Article

Viscosity and activation parameters of viscous flow of L-arginine in aqueous D- maltose monohydrate system over the temperature range (298.15 to 308.15) K

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Viscosity and activation parameters of viscous flow of L-arginine in aqueous D-maltose monohydrate system over the temperature range (298.15 to 308.15) K Abstract : Viscosities of L-arginine (0.025 to 0.2 mol kg –1) in varying concentrations of aqueous D-maltose monohy-drate (0 to 6 mass % of maltose monohydrate in water) have been measured at different temperatures, viz. 298.15 K, 303.15 K and 308.15 K. The experimental results are analysed in accordance with viscosity B-coefficients, viscosity B-coefficients of transfer, B tr , and variation of B with temperature, dB/dT. The Gibbs free energy of activation of viscous flow per mole of solvent,  ° 1 # , as well as per mole of solute,  ° 2 # , along with activation enthalpy, H ° 2 # , and activation entropy, S ° 2 # , using different concentrations of D-maltose monohydrate in aqueous medium are also evaluated using Feakin's transition-state theory. The results are discussed in terms of intermolecular interactions and that the solute acts as structure maker in the solvent system under study.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Although thermo-physical properties of many amino acids are known [14][15][16][17][18][19], studies involving methionine and aqueous saccharides seem to be scarce. This prompted us to look into the thermodynamic and transport behavior of methionine (0.025-0.200 molÁkg -1 ), a non-polar aliphatic amino acid consisting of an a-amino and a-carboxylic groups as well as S-methyl thioether side chain, in water and aqueous solutions of some saccharides (glucose: a mono saccharide, and sucrose as well as lactose: both disaccharides, all at 0.1 molÁdm -3 concentration) from 293.15 to 313.15 K, at 5 K intervals. ...
Article
Full-text available
The density, speed of sound and viscosity of methionine (0.025–0.200 mol·kg⁻¹) in water and some aqueous saccharides (0.1 mol·dm⁻³ glucose, 0.1 mol·dm⁻³ sucrose and 0.1 mol·dm⁻³ lactose) have been measured at temperatures of (293.15, 298.15, 303.15, 308.15 and 313.15) K. Using the experimental values of density and speed of sound, apparent molar volume, limiting apparent molar volume, transfer volume, as well as apparent molar isentropic compressibility, limiting apparent molar isentropic compressibility, transfer compressibility, partial molar expansibility, coefficient of thermal expansion, hydration number and taste behavior have been obtained. Jones–Dole coefficient, viscosity B-coefficients of transfer and variation of B with temperature have also been obtained from viscosity data. The Gibbs energy of activation of viscous flow per mole of solvent as well as per mole of solute, along with other activation parameters, were evaluated employing Feakin’s transition state theory. Graphical Abstract
  • A Pal
  • S Kumar
A. Pal and S. Kumar, J. Mol. Liq., 2004, 23, 109.
  • A K Nain
  • M Lather
  • Nettu
A. K. Nain, M. Lather and Nettu, J. Chem. Thermodyn., 2013, 63, 67.
  • J Crudden
  • G M Delaney
  • D Feakins
  • P J O Reilly
  • W E Waghorne
  • K G Lawrence
J. Crudden, G. M. Delaney, D. Feakins, P. J. O. Reilly, W. E. Waghorne and K. G. Lawrence, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 2207.
