um
h
y
droxide
(N
aOH)
s
o
l
uti
on
.
Aft
e
r
s
hakin
g, the
s
o
l
ub
l
e
fr
ac
tio
n
w
a
s
r
em
ov
ed
,
and
the
n the
a
qu
e
ou
s
4
%
NaOH
s
o
l
uti
o
n was
a
dde
d
t
o
th
e funnel
ag
ain.
T
h
e
sa
m
e
proc
e
dur
e was
r
e
p
eate
d
.
To
o
btain
th
e
s
ol
u
ble
fr
a
ction
,
an
a
qu
eo
u
s
8
N
H
Cl
0
2
s
o
l
ution
w
a
s
a
dd
e
d to
mak
e
an
ac
idi
c
fr
ac
ti
o
n
and
th
e
n
extract
e
d
twi
c
e with
di
e
th
y
l
e
th
e
r.
Th
e
e
ther
e
al
so
l
utio
n
w
as
dri
e
d
o
ve
r
anh
y
dr
o
u
s
sodi
um
s
ulf
a
t
e
overni
g
ht.
Ea
ch
fra
ction
w
as
obtain
e
d
a
ft
e
r
eva
p
or
ation
of
th
e
s
o
l
ve
n
t
wi
th
a
n
ev
apora
t
o
r
in
v
ac
uo
.
Eac
h
inso
l
ub
l
e
e
ther
e
al
frac
tio
n
w
a
s
dr
i
e
d
ov
er
anh
y
dr
o
u
s
so
dium
s
ul
fat
e
ove
rni
gh
t
t
o obtain a
n
e
utr
al
fr
a
cti
o
n
a
ft
e
r
eva
po
r
a
ti
o
n
of
th
e
so
l
ve
n
t with
th
e eva
po
rator in
vac
u
o.
Th
e
a
cidic fraction
w
a
s
meth
y
l
at
e
d
w
i
th a
dia
z
o
m
ethan
e
ethere
al
s
o
l
u
ti
o
n
u
s
in
g
s
t
a
n
d
a
r
d
p
ro
ce
dur
es
.
B
o
th
th
e
ac
i
dic
a
n
d
n
e
utral
fr
ac
ti
on
s
w
e
r
e
di
ss
o
l
ve
d
wi
th
c
hl
o
roform and
st
or
e
d in a
fr
eez
er
prio
r
to
a
nal
ysis
.
A
.
L
o
ca
ti
on
a
nd
Sam
pl
e
Coll
e
ction
Thi
s
re
se
arch
pr
o
j
ect
w
a
s
co
ndu
ct
e
d at
th
e
F
ac
ul
ty
of
Agriculture,
E
him
e University,
J
apa
n
,
an
d
th
e
Fo
r
e
st
P
ro
duct
T
echnolo
gy
R
e
se
arc
h
and
D
ev
el
op
m
ent
Ce
n
te
r
,
In
do
n
es
i
a in
the
ye
ar
2004
.
T
he
s
amp
l
e
s
of
ro
s
in,
turp
e
n
tine oil and
pin
e
re
s
in
of
Pinu
s
m
e
r
ku
sii
u
se
d
fo
r
thi
s
s
tu
d
y
were
co
ll
ec
ted from
ro
s
in
an
d turpentine
o
il
com
p
ani
es in
W
e
s
t
Ja
v
a.
R
o
s
in and
tur
p
e
n
tin
e oil
w
ere
produce
d through
ste
a
m
dis
till
ation
p
roce
s
s.
II
.
MA
T
E
RIALS AND
ME
THOD
S
..
1
I
R
osin is
w
id
el
y
u
se
d in
adhesives
,
p
rintin
g
ink
,
elec
tric
i
solatio
n
,
p
a
p
e
r
,
s
o
l
d
e
rin
g
fl
ux,
v
arni
s
h,
an
d
m
atches
in
du
stries
(W
i
y
ono,
1
98
9
)
.
In
p
rin
tin
g ink
in
dustries, rosin gives
adhesive
n
e
s
s,
surfa
c
e
smo
othn
e
ss,
hardn
ess, anti
b
l
ockin
g,
an
d
o
th
er
p
ro
p
e
rti
es.
Ro
s
in
h
as a
goo
d
ele
c
tri
c
i
so
l
atio
n
,
b
ein
g
u
s
ed
a
s
o
il in
ca
b
l
e for high
v
ol
tage
ele
ctric
ity.
In
s
o
l
d
e
ring
p
roc
ess, rosin is used
t
o
ge
t
ri
d
of
o
xi
d
e
c
o
m
p
o
un
d in
th
e
s
ur
face
of
m
etal,
s
y
n
th
eti
c
rubb
e
r
,
an
d
c
h
ewing gum (FAO,
1
995
)
.
As
ini
ti
al
s
t
e
p
t
o utilize gum
o
l
eo
r
esin,
ro
sin
an
d turpentine,
i
t
i
s
n
ee
d
e
d to
i
d
e
n
ti
fy
th
e
ir
c
h
emical
co
m
p
ositio
n
s,
es
p
ec
iall
y
fr
o
m
Pines
m
e
rkusii
.
T
he
r
efo
r
e
,
a
stu
d
y was
c
on
d
u
ct
ed
t
o
i
dentif
y
ch
e
mical
co
mpos
iti
on
s
of
gum
o
l
eo
r
es
in,
r
os
in, and
turpe
n
tine
co
ll
ecte
d
fro
m West
Ja
v
a.
Journal
of
Fo
r
estry
R
ese
arch Vol. 3
No
.
1
,
M
ar
ch 2006:
7
-
1
7
9
A
.
T
urp
e
n
tine
Oil
A
r
es
ult
o
f
anal
ys
in
g
chemical
compo
s
i
ti
o
n
of
neutr
al frac
ti
o
n
a
n
d turpentine oil
b
y
ga
s
chro
m
a
tog
r
ap
h
y
was in
T
a
bl
e
1.
