ArticlePDF Available

Characterization of Calcium Lactate Prepared from Butter Clam Saxidomus purpuratus Shell Powder

Authors:

Abstract and Figures

To facilitate the effective use of butter clam shell as a natural calcium resource, we determined the optimal conditions for calcium lactate (BCCL) preparation with high solubility using response surface methodology (RSM). The polynomial models developed by RSM for pH, solubility and yield were highly effective in describing the relationships between factors (P<0.05). Increased molar ratios of calcined powder (BCCP) from butter clam shell led to reduced solubility, yield, color values and overall quality. The critical values of multiple response optimization to independent variables were 1.75 M and 0.94 M for lactic acid and BCCP, respectively. The actual values (pH 7.23, 97.42% for solubility and 423.22% for yield) under optimization conditions were similar to the predicted values. White indices of BCCLs were in the range of 86.70–90.86. Therefore, organic acid treatment improved color value. The buffer-ing capacity of BCCLs was strong, at pH 2.82 to 3.80, upon the addition of less than 2 mL of 1 N HCl. The calcium content and solubility of BCCLs were 6.2–16.7 g/100 g and 93.6-98.5%, respectively. Fourier transform analysis of infrared spectroscopy data identified BCCL as calcium lactate pentahydrate, and the analysis of microstructure by field emission scanning electron microscopy revealed an irregular form.
Content may be subject to copyright.
한수지 49(3), 301-309, 2016
301
Copyright © 2016 The Korean Society of Fisheries and Aquatic Science pISSN:0374-8111, eISSN:2287-8815
Korean J Fish Aquat Sci 49(3),301-309,2016
Original Article
개조개
(
Saxidomus purpuratus
)
백합목
백합과에
속하는
으로
2013
년에는
2,199
톤이
우리나라
여수
,
남해
마산
안에서
생산되었고
,
향과
감칠맛이
뛰어나며
지방이
적고
단백
질이
풍부한
고가의
자연산
식용
패류이다
(Ministry of Ocean
and Fisheries, 2014).
최근
수산물
섭취
증가에
따라
가공
중에
다양한
가공부산물이
발생하고
있으며
,
특히
패류의
2013
년에
346,000
정도가
생산되었고
,
육질을
채취하고
버려지는
패각은
패류
생산량의
50%
정도인
연간
173,000
정도
발생하는
것으로
추정된다
(Ministry of Ocean and Fisher-
ies, 2014).
지금까지
패각은
토양개량
,
비료첨가제
,
사료첨가
(Seco et al., 2014; Oliveira et al., 2013),
폐수정화
,
수질정
(Kwon et al., 2009)
한정된
분야에서
국한적으로
이용되
었다
.
패각은
중량
95-99%
탄산칼슘으로
이루어져
있어
(Bar-
ros et al., 2009; Kim et al., 2015),
고부가가치
칼슘소재로의
가능성이
높다
.
현재
우리나라의
식품첨가물공전에는
칼슘
강화용
화학
합성품으로
유기산을
이용하여
,
가용성을
높인
연산
칼슘
, L-
글리세로인산칼슘
,
글루콘산
칼슘
,
제일
(
,
)
인산칼슘
,
젖산칼슘
등이
허용되고
있다
.