  • D Feakins
  • F M Bates
  • W E Waghorne
  • K G Lawrence
D. Feakins, F. M. Bates, W. E. Waghorne and K. G. Lawrence, J. Chem. Soc., Faraday Trans., 1993, 89, 3381.
  • D Feakins
  • W E Waghorne
  • K G Lawrence
D. Feakins, W. E. Waghorne and K. G. Lawrence, J. Chem. Soc., Faraday Trans. 1, 1986, 82, 563.
  • P Khanuja
P. Khanuja, Chem. Sci. Trans., 2013, 2, 1268.
  • J F Back
  • D Oakenfull
  • M B Smith
J. F. Back, D. Oakenfull and M. B. Smith, Biochemistry, 1979, 18, 5191.
  • P H Von
  • T Hippel
  • Schleich
P. H. Von Hippel and T. Schleich, Accounts Chem. Res., 1969, 2, 257.
  • K Zhuo
  • H Liu
  • H Zhang
  • Y Liu
  • J Wang
K. Zhuo, H. Liu, H. Zhang, Y. Liu and J. Wang, J. Chem. Eng. Data, 2008, 53, 57.
  • C Zhao
  • P Ma
  • J Li
C. Zhao, P. Ma and J. Li, J. Chem. Thermodyn., 2005, 37, 37.
  • A K Nain
  • R Pal
A. K. Nain and R. Pal, J. Mol. Liq., 2011, 159, 180; J. Chem. Thermodyn., 2013, 60, 98.
  • K Belibagli
  • E Ayranci
K. Belibagli and E. Ayranci, J. Soln. Chem., 1990, 19, 867.
  • R Palani
  • A Geetha
R. Palani and A. Geetha, Res. J. Phys., 2007, 1(2), 82.
  • H Uedaira
  • H Uedaira
H. Uedaira and H. Uedaira, Bull. Chem. Soc. Jpn., 1980, 53, 2451.
  • S Li
  • W Sang
  • R Lin
S. Li, W. Sang and R. Lin, J. Chem. Thermodyn., 2002, 34, 1761.
  • F Franks
F. Franks, Biophys. Chem., 2002, 96, 117.
  • Z Yan
  • J Wang
  • W Kong
  • J Lu
Z. Yan, J. Wang, W. Kong and J. Lu, Fluid Phase Equilib., 2004, 215, 143.
  • M A Riyazuddeen
  • Usmani
Riyazuddeen and M. A. Usmani, Thermochim. Acta, 2014, 575, 331.
  • K Rajagopal
  • J Johnson
K. Rajagopal and J. Johnson, Int. J. Eng. Sci., 2015, 4, 90.
  • A M Onero
  • E Moreno
  • J L Ojas
A. M. R onero, E. Moreno and J. L. R ojas, Thermochim. Acta, 1999, 328, 33.
  • R Palani
  • S Balakrishnan
  • G Arumugam
R. Palani, S. Balakrishnan and G. Arumugam, J. Phys. Sci., 2011, 22(1), 131.
  • D Feakins
  • D J Freemantle
  • K G Lawrence
D. Feakins, D. J. Freemantle and K. G. Lawrence, J. Chem. Soc., Faraday Trans., 1974, 70(1), 795.
  • G O Hernandez-Segura
  • M Campos
  • M Costas
  • L A Torres
G. O. Hernandez-Segura, M. Campos, M. Costas and L. A. Torres, J. Chem. Thermodyn., 2009, 41, 17.
  • D P Miller
  • J J De Pablo
D. P. Miller and J. J. de Pablo, J. Phys. Chem. (B), 2000, 104, 8876.
  • A K Nain
  • R Pal
  • R K Sharma
A. K. Nain, R. Pal and R. K. Sharma, J. Mol. Liq., 2012, 165, 154.
  • A Taravati
  • M Shokrzadeh
  • A G Ebadi
  • P Valipour
  • A T M Hassan
  • F Farrokhi
A. Taravati, M. Shokrzadeh, A. G. Ebadi, P. Valipour, A. T. M. Hassan and F. Farrokhi, World Appl. Sci. J., 2007, 2, 353.
  • G Jones
  • M Dole
G. Jones and M. Dole, J. Am. Chem. Soc., 1929, 51(10), 2950.
  • H D B Jenkins
  • Y Marcus
H. D. B. Jenkins and Y. Marcus, Chem. Rev., 1995, 95(8), 2695.
  • T C Bai
  • G B Yan
T. C. Bai and G. B. Yan, Carbohydr. Res., 2003, 338(24), 2921.
  • R Palani
  • G Srinivasan
  • B G Lakshmi
R. Palani, G. Srinivasan and B. G. Lakshmi, Int. J. Chem. Tech. Res., 2011, 3(1), 284.
  • A Ali
  • S Hyder
  • S Sabir
  • D Chand
  • A K Nain
A. Ali, S. Hyder, S. Sabir, D. Chand and A. K. Nain, J. Chem. Thermodyn., 2006, 38, 136.
  • R Bhat
  • N Kishore
  • J C Ahluwalia
R. Bhat, N. Kishore and J. C. Ahluwalia, J. Chem. Soc., Farady. Trans 1, 1988, 84, 2651.
  • R L Kay
  • T Vituccio
  • C Zawoyski
  • D F Evans
R. L. Kay, T. Vituccio, C. Zawoyski and D. F. Evans, J. Phys. Chem., 1966, 70(7), 2336.
  • P H Von Hippel
  • T Schleich
P. H. Von Hippel and T. Schleich, Accounts Chem. Res., 1969, 2, 257.
  • K Gekko
K. Gekko, J. Biochem., 1981, 90, 1633.
Theory of rate processes
  • S Glasstone
  • K J Laidler
  • H Erying
S. Glasstone, K. J. Laidler and H. Erying, "Theory of rate processes", McGraw Hill, New York, 1941.