Meanwhil
e
,
profil
e
of
their
chromat
og
ram
coul
d be
s
een in
A
pp
e
ndi
ces
1
and 2.
Th
e
anal
yses
s
ho
w
ed that
b
oth
s
amp
l
es,
neu
tr
al fraction and turpentine
o
il
,
mainl
y
co
ntain
e
d
8
compo
n
e
n
ts,
co
ve
ring
cc
-
pin
e
n
e
,
d-
cam
ph
ene,
~-
pin
ene
,
m
y
r
cene,
cx-
ph
e
ll
an
dren
e
,
~
-
car
e
n
e
,
p
-
c
y
men
e and
d
-
limonene (F
i
gure
1
).
T
he highest
componen
t in
turp
e
ntine oil
w
as
«-
pin
e
ne
,
reaching 86
%
,
follow
e
d by
~
-
car
e
ne and
~
-
pin
e
n
e.
III.
RESUL
T
S
AN
D
D
I
S
CUSS
IO
NS
E.
Id
e
nticatio
n
a
nd
Qu
an
tifi
ca
tio
n of
Co
n
sti
tu
e
nts
Th
e main
con
s
titu
e
nt
s
of
th
e neutral
fraction
s and
turp
e
ntin
e
o
il
s
wer
e ide
ntifi
ed
b
y
c
o
mparin
g
r
ete
ntio
n times with
th
os
e
of
authentic
s
amp
l
es.
R
es
ul
t
s
w
e
re
confir
med
b
as
e
d on
r
elative
r
e
t
e
ntion
indic
es
(RI)
d
e
t
ermined
b
y
in
j
ec
tin
g
a
r
efere
nc
e mixture
o
f
C8
t
o
C
16
h
y
dr
ocar
b
o
n
s
int
o
th
e
G
C
sys
t
e
m
und
e
r
the
s
ame c
o
ndition
s
as for
th
e anal
y
si
s
and
calcul
a
t
e
d
a
cc
o
rdin
g
t
o a
form
ul
a
in the
li
teratur
e
(
Adam,
1
995
,
D
avie
s,
1
990
,
I
s
i
dorov
e
t
al.,
200
1
)
.
The
m
ain
co
n
s
titu
e
nt
s
o
f
the
ros
in and ac
i
dic fr
a
ction
we
re id
e
ntifi
ed
u
s
in
g
a Shim
a
d
z
u
QP 5050A Gas
chromat
ogr
aph Mass
s
pe
c
trome
t
e
r.
Two
capillar
y
c
o
lumn
s
(IC
-
1
and
T
C-5,
30 x
0.2
5
mm
i.d
.
,
film
thickne
ss 0.25 µm) were
u
se
d
fo
r
the
iden
tification.
Th
e
anal
y
sis
wa
s
p
e
r
fo
rmed
u
s
in
g the
s
am
e
conditio
n
s
a
s
in
th
e GC anal
y
s
i
s.
Man
y
comp
o
unds
w
e
r
e
i
d
e
n
tifi
ed
u
s
in
g
W
il
ey
lib
r
ari
es
(seve
nth
editi
o
n
)
b
y
c
omparin
g
mass
s
p
e
ctra for
th
e
inject
ed
s
ampl
es
t
o
ma
ss
s
pectr
a in
th
e
librar
y
.
So
m
e
p
a
p
e
rs
we
re also
he
l
pful for the
i
d
entification
of
co
m
p
o
unds
(W
ei
~
mann
an
d
L
ange,
1
9
87,
W
e
i
~
mann
,
1
9
74
,
Yano and
Furun
o
,
1
994
)
.
T
h
e quantifi
ca
tion
of
co
n
sti
tu
e
nt
s
was
co
ndu
c
t
e
d with a
GC-F
ID
pr
o
file
o
btain
ed
o
n a
ca
pill
ary
co
l
umn
acc
o
rding to the peak area percent method without re
s
p
o
nse
fa
ct
o
r
co
rr
ectio
n
(P
te
ifhove
r
,
2000
)
.
T
h
e GC
anal
y
se
s
of
a
cidi
c fra
c
ti
on of
p
in
e
r
es
in a
n
d
ro
s
in
w
e
re
p
e
r
fo
r
med
u
sin
g
the
s
am
e
Ga
s
chr
o
ma
togr
aph.
Th
e column
t
e
m
peratur
e
w
a
s
15
C
,
risin
g
a
t
4°C
/
min to 30
C.
T
h
e c
arri
e
r
gas
w
a
s
H
e
lium
deli
ve
red at
a
flow
rat
e
of
1
.
70
ml
/
min
.
The
F
ID
dete
c
tor and
inje
c
t
o
r port
we
re
maintaine
d at a
t
e
m
pera
tur
e
o
f
260
°
C and
300
°
C,
resp
e
ctively. Aci
d
fr
ac
ti
o
n
o
f
pine re
s
in and
ro
s
in
w
e
re
al
s
o anal
y
zed
us
in
g
a
T
C-
5
capillar
y
column
(30
m
b
y
0
.25 mm
i.d.
,
and
film
thicknes
s
0
.2
5
µm
),
with the
F
ID
d
et
ec
t
o
r
and injector
po
rt
maintained
at
280
°
C.
T
he column
t
e
m
pe
r
atur
e was
1
7
C
,
ri
sin
g
at
2.5
°
C
/
min
t
o
280
°
C.
T
h
e
c
ar
r
i
e
r
g
a
s
was
H
e
lium
d
e
liv
e
red at a flow
r
ate
of
2
.
32
ml
/
min with a
s
plit ratio
of
1:20.
U
s
in
g
th
e
sam
e
c
o
l
umn
an
d
co
ndition
s,
b
o
th acid
s
w
ere
al
s
o
anal
yze
d
i
s
o
th
ermall
y
at
20
C.