특히
젖산칼슘은
무독
성의
수용성
(Maekawa et al., 1991)
으로
현재
제빵
(Ranhotra et
al., 1997),
두유
(Prabharaksa et al., 1989),
오렌지쥬스
(Sharma
et al., 2001),
요구르트
(Pirkul et al., 1997)
높은
흡수율을
개조개(
Saxidomus purpuratus
) 패각분말로부터 젖산칼슘의 제조 특성
윤인성·이균우·이현지·박성환·박선영
1
·이수광
1
·김진수
1
·허민수*
경상대학교 식품영양학과/해양산업연구소,
1
경상대학교 해양식품공학과/해양산업연구소
Characterization of Calcium Lactate Prepared from Butter Clam
Saxidomus purpuratus
Shell Powder
In Seong Yoon, Gyoon-Woo Lee, Hyun Ji Lee, Sung Hwan Park, Sun Young Park
1
, Su Gwang Lee
1
,
Jin-Soo Kim
1
and Min Soo Heu*
Department of Food and Nutrition/Institute of Marine Industry, Gyeongsang National University, Jinju 52828, Korea
1
Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064,
Korea
To facilitate the effective use of butter clam shell as a natural calcium resource, we determined the optimal conditions
for calcium lactate (BCCL) preparation with high solubility using response surface methodology (RSM). The poly-
nomial models developed by RSM for pH, solubility and yield were highly effective in describing the relationships
between factors (
P
<0.05). Increased molar ratios of calcined powder (BCCP) from butter clam shell led to reduced
solubility, yield, color values and overall quality. The critical values of multiple response optimization to independent
variables were 1.75 M and 0.94 M for lactic acid and BCCP, respectively. The actual values (pH 7.23, 97.42% for
solubility and 423.22% for yield) under optimization conditions were similar to the predicted values. White indices
of BCCLs were in the range of 86.70–90.86. Therefore, organic acid treatment improved color value. The buffer-
ing capacity of BCCLs was strong, at pH 2.82 to 3.80, upon the addition of less than 2 mL of 1 N HCl. The calcium
content and solubility of BCCLs were 6.2–16.7 g/100 g and 93.6-98.5%, respectively. Fourier transform analysis of
infrared spectroscopy data identied BCCL as calcium lactate pentahydrate, and the analysis of microstructure by
eld emission scanning electron microscopy revealed an irregular form.
Key words: Butter clam shell, Calcined powder, Calcium lactate, FT-IR, FESEM
This is an Open Access article distributed under the terms of
the Creative Commons Attribution Non-Commercial Licens
(http://creativecommons.org/licenses/by-nc/3.0/) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.
http://dx.doi.org/10.5657/KFAS.2016.0301 Korean J Fish Aquat Sci 49(3) 301-309, June 2016
Received 11 February 2016; Accepted 26 April 2016
*Corresponding author: Tel: +82. 55.772.1440 Fax: +82. 55.772.1430
E-m ail add res s: heu1837@dreamwiz.com
윤인성
이균우
이현지
박성환
박선영
이수광
김진수
허민수
302
지는
칼슘
보충제
(Lee et al., 1988)
로써
·
의약
산업에서
널리
사용되고
있으며
,
다양한
농작물과
절임식품들의
조직
강화제
(Wang et al., 1999)
로도
사용되고
있다
.
또한
젖산칼슘의
기능
으로는
항균작용
(Shelef, 1994),
골밀도
증진
(Mizunuma et al.,
1996),
항충치능
(Shrestha et al., 1982),
항발암
물질
(Reshef et
al., 1990; Wargovich et al., 1990)
로의
사용
등이
보고되었다
.
불용성의
탄산칼슘
(CaCO3,
패각분말의
주성분
)
또는
산화칼
(CaO,
소성분말
)
유기산과
반응하여
산성에서
용해도가
높아질
뿐만
아니라
,
흡수율
또한
개선이
된다
(Gurthrie, 1971;
Lee et al., 2015; Park et al., 2015).
유기산
중에서
젖산은
식품
,
섬유산업
,
화장품
제약
산업과
같은
다양한
산업에
적용
가능
하여
(Xu and Xu, 2014),
가용성과
흡수율이
개선된
유기산
슘을
제조하는데
이용이
가능하다
.
이를
이용한
젖산칼슘의
조는
일정
농도의
젖산용액과
탄산칼슘
또는
산화칼슘을
첨가
반응시키면
무색
결정의
5
수화염
(calcium lactate penta-
hydrated salt)
생성된다
(Lee and Kim, 2003).
앞서의
연구
(Kim et al., 2015)
에서
XRD
분석으로
개조개의
패각분말은
calcite
aragonite
,
소성분말은
portlandite
인되어
천연칼슘소재로의
이용이
가능하다고
하였다
.
따라서
,
연구에서는
개조개
패각분말을
고부가가치의
고순도
칼슘
제로
활용하고자
,
반응표면분석법을
통해
,
유기산인
젖산을
용하여
패각의
불용성
소성분말로부터
가용성
젖산칼슘
제조의
최적
조건을
검토하고
이의
특성에
대하여
살펴보고자
하였다
.
재료 방법
시약
실험에
사용한
시판
산화칼슘
(CaO, calcium oxide,
M.W.=56.08)
Junsei Chemical
(Tokyo, Japan)
제품을
,
젖산
[CH3CH(OH)COOH, lactic acid, M.W.=90.08]
Tedia
Company
(Faireld, California, USA)
분석
시약급을
구입
하여
사용하였다
.