D
.
G
a
s
C
hr
o
m
a
t
ogr
a
p
hi
c
a
nd
M
ass
S
p
ec
tr
o
m
e
tr
y
An
a
l
ys
i
s
of
A
cidi
c
F
r
ac
tion
s
a
nd
Ro
s
in
Ch
e
mical
comp
os
ition
s
of
pine
....
.
B
.
W
iyo
n
o,
et
c.
..
10
0
10
F
i
gure
1.
His
t
ogr
am
o
f
c
h
e
mi
c
al
co
mpo
si
ti
on
fo
r
n
e
u
tral
fr
ac
ti
o
n in
p
in
e
res
in
an
d
tur
pen
tin
e
TPT
N
F
I
ll
D
cx-
p
i
nene
d-
c
am
phe
ne
D
S
ab
i
n
e
ne
D
p-
pin
e
n
e
M
yrc
en
e
cx
-phe
lland
re
n
e
6-<:
ar
en
e
•p-
cymene
d-lim
o
n
e
n
e
70
80
..
j
90
cf!.
60
"i
~
5
0
0
(.)
(ij 40
(.)
.
E
~
30
0
20
..
R
emarks:
N
F
=
Ne
u
tr
al
fr
ac
tion;
TPT
=
T
urpe
n
tine oil
RI
=
Rete
n
ti
o
n
indi
ces
in
el
uti
on
o
n
th
e
T
C
1
c
ol
um
n
(E
qu
al
to
D
B
1
a
nd OV
1
column).
N
o
Con
s
ti
tu
e
nt
s
NF
TPT
RI
1
«-
p
ine
n
e
73
.
1
8
2.9
945
2
d
-camp
h
en
e
0.8
0.9
954
3
~-
pinen
e
1.8
2
.
2
981
4
Myrcene
0.
7
0.4
99 3
5
cx-phellan
dr
e
n
e
0.2 0.4
1003
6
li.
-
care
n
e
16
.
0
11.0
10
1
6
7
p-
c
y
m
e
ne
0.
8
1.1
1021
8
d
-
limonene
1.9
1.
3 1028
Tab
l
e
1
.
Compo
s
ition
of
n
eutral fraction
in
pin
e
re
s
in and turpentine oil
J
o
urnal
of
F
o
r
estry
Rese
arch
Vo
l.
3 No.
1
,
Marc
h
2
006
:
7 - 17
1
1
R
e
m
arks:
T
C
1
an
d TC
Sa
:
gr
a
dient
t
e
mp
e
r
a
tur
e
progr
amm
e
;
T
C
S
b
:
i
s
oth
e
rmal
temp
er
atur
e
pr
ogr
amm
e
Acidic
fra
ction, % R
os
in,
%
N
o.
C
on
s
titu
ent TC
1
TC
S
a
TCS
b TC
1
TC
S
a TC
5
b
1
Pimari
c acid ME
-
- - -
2
S
andar
a
co
p
imari
c acid
ME
1
7
.1
7
.4 6.9
12
.
2
1
3.7
1
3.7
3
I
sopimaric acid
ME
17
.
1 1
9
.
9
2
0.0
1
7
.
9
18.5 18.7
4 Palu
s
tr
i
c
ac
id ME 32.2 38.2
33
.
9
9.
7
9
.
82
9
.
9
5
D
e
hy
dr
o
abietic acid ME
6.
7
7
.1
9.3
27.
7
27 28
.1
6
A
bietic ac
i
d ME
1
3.2
1
4
.1
1
8
.
0
1
7
.0 16.2 15.4
7
Neo
abietic a
ci
d
ME
3.
2 3.3
3.6
1.3
2.
37
3
.
8
8
M
e
rku
s
ic acid ME
1
0.6 9.9
8.3
14
.
2
1
2
.4
10
.4
T
a
bl
e
2.
Co
mpo
s
iti
o
n
o
f
ac
idi
c
fractio
n
s
e
l
u
t
ed
on
TC
1
and
T
C
5
c
o
l
umn
s
B.
Aci
di
c
Fra
c
ti
on
a
nd
Ro
s
in
Th
e
r
es
ult
of
c
h
e
mical anal
ys
i
s
of
ro
s
in and acidic fr
a
cti
o
n
b
y
g
as
chr
o
ma
tograph
y
w
as
p
re
s
e
nt
e
d in
T
able
2
;
w
hil
e
s
ampl
es
of
chrom
a
to
g
ram profile
w
ere
fi
gure
d in
Ap
p
endices
3
an
d
4
.
In
thi
s
an
alys
i
s
rel
a
ti
ve r
e
t
ention
tim
e could
no
t be
u
se
d
t
o
i
denti
fy chemical
com
p
one
n
ts in
b
o
th
ro
s
in and
ac
i
dic
fr
a
ctio
n
,
as in ide
n
ti
fyin
g
ch
e
mical
compo
s
itio
n
of
turpe
ntine
o
il
an
d
n
e
utral fr
ac
tion.
T
h
e
r
e
for
e,
furth
e
r
s
tu
d
y on
che
mi
cal
co
m
po
ne
nt
s in
ro
s
in
an
d ac
i
dic fr
ac
tion
s
hould
b
e to compare mass
s
p
e
ctra
of
th
e
s
amp
l
e
com
pon
ent to the
ma
ss
spectra in
th
e
libr
ary in
GC
-
MS. A
s
amp
l
e
of
identifyin
g
a
ch
e
mical component with
thi
s
m
e
th
o
d
co
uld
b
e
see
n in
A
pp
endix
5.
R
es
ult
s
in
dicat
ed
th
at
ro
s
in
an
d
acidic
fractio
n were
qu
ali
tativ
el
y
s
imilar
.
B
o
th
ro
s
in and
ac
idi
c
fr
a
cti
o
n
c
o
ntained me
th
y
l
s
and
araco
pimaric
,
m
eth
y
l
i
s
o
pim
ari
c
,
me
th
y
l
palu
s
tric,
m
e
th
y
l
deh
y
dro
abi
e
tic
,
m
e
th
y
l abi
e
tic
,
m
e
th
y
l
n
e
o
a
bi
e
tic
,
an
d me
th
y
l
merku
s
i
c a
cid
s.
Th
e hi
g
h
est
co
mpon
e
nt
in
ro
s
in was
m
e
th
y
l
d
e
h
y
droa
b
i
e
tic,
r
eac
hin
g
27
-
28
%
.
M
e
an
w
hil
e,
th
e
hi
gh
es
t
compon
e
n
t in ac
i
dic
fractio
n was
m
e
th
y
l
palu
s
tric
~
ci
d
,
r
eac
hin
g
32-
38
% (F
i
gure
2)
.
An
al
ys
i
s
result
o
f
c
h
emical c
om
p
os
iti
o
n of
ne
u
tral fra
ctio
n
w
as
principall
y
s
imil
ar
t
o
th
a
t
of
turpentin
e
o
il
.
H
owe
v
e
r
,
i
ts
m
ain
compo
n
ents, ec-pinene
an
d
~-p
in
e
n
e,
we
r
e
q
ua
ntit
a
ti
v
e
l
y
l
o
w
er
tha
n
that
of
turpentine
co
mp
ositi
on
(f
a
ble
1
)
.
O
n
th
e other
h
and,/::,.-
car
e
n
e was hi
gh
e
r
.
C
o
mpar
ed
t
o
th
e
c
h
emical
compo
s
ition
o
f
turpentine oil
of
P
inus merkusii
fro
m
th
e
Philipp
ine and
Thailand
,
i
t
w
as
principall
y no
diff
e
r
ent; the main
comp
o
n
e
nt
s
were also
o:-
pin
e
n
e
an
d
/::,.
-
car
e
n
e
.
H
o
w
ever
,
qua
n
titati
v
el
y
th
e
turpe
n
tine
o
il
from West
J
ava contained
m
o
r
e
pin
e
n
e
compon
ent than that from Thailand,
v
aried
about
46
-
84
%
.
Comp
ared
t
o the
turp
entin
e oil from
th
e
Philippin
e,
w
hich
co
n
taine
d
p
in
en
e
co
mponent more than
90
%,
th
e
turp
e
ntin
e
o
il
fro
m
W
e
st
J
a
v
a
co
nt
ained
l
ower pinene
co
m
ponent
, (
Coppen
et
al.,
1
998
)
.
Rel
a
tin
g
t
o the
quali
ty
of
turpe
ntin
e oil, F
A
Q
(
1995
)
m
e
n
tioned that
turpentin
e
o
il
c
ontaining
pinen
e
compo
n
ent
minimall
y
90
%
i
s
the
b
es
t
quality, medium quality
if
co
n
tain
80-90 %
pinen
e c
o
mpon
e
n
t, and
l
ow quality
if
un
d
e
r
8
0
%
.
B
a
s
ed on
th
e
s
e
crit
e
ri
a
,
turpentin
e
oil
fr
om West
J
a
va
(
85
%
)
i
s
cate
g
orized a
s
a
m
e
dium
quali
ty
.
Ch
e
mical
co
m
po
s
ition
s
o
f
p
in
e
. .
..
.
B. Wi
y
ono
,
etc
.
I..
D
Pima
r
ic
ac
id
ME
Sa
n
d
ar
aco
p
imari
c
aci
d
M
E
0
l
so
p
im
a
ri
c
aci
d
M
E
D
P
a
l
u
s
t
ri
c
ac
i
d
M
E
D
e
h
ydro
a
bie
l
ic
aci
d
M
E
D
Ab
ie
ti
c acid
M
E
Ne
oa
b
ie
ti
c
acid ME
o
Merl<
u
s
i
c
aci
d
M
E
..
"'
!
I
D
P
ima
ri
c
ac
i
d
M
E
Sandaraco
pi
m
ari
c
ac
id
M
E
0
lsopi
m
ari
c
ac
id
ME
0
Pa
l
u
st
r
i
c
aci
d
M
E
D
e
hydr
oa
bie
t
i
c
ac
i
d
M
E
DA
b
i
e
ti
c
aci
d
ME
Neo
a
b
i
e
li
c
a
cid ME
D
Merkusic
ac
id
ME
J
J
I
..
1
2
F
i
gure 3.
Hi
s
to
g
ram
of
chemical
c
o
m
po
s
iti
o
n
fo
r
r
o
s
in
T
C
5 b
T
C5a
T
C
1
0
5
o'1_
2
0
c
Q)
c
0
0
1
5
iii
0
.
E
Q)
t5
10
25
,,
<=
=
.,:::
..
D
""'
""'
=
- -
-
- -
-
30
F
i
gu
r
e
2
.
Hi
stogra
m
of
c
h
e
mi
c
al
com
p
os
i
ti
on
fo
r
ac
i
dic
fra
cti
o
n
TC
5b
T
C
5
a
T
C
1
0
10
#-
c
25
Q)
c
8
20
iii
0
.
E
1
5
Q)
.J::
o
30
35
40
/
""' ""'
,c:
I
I
"'
<::::
c:
..
..
""
""
""
I
I
l -
·
·-·
-
5
F
i
gur
e 2
s
ho
we
d that
TC
5
co
lumn
,
bo
th
g
radi
e
n
t
a
n
d
i
s
oth
er
m
pro
g
ram
,
el
uted
m
ore
m
e
th
y
l
p
al
ustric
a
cid
th
an TC
1
c
o
lumn
in
an
a
cidic
fr
ac
tion;
w
hil
e
in
ro
s
in
,
Figur
e 3,
bo
th
c
o
l
umn
s
w
e
r
e
alm
o
s
t
s
imilar
t
o
e
l
u
t
e
m
e
th
y
l
d
e
h
y
droabie
ti
c
ac
i
d.