개조개 패각분말(SP, shell powder) 소성분말(CP,
calcined powder)의 제조
개조개
(BC, butter clam) SP
CP
Kim et al. (2015)
법에
따라
제조하였다
.
먼저
개조개
패각에
부착된
이물질
제거
위한
수세
건조
(45, 26
시간
)
과정을
거친
다음
,
이를
(HMF-1000A, Hanil Electric, Seoul, Korea)
체가름
(256
mesh)
하여
패각분말
(SP)
제조하였다
.
소성분말
(CP)
패각
분말
(SP)
800, 8
시간
동안
회화로
(FH-08, Wisetherm digi-
tal mufe furnace, Daihan Scientic Co. Ltd, Seoul, Korea)
에서
소성
처리하여
제조하였다
.
가용성 개선 젖산칼슘 제조를 위한 중심합성계획
개조개
CP
로부터
가용성
젖산칼슘
(BCCL, butter clam calci-
um lactate)
제조는
반응표면분석법
(RSM, response surface
methodology)
사용하여
최적
처리조건을
구명하고자
하였
.
,
중심합성계획
(central composite design)
따른
독립변
(Xi)
젖산
(lactic acid, M.W.=90.08)
농도
(0.86-1.80 M,
X1)
산화칼슘
(CaO, M.W.=56.08)
농도
(0.29-1.70 M, X2)
5
단계로
부호화한
다음
(Table 1), factorial design (4), star
point (4)
central point (3)
구성한
11
개의
실험구로
설정
하여
,
액상의
젖산칼슘
반응물을
제조하였다
.
11
개의
액상
젖산칼슘을
감압여과장치
(WJ-15, circulating aspirator, Sibata
Scientic Technology Ltd., Tokyo, Japan)
여과지
(Advantec
No.2, Toyo Roshi Kaishi Ltd., Tokyo, Japan)
이용해
불순물
반응물을
제거하고
,
여과액을
건조기
(SWOF-105, Dai-
han Scientic, Seoul, Korea)
105
에서
24
시간
동안
건조하
시제
분말
BCCLs
제조하였다
.
또한
종속변수
(Yn)
pH
(Y1),
용해도
(Y2)
수율
(Y3)
하였으며
,
이를
3
반복
측정
하여
평균값을
회귀분석에
사용하였다
.
회귀분석에
의한
확인은
MINITAB
프로그램
(Minitab version 14 Korean,
Minitab Inc., State College, PA, USA)
,
독립변수와
종속변
수간의
상관관계는
Maple
프로그램
(Maple software version
12 Korean, Waterloo Maple Inc., Ontario, Canada)
이용
하였다
.
회귀분석
결과
,
임계점
(critical point)
최대점
(maxi-
mum)
또는
최소점
(minimum)
아닌
안장점
(saddle point)
경우에는
능선분석
(ridge analysis)
하여
최적점을
구하였다
.
Table 1. Experimental range and values of the independent vari-
ables in the central composite design for preparation of calcium
lactate from butter clam
Saxidomus purpuratus
calcined powder
Independent
variable Symbol Range levels
-1.414 -1 0+1 +1.414
Lactic acid (M) X
1
0.86 1.00 1.33 1.67 1.80
CaO (M) X
2
0.29 0.50 1.00 1.50 1.70
pH, 용해도 수율
11
액상
BCCLs
pH
pH meter (744, Metrohm, Heri-
sau, Switzerland)
사용하여
측정하였으며
,
용해도
(solubility,
%)
조건
액상
BCCLs
대해
감압여과
,
불용성의
잔사를
건조
(105, 5
시간
)
하여
중량을
측정하고
,
이를
시료
중량으로부터
공제한
값의
백분율로
구하였다
.
Solubility (%) = (Sample, g - Residue, g) / Sample, g × 100
수율
(Yield, %)
조건별
액상
BCCLs
대해
감압여과
여과액을
건조하여
(105, 5
시간
)
얻어진
가용성
분말의
무게
측정한
,
시료
중량의
백분율로
구하였다
.