Am
on
g
th
e co
lumn
s
us
e
d
in
this
re
sea
rch
,
the TC 5 column with
g
radi
e
nt
pro
gra
m was
the
be
s
t
t
o
i
d
e
ntify ch
e
mic
al
c
o
mp
o
s
i
ti
on in
ac
idic
fracti
o
n
.
M
e
an
w
hil
e
,
th
e
T
C
1
c
o
lumn was
th
e
b
e
s
t in
id
e
nti
fying
c
hemical
compo
si
ti
on in
ro
s
in.
J
I
J
ournal o
f
F
or
es
try
Re
se
arc
h Vol. 3
N
o
.
1
,
M
ar
ch 2006: 7
-
17
1
3
Adam,
R.
P
. 1
995
.
I
d
e
n
tifica
ti
o
n
o
f
es
s
e
n
tial
o
il
con
s
titu
e
n
ts
b
y Gas
C
hr
o
ma
tog
r
a
ph
y
/
Ma
ss
Spec
tr
o
m
etry
.
All
ure
d
Pub
li
s
hin
g
Corp
o
r
a
tion
,
C
ar
ol
S
tr
ea
m
,
Illinoi
s
-
U
S
A.
Co
pp
e
n,
J.
J
.
W,
C.
Ga
y
, D.].
J
am
es,
].
M
.
Ro
b
in
s
o
n and
N.
Supri
an
a.
19
93.
Var
i
a
b
ili
ty in
xy
l
e
m
re
s
in
c
o
m
posi
ti
o
n
amo
n
gs
t natural
p
o
pul
a
tio
n
s
o
f
Ind
o
n
esia
n
P
i
nes
m
e
r
ku
s
ii
.
Ph
yt
oc
h
e
mi
s
tr
y
.
33
:
1
2
9
-13
6
.
E
l
sevier
S
ci
e
n
ce,
L
td
.
Coppe
n
,
].
]. W,
C.
Gay,
D.
].
J
ames
,
]. M.
R
obin
s
on
an
d
W
S
ub
an
se
n
e
1
99
8.
Varia
bili
ty in
xy
l
e
m
r
e
s
in
co
mp
o
si
ti
o
n
am
on
gs
t
n
a
tural
po
p
ul
a
tio
n
o
f
T
h
ai
an
d
F
ili
pin
o
P
i
nu
s
m
e
r
k
usii
d
e Vri
ese
.
F
l
a
v
or
Fr
ag
r
.
].
13
:
33-3
9
.
J
o
hn
W
il
ey and
Son
s,
L
td
.
D
avies,
N V
1
9
90.
R
eview: Gas
C
hr
o
ma
to
g
r
a
p
hic
r
e
t
e
nti
o
n
in
dice
s
o
f
m
o
no
t
e
rp
e
n
es
a
nd
s
e
s
q
ui
te
rp
e
n
e
s
o
n
m
e
th
y
l
s
ili
co
n
e and
Car
b
owax
2
0M
ph
a
ses
.
].
C
hrom
a
t
o
g
ra
ph
y
.
50
3:
1-2
4
.
W
al
t
e
r
d
e
agr
u
yte
r
,
B
erlin
-
New
Yo
r
k
.
RE
FE
RENCES
1.
Bo
th
turpe
n
tine
o
il and
n
e
utr
al
fr
ac
tio
n
of
pin
e
r
es
in
c
o
n
t
ain
e
d
cx
-
pin
e
n
e,
d
-
camph
e
ne
,
~
-
pinene,
m
y
rc
ene,
cc
-p
h
e
llandr
e
n
e,
L\
-
c
ar
en
e,
B
-
c
y
me
n
e
an
d
d
-
lim
on
e
n
e.
T
h
e
m
ain
co
mp
one
n
ts
of
b
o
th
s
am
p
l
es
we
r
e
o-
pin
e
n
e,
L\
-3-
c
are
n
e, and
B
-
pin
e
n
e.
2
.
C
h
e
mi
c
al
co
m
p
os
i
tion
o
f
b
o
th
ros
in
an
d
ac
idi
c fraction
of
pin
e
res
in
c
over
e
d
m
e
th
y
l
s
an
d
araco
p
imari
c
,
me
th
y
l i
so
pim
ari
c
,
me
th
y
l
pal
u
s
tri
c
,
m
ethy
l
d
e
h
y
dr
o
abietic
,
me
th
y
l
a
b
i
e
ti
c, methyl
neoa
b
i
eti
c,
an
d
m
e
th
y
l
m
e
r
ku
s
i
c
aci
d
s
.
Th
e
hi
gh
es
t
co
mp
on
e
nt
in
ro
s
in
was
meth
y
l
d
e
h
y
dr
oa
b
i
e
ti
c,
r
ea
c
hing
27-
2
8%
.
M
ea
n
w
hil
e,
th
e
hi
gh
est
co
mp
one
n
t in
ac
i
di
c
frac
ti
on was
me
th
y
l
palu
s
tri
c
aci
d
,
reac
hin
g
3
2-38%
.
3. Acidic
fracti
o
n
co
ntain
e
d
thr
ee
m
ain
c
o
m
pon
e
n
t
s
cove
r
ing
a
bi
e
ti
c
ac
id
,
pal
u
s
tri
c
ac
id
,
a
nd
n
eo
a
b
i
e
tic
ac
i
d
s
.
T
h
e
y
w
er
e
u
se
d as a
ra
w
m
at
e
r
ial
fo
r
th
e
mo
difi
ca
tio
n
pro
cess
.
T
hi
s s
tud
y
indi
c
ate
d
th
a
t the total
of
th
e
se
compoun
d
s
w
a
s
5
0
-
53
% in
ac
i
dic
fr
actio
n.
B
ase
d
o
n
th
e
d
e
h
y
dr
o
a
b
i
etic
aci
d
co
m
pone
nt
,
ro
s
in
coul
d
b
e
c
ategorize
d
a
s
a
go
o
d
r
aw
m
a
t
erial
for
h
y
dr
og
e
n
ate
d
ro
s
in.
IV. CONCLUSION
Q
u
alitati
v
el
y,
c
hemic
al
c
o
m
po
s
iti
o
n
o
f ro
s
in
in t
hi
s
r
es
e
arc
h
w
a
s
alm
os
t
s
imilar to
th
a
t
in
pr
evio
u
s
o
n
es
(W
e
i
~
m
ann
,
1
97
4,
We
i
~
m
a
nn and
L
ange
,
1
987
,
Co
pp
en et
a
l.,
1
993,
C
o
pp
e
n
e
t
al.,
1
9
98
)
.
A
li
ttle
diff
e
r
enc
e was in
m
eth
y
l
l
e
v
opim
ari
c
aci
d
th
a
t
di
d
not
exi
s
t
in both ro
s
in
a
n
d
aci
dic
fr
ac
ti
on
.
In
p
r
evi
ou
s s
tu
die
s,
thi
s
co
mp
on
e
n
t
al
w
a
ys
cam
e up
t
o
ge
th
er with
m
e
th
y
l
p
alu
stri
c
a
c
i
d
,
and
th
ey
w
e
r
e
c
al
culate
d
a
s
o
n
e
c
omp
o
n
e
n
t.
In
thi
s
s
tud
y,
a
com
pon
en
t
o
f
me
th
y
l
le
vo
p
imaric
aci
d
co
ul
d
n
ot
b
e
elute
d
u
s
in
g
T
C
1
o
r
T
C
5
co
lumn
.
R
e
latin
g to
th
e
ir utiliz
a
ti
on
thr
o
u
g
h mo
difi
c
a
tion
proc
ess,
thr
ee main
compon
e
n
t
s
c
overin
g
a
b
i
etic
a
cid,
p
alu
stri
c acid
an
d
n
e
o
a
b
ie
tic
ac
i
d
w
e
r
e
u
se
d as a
ra
w
m
a
t
e
r
i
al
fo
r
th
e
modificatio
n
p
ro
c
ess
.
T
hi
s s
tu
d
y
in
di
c
a
t
e
d
th
a
t the
t
o
tal
of
th
e
s
e
comp
o
und
s
wa
s
50-53 % in
ac
idi
c
fractio
n.
B
ased
o
n the
d
e
h
y
dr
o
a
bi
e
tic
a
c
id
c
omp
onen
t
,
ros
in
i
s
a
go
od
ra
w
m
ateri
al
fo
r
h
y
dr
o
genate
d
rosin
.
Ch
e
mical
c
o
m
p
os
i
ti
on
s
of
p
ine .....
B
.
Wiy
ono,
e
tc
.
1
4
I
I
J
Yano,
S
.
an
d T.
Furo
no
, 1
99
4.
R
e
s
in
a
c
i
d
s
fr
o
m
ex
tract
s
o
f
p
in
e
co
n
e
s
o
f
Kur
orna
t
su
(
P
im1s
thun
be
r
gi1).
Moku
z
ai
G
akkai
s
hi
.
40:
72-
77
.
~
1
..
I
si
do
ro
v,
V.
A., I. G.
Z
e
nk
evic
h
,
U.
Kr
ajews
k
a,
E
.
N. Du
bi
s,
].
J
aroszy
n
ska,
an
d
K.
Bal.
2
00
1
.
Ga
s
chrom
a
t
og
raphic
an
alys
i
s
o
f
essential
o
il
s
w
i
th
pr
e
liminar
y
p
arti
tio
n
o
f
c
on
s
ti
tue
nt
s
.
Ph
yto
chem
.
Anal.
12
:
87
90.
E
l
s
e
vie
r
Sc
ien
ce
,
L
td.
Pt
e
ifho
v
e
r
,
H.
W
2000
.
C
o
mp
os
i
s
i
t
o
n
o
f
th
e
esse
n
ti
al
o
il
o
f
P
inus
canan
e
nsis
Sw
ee
t ex
S
pr
eng
e
l.
F
l
avo
r
an
d
F
ragr
.].
1
5
:
26
6-2
7
0.
J
ohn
W
il
e
y
an
d
S
o
n
s
,
Lt
d
.
S
u
di
ono
.
1983
.
Po
t
e
n
s
i
d
an
p
e
n
y
ebaran
h
u
tan
pin
us di
In
don
e
s
i
a
.
P
ros
idin
g
Sirn
po
si
um
P
engusa
h
a
an
Hu
tan
P
in
u
s.
Ke
rja
s
ama
P
3
HH dan P
e
rum P
e
rh
u
t
ani
.
J
aka
rt
a
.
W
e
i~
m
ann,
G
.
1
9
7
4
.
M
e
r
k
un
s
in
sa
ur
e,
e
in
e
D
i
c
ar
b
o
n
sa
ur
e
in
B
al
sa
m
von
P
in
u
s
m
e
rkus
ii
.
H
o
l
fz
for
c
hun
g.
28
:
186-
18
8
.
Wal
t
er
d
e
ag
ru
y
te
r
,
Be
rlin
-
New
Yo
r
k
.
W
e
i
~ma
n
n, G.
a
n
d
W
L
a
n
ge.
1
98
7
.
Z
u
sa
mme
n
set
z
u
ng
d
er
n
e
u
tr
a
lt
e
il
e
d
e
s
B
al
s
amk
o
l
o
ph
o
nium
s
v
o
n P
inu
s
m
asso
ni
ana
Lam
b
.
,
Pin«s
m
e
rku
si
i
Jun
gh
.
U
n
d
P
inus
l
ec
b
te
ns
is
M
ay
r
.
H
olf
z
forchung
.