Yield (%) = Dried ltrate, g / Sample, g ×100
개조개 패각으로 제조한 젖산칼슘의 특성
303
색차(Hunter's color value) 및 White index
시제
BCCLs
색차는
명도
(L, lightness),
적색도
(a, redness;
-a, greenness),
갈색도
(b, brownness; -b, blueness)
대해
시색차계
(ZE-2000, Nippon Denshoku Indusries Co., Tokyo,
Japan)
사용하여
측정하였으며
,
색차계는
사용하기
cali-
bration plate (L=96.92, a=-0.38, b=0.64)
이용하여
보정하였
.
또한
백색도는
다음
식으로부터
구하였다
.
White index = 100 - (100 -
L
)2 +
a
2 +
b
2
완충능
완충능은
Cho et al. (2001a)
방법을
다소
수정한
Lee et al.
(2015)
방법에
따라
측정하였다
.
일정량의
젖산칼슘
시료
(1
g)
탈이온수
(20 mL)
용해시키고
, 2,000
g
에서
15
분간
심분리한
,
상층액
(10 mL)
대해
1 N HCl
0.1 mL
첨가
하면서
pH
변화를
측정하였다
.
무기질 분석
무기질
분석
시료는
Kim et al. (2015)
방법에
따라
0.1 g
BCCLs
5 mL
6 N HCl
가하여
습식분해를
2
반복한
, 0.1 N HCl
사용하여
10 mL
정용하여
조제하였다
.
분석
시료는
ICP (inductively coupled plasma spectrophotome-
ter, Optima 4300 DV, PerkinElmer, Inc., Waltham, MA, USA)
사용하여
223±1 kPa
0.8 L/min
조건에서
분석하였다
.
칼슘 용해도
칼슘의
용해도
(calcium solubility, %)
Lee et al. (2015)
방법에
따라
, 20 mL
탈이온수에
각각
5 g
시판
CaO
BCCLs
첨가
상온에서
3
시간동안
진탕하면서
용해한
,
원심분리
(2,000
g
, 15 min)
하였다
.
다음
불용성의
잔사를
(105, 5
시간
)
하여
중량을
측정하고
,
이를
시료
중량으로
부터
공제한
값의
백분율로
구하였다
.
Calcium solubility (%) = (Sample, g - Residue, g)
/ Sample, g × 100
FT-IR 및 미세구조 분석
BCCL
구조
분석은
Kim et al. (2015)
방법에
따라
, FT-
IR (Fourier transform infrared spectrometer, Smart-APEX II
Ultra, Buruker Optics Inc., Billerica, MA, USA)
사용하여
4,000-400 cm-1
영역에서
측정하였으며
,
미세구조의
분석은
료를
코팅
(gold coating)
처리한
다음
, 15 KV, 2,000
율로
전계방출형
주사전자
현미경
(FESEM, Field Emission
Scanning Electron Microscope, Philps XL-30S FEG, Eind-
hoven, Netherlands)
으로
분석하였다
.
결과 고찰
중심합성계획에 의한 젖산칼슘 제조
반응표면분석법의
중심합성계획에
따라
독립변수는
젖산
(X1, M)
산화칼슘
(CaO, CP)
농도
(X2, M)
하고
, 11
실험구로
설정하여
시료
(factorial design, 4
실험구
; star
point, 4
실험구
; central point, 3
실험구
)
제조한
다음
,
속변수로서
pH,
용해도
(%)
수율
(%)
대한
결과를
Table 2
나타내었다
.
4
개의
factorial design
실험구
(Code 1-4)
경우
,
상대적
으로
CP
첨가
비율이
높은
Code 3
pH (10.89),
용해도
(23.10%)
수율
(170.54%)
첨가비율이
낮은
다른
3
개의
험구
(Code 1, 2
4)
비해
용해도
(92.08-97.68%)
수율
(237.20-663.04%)
현저히
낮은
수준이었다
. 4
개의
star point
실험구
(Code 5-8)
경우에는
,
상대적으로
젖산첨가
비율이
실험구
(Code 6
7)
용해도
(
각각
95.00
93.13%)
(
각각
413.75
845.31%)
CP
첨가
비율이
높은
Code 5
8
비해
높은
경향을
나타냈다
.
또한
3
개의
central point
실험구
(Code 9-11)
모두
동일한
code level
제조된
결과로
pH
10.73-11.21,
용해도는
71.07-79.46%,
수율은
314.02-
318.39%
이었다
.