4
1
:
14
7
-
1
54. Walter
d
e
ag
ru
yte
r
,
B
e
r
lin
-
N
ew
Yo
r
k.
W
i
y
ono
,
B
.
198
9.
R
o
s
in
an
d
turp
e
ntin
e
p
ro
c
es
s
es
wi
th
p
ine
s
tump
s
sol
v
e
nt
ex
tr
ac
ti
o
n
me
th
o
d
an
d
b
y
p
rod
u
c
t
s
of
s
ul
fa
t
e
pulpin
g
fr
om
p
in
ewoo
d
s.
Du
t
a
Rirnb
a
magaz
in
e
,
1
0
3
-
104
/
XV
/
1989.
B
o
g
or
Ind
one
s
i
a.
J
ourn
al
o
f
F
orestry
R
ese
ar
c
h
V
o
l. 3
No
.
1
,
Mar
c
h
200
6
:
7 - 17
1
5
Ll
-
c
ar
e
n
e
~-
pin
e
n
e
«
-p
in
e
n
e
"
u
~
u
App
e
ndix 2.
Chromatogram of chemical
compo
s
ition
for
neutral
fraction
of pine resin
a.
-
pinen
e
Ll
-
c
aren
e
«-pine
n
e
.i-:
~
-
pinen
e
Appendix
1.
Chromatogram of chemical composition of turpentine
oil
Ch
e
mi
c
al
c
o
m
p
os
iti
on
s
o
f
pin
e
....
.
B
.
W
i
yo
no
,
e
tc
.
'
...
"'
I
"'
'
"'
...,
'
"'
..,
'
"'
"'
I
...
nd
a
r
a
c
opim
a
ri
c
ac
i
d
ME
'
-
--
-
M
e
r
k
u
s
ic
a
c
id
ME
l
s
op
ima
ri
c
ac
i
d
ME
------
-
A
bi
et
i
c
ac
id
ME
N
eoa
b
ie
t
i
c
a
c
i
d
ME
P
al
u
s
tri
c
a
c
i
d
M
E
---
--
-
D
e
h
y
dro
a
b
ie
tic
a
ci
d
ME
I
I
f
I I
"'
"'
I I I I I I I I I
I
"' "'
"' "'
I I I
I
I
"'
"'
I I I
I
I I I
I
I
I
I
"' "'
"'
...
'
...
.
1
6
%
"
A
ppendix
4
.
Chrom
a
to
gr
am of
ch
emical
comp
o
siti
on
for
acidi
c
fra
c
tion of pine
re
s
in
I
"'
-e-
..
J
Merku s
ic
acid
ME
:c
u
,,.
,
~
S
da
r
a
c
opi
m
ari
c
a
c
id
ME
----
"'
""
"'
l
so
pi
m
ari
c
a
ci
d
ME
------_.
Pa
l
u
s
tric
a
c
i
d
ME
~
Ab
i
etic
a
c
id
ME
~
Ii
Ne
o
ab
i
etic
a
ci
d
M
E
Dehydroa
b
ietic
acid
ME
"'
u,
u,
0
Appendix
3.
Chromato
g
ram of chemical composition of rosin
Jo
ur
n
al
o
f
Fore
stry
R
e
sear
ch
V
ol. 3
N
o
.
1
,
March
200
6
:
7 - 17
1
7
Me
Pr-
i
300
2
50
200
150
26
6
1
85
2
1
3
100
301
2
81
2
•1
31
l1
1
3
2
3
1
7
0
1
3
1
151
1
2
1
7
11
1
50
300
100
2
7
3
223
48 159
31
8
185
87
1
43
241
121
105
85
,.
.. ~
:
e
n
"
·
rl~'7?;,~
·:
11eo
t
-
~~
:
101
.....
:
11
.
033
,..
.
_
,.
: 91
.
10 14255
Appendix
5.
A
s
a
m
pl
e
of i
d
entification result of
a
c
h
emica
l
c
o
mponent in
ro
s
in
/ acidic fraction
thro
u
g
h
t
h
e
com
p
aring mass
s
p
ectra of target
compound (Palustric
aci
d ME) to the mass spectra in
th
e li
bra
r
y in Gas
chromatograp
hy
-
Spectrometr
y
Ch
emi
cal
co
mp
os
iti
on
s
of
p
ine
.
....
B
.
Wi
yo
no
,
e
tc.
..
..
I
4
I
J
I
... Chemically the resin components can be divided into volatile and solid fractions with an average mass ratio of 30% and 70%, respectively (Cabaret et al. 2019a). The volatile fraction is a complex blend of terpenoids composed mainly of monoterpenes and sesquiterpenes with α-pinene, β-pinene, limonene, camphene and Δ3-carene being the dominant components in pines (Lai et al. 2020;Wiyono et al. 2006). The solid fraction is mainly formed by diterpenebased acids (approx. ...
Article
Full-text available
A major function of resin in trees is to provide defense against external attacks by releasing the resin flow in the attacked or damaged area. Nonetheless, leakage of resin on the surface can have negative aesthetic and economic impacts on wood materials. The aim of this study was to investigate how heat treatment affects the physico-chemical properties of the resin of Pinus sylvestris L. to hinder exudation on wood surfaces during service. To reduce the fluidity of the resin, it is necessary to remove the volatile fraction of resin, and several studies have been carried out in this direction, providing useful information about this process. The results from thermal analyses (DSC, TGA) confirmed that heat treatment at mild temperatures, 80 °C, 90 °C and 100 °C had a positive effect on increasing the glass transition temperature Tg and that the Tg and the residual volatile content were strongly correlated. FTIR spectroscopy, before and after heat treatment, did not reveal major changes in chemical structure, while UHPLC-DAD-MS analysis revealed significant differences in the ratios of compounds, which are the result of possible chemical reactions, such as dehydrogenation, oxidation and isomerization.
... Pine resins are hydrophobic in nature (dislikes water), solvable in neutral solvents or non-polar organic solvents (Hexane, Oil solvent, and ethyl ether) [55]. It belongs to the class of oleoresin, a combination of resin with tree oil comprising of terpenoid composites/neutral compounds/hydrocarbons and during distillation 15-25% turpentine (C 10 H 16 ) and 70-80% gondorukem and 5-10% filths are produced [56], [57]. ...
... In the analysis, abietic acid was identified with a mass-to-charge ratio (m/z) of 302.92 in pine rosin. Rosin is composed of approximately 90% to 95% resin acids and around 5% to 10% alcohols, aldehydes, and hydrocarbons (Karlberg 2000;Wiyono et al. 2006). The most commonly found resin acids in pine rosin are abietadienes (abietic, levopimaric, palustric, and neoabietic) and pimaradienes (pimaric, isopimaric, and sandaracopimaric acid) (Valto et al. 2012;Cabaret et al. 2018). ...
Article
Full-text available
Iso-amyl ester rosin was synthesized and investigated for its potential utilization in medium density fiberboard (MDF) production. The isoamyl alcohol, the main starting material for the synthesis of isoamyl ester rosin, was obtained through the fractional distillation of fusel oil, a byproduct of bioethanol production. The optimum condition for the iso-amyl ester rosin synthesis was determined as: rosin (165 mmol), isoamyl alcohol (413 mmol), P-TSA/rosin 1.5% (w/w), and commercial additive/rosin 0.15% (w/w). The esterification reaction was followed by FT-IR and mass analysis. For MDF production, a water-repellent material, commercial paraffin (1.5% w/w relative to the dry fiber weight), iso-amyl ester rosin (1.5% and 2.0%; w/w), and unmodified rosin (1.5% and 2.0% w/w) were separately used. In addition, fresh wood fibers, 10% w/w urea formaldehyde (UF) adhesive (relative to the total dry fiber weight), and a 25% aqueous solution of ammonium chloride (as the hardening agent for the UF adhesive, at 0.5% w/w based on the solid adhesive content) were used. MDFs underwent various physical and mechanical tests. Isoamyl ester rosin showed promising results based on the analysis. The results showed that the isoamyl ester rosin can be considered as an alternative to paraffin in sustainable and environmentally friendly MDF production.
... Chemically resin components can be divided into volatile and solid fractions with an average mass ratio of 30% and 70%, respectively (Cabaret et al., 2019a). The volatile fraction is a complex blend of terpenoids composed mainly of monoterpens and sesquiterpenes with α-pinene, β-pinene, limonene, camphene and Δ3-carene being the dominant components in pines (Lai et al., 2020;Wiyono et al., 2006). Although the resin plays a very important role in the tree's defence strategy, the softening leading to increase in uidity due to rise in temperature can cause resin leakage on the surface during the use phase of the wood products. ...
Preprint
Full-text available
A major function of resin in trees is to provide defense against external attacks by releasing the resin flow on the attacked or damaged area. Nonetheless, the leakage of the resin on the surface can have a negative aesthetic and economic impact on wood material. The aim of this study was to investigate how heat treatment affects the chemo-physical properties of the resin of Pinus sylvestris L. in order to hinder the exudation on wood surface during service. To reduce the fluidity of the resin, it is necessary to remove the volatile fraction of resin, and several studies have been carried out in this direction, providing useful information about this process. The results from thermal analyses (DSC, TGA) confirmed that heat treatment at mild temperatures, 80 °C, 90 °C and 100 °C, respectively, had a positive effect on increasing the glass transition temperature T g and showed a good correlation between the T g and the residual volatile content. FTIR spectroscopy, before and after heat treatment, did not show major changes in chemical structures, whilst UHPLC-DAD-MS analysis revealed significant differences for the ratios of compounds, which are the result of possible chemical reactions, such as dehydrogenation, oxidation and isomerization.
... [10] While WPFAC does not present sharp differences regarding its behavior with water before and after weathering, both WPSC and WPRC have different characteristics regarding their wettability kinetics after weathering. Pine resin, constituted in great majority by terpenes -volatile organic compounds -as α-pinene, D 3 -carene and β-pinene, [45,46] can be degraded and have its terpenes oxidized by prolonged exposure to light and heat. [47] As terpenes are generally hydrophobic and of low solubility in water, [48,49 ] the deterioration of these molecules contributes to a more hygroscopic surface. ...
Article
This study presents a superficial analysis of different wood polymer composites (WPC) comprising polystyrene (WPSC), poly(furfuryl alcohol) (WPFAC), and pine resin (WPRC) when exposed to artificial weathering. The study investigates the influence of resin type on the composites, focusing on their chemical, colorimetric, morphological, and thermal properties. The main findings indicate WPSC exhibits poor resistance to weathering, allowing ultraviolet radiation damage on the lignocellulosic component of the composite, leading to oxidized groups formation. Conversely, WPFAC and WPRC demonstrate good wood protection capabilities by preventing significant deterioration of holocellulose and acting as filters for radiation and moisture. Moreover, WPFAC exhibits the lowest decrease in carbonyl index and O/C ratio, with reductions of 2.6 and 11.6%, respectively. These findings are significant as they demonstrate that poly(furfuryl alcohol) and pine resin can be used to produce WPCs that delay and mitigate wood degradation by weathering, contributing to the increased potential utilization of bioresins.
... Similarly, many marker compounds are determined in the measurement of EESI-TOF for spruce and pine burning as well as cow dung open burning. Compounds with 20-21 carbon atoms as shown in Fig. 6b for spruce and pine burning could be resin and conifer-needle-related, such as C 20 H 32 O 3 (likely isocupressic acid) (Mofikoya et al., 2020;Wiyono et al., 2006). However, C 20 H 30 O 2 mentioned in a previous section with notable abundance is not stably emitted in each spruce and pine burn. ...