Lee et al. (2015)
개조개
소성분말로부터
반응표면분석법
이용하여
제조한
초산칼슘의
용해도는
25.36-84.55%
범위
,
실험의
젖산칼슘
(23.10-97.68%)
다소
높은
경향이었
.
또한
Cho et al. (2001a)
Kim et al. (2003)
갑오징어
소성분말은
용해도가
낮고
, pH
12.9
부근으로
알칼리성이어
식용으로
이용하기에는
제약이
많아
유기산
(
초산
젖산
)
처리를
통해
pH
낮추면서
가용성은
개선된다고
하였고
,
아울
초산으로
처리한
것이
젖산으로
처리한
것에
비하여
중성
근의
유지가
용이하다고
보고하였다
. Ko and No (2002a)
조알
껍질분말
,
소성분말
젖산칼슘의
용해도는
각각
0.58%,
3.43%
97.7%
라고
하였으며
,
소성처리
젖산처리
과정을
통해
각각
6
168
배가량의
용해도가
개선되었으며
,
유기
처리가
칼슘제로서의
체내
이용률을
높일
있다고
(Cho et
al., 2001b)
하였다
. Kang et al. (2005)
꼬막
패각
소성분말로
부터
제조한
젖산
처리
농도별
젖산칼슘의
수율은
373-393%
하였으며
,
젖산농도와
꼬막
패각
소성분말의
비율에
따른
차이를
나타내지는
않는다고
보고하였다
.
이상의
실험
결과와
관련한
연구들에서
폐기되는
칼슘자원
(
난각
,
패각
,
)
으로부터
칼슘원으로
이용하기
위해서는
유기
제거를
위해
소성처리
과정이
필수적이며
,
가용성
개선을
해서는
적정
유기산
처리
조건의
최적화가
필요할
것으로
판단
되었다
.
개조개
CP
젖산처리
농도의
최적화를
위해
, pH,
용해도
수율의
결과
(Table 2)
대하여
MINITAB
통계
프로그램
으로
RSREG (response surface analysis by least-squares
윤인성
이균우
이현지
박성환
박선영
이수광
김진수
허민수
304
regression)
실시한
, 1
차항
(linear; X1, X2),
이차항
(qua-
dratic; X1
2, X2
2)
교차항
(cross-product; X1X2)
같은
귀방정식의
계수들과
이들의
유의성은
5%
수준에서
유의성
인정되어
(
데이터
미제시
),
이를
정리하여
작성한
pH (Y1),
용해도
(Y2),
수율
(Y3)
대한
반응모형
방정식은
각각
11.0033-1.1455X1+3.0946X2-1.3810X1
2 - 2.0910X2
2, 76.427 +
18.612X1 - 20.300X2 + 18.228X1X2
315.71 + 72.44X1-
203.75X2 + 93.59X2
2
이었다
.
3
개의
종속변수
(Yn)
대한
반응
모형방정식의
결정
계수
(R2)
pH (Y1),
용해도
(Y2),
수율
(Y3)
경우
모두
88.1%
상으로
적합한
모델이라고
판단되었으며
,
P
-value
또한
0.004
이하로
유의성이
인정되었다
(
데이터
미제시
).
반응
모형
방정
식을
토대로
구한
독립변수
(
젖산
CP
농도
)
이에
따른
종속변수
(
각각
pH,
용해도
,
수율
)
예측
값은
Table 3
타내었다
.
pH (Y1)
대한
젖산농도
(X1)
CP
농도
(X2)
부호화된
(code value)
경우
,
각각
0.9329, -0.4170
이었고
,
이를
실제
(uncoded value)
으로
환산하면
,
각각
1.64 M, 0.79 M
이었다
.
조건에서
제조한
BCCL
pH
7.00
으로
예측되었다
.
용해도
(solubility, Y2)
대한
젖산농도
(X1)
CP
농도
(X2)
실제
(uncoded value)
1.45 M
0.29 M
이었으며
,
조건에서의
용해도는
95.00%
예측
되었다
.
또한
,
수율
(yield, Y3)
경우
,
실제
(uncoded value)
각각
1.33 M
0.82 M
이었고
,
건에서의
예측
수율은
400.00%
이었다
.
한편
, BCCL
pH,
해도
수율을
모두
충족할
있는
최적
젖산농도
(X1)
CP
농도
(X2)
부호화된
(code value)
각각
1.2502
-0.1149
으로
,
이를
실제
(uncoded value)
으로
환산하면
각각
1.75 M
0.94 M
이었다
.
이들
최적
조건을
적용하여
BCCL
제조
다음
pH,
용해도
수율을
측정한
결과
(Table 4)
각각
pH
7.23, 97.42%, 423.22%
이들의
예측치인
pH 7.00,
용해도
95.65%,
수율
416.71%
비하여
3.3%
이내의
오차범위를
타내었다
.
색차(Hunter's color value) 및 White index
시제
BCCLs
색차는
Table 5
나타내었으며
,
먼저
젖산
Table 2. Central composite design and responses of dependent variables for preparation calcium lactate from butter clam
Saxidomus purpu-
ratus
calcined powder to independent variables
Code Coded levels of variable Response Coefcients
Assessed by
X
1
Lactic acid (M) X
2
CaO (M) Y
1
pH Y
2
Solubility (%) Y
3
Yield (%)
1-1 (1.00) -1 (0.50) 4.34 97.68 451.96
Factorial design
(4 points)
2 1 (1.67) -1 (0.50) 3.32 93.75 663.04
3-1 (1.00) 1 (1.50) 10.89 23.10 170.54
4 1 (1.67) 1 (1.50) 10.68 92.08 237.20
5-1.414 (0.86) 0 (1.00) 11.27 35.71 200.36
Star points
(4 points)
6 1.414 (1.80) 0 (1.00) 5.66 95.00 413.75
7 0 (1.33) -1.414 (0.29) 3.21 93.13 845.31
8 0 (1.33) 1.414 (1.70) 10.88 32.21 192.84
9 0 (1.33) 0 (1.00) 10.73 78.75 314.73
Central points
(3 points)
10 0 (1.33) 0 (1.00) 11.07 71.07 318.39
11 0 (1.33) 0 (1.00) 11.21 79.46 314.02
Table 3. Optimal conditions of multiple responses for preparation
of calcium lactate from butter clam
Saxidomus purpuratus
cal-
cined powder using MINITAB program
Dependent
variables
Independent
Variables
Critical value Predicted
value
Coded Uncoded
Y
1
pH
X
1
0.9329 1.64 7.00
X
2
-0.4170 0.79
Y
2
Solubility (%)
X
1
0.3387 1.45 95.00
X
2
-1.4142 0.29
Y
3
Yield (%)
X
1
0.0000 1.33 400.00
X
2
-0.3556 0.82
Mutiple
response
optimization
X
1
1.2502 1.75 Y
1
: 7.00
Y
2
: 95.65
Y
3
: 416.71
X
2
-0.1149 0.94
Table 4. Experimental and predicted results of verication in prep-
aration of calcium lactate from butter clam
Saxidomus purpuratus
calcined powder under optimized conditions
Dependent variables Predicted values Experimental values
Y
1
pH 7.00 7.23±0.32
Y
2
Solubility (%) 95.65 97.42±1.42
Y
3
Yield (%) 416.71 423.22±0.23
Experimental values are mean of three determinations.
개조개 패각으로 제조한 젖산칼슘의 특성
305
칼슘
제조의
주재료인
개조개
패각분말
(BCSP, butter clam
shell powder)
개조개
소성분말
(BCCP, butter clam calcined
powder)
명도
(81.26
87.33),
적색도
(1.38
0.32),
갈색
(3.15
5.39)
그리고
white index
80.95
86.23
이었
(Kim et al., 2015).
시제
BCCLs
명도를
나타내는
L
값은
87.52-91.34
범위로
, BCSP
BCCP
비해
개선된
것으로
확인되었다
.
적색도는
시제
BCCLs
값은
BCSP
보다
낮은
-1.62-1.38
범위였다
.
갈색도
(b, brownness; -b, blueness)
, Code 6
7
갈색도는
각각
9.11, 6.06
로서
BCCP
보다
값을
나타낸
반면
,
이를
제외한
나머지
8
개의
시제
BCCLs
갈색도는
-0.06-4.44
범위였다
.
이상의
색차
값으로부터
산출
시제
BCCLs
백색도
(white index)
86.70-90.86
범위로
소성처리
유기산
처리과정을
통해
백색도는
개선되었다
.
한편
,
가다랑어
(Kim et al., 2000a),
갑오징어
(Cho et al.,
2001b),
타조알
껍질
(Ko and No, 2002b)
소성처리를
통해
색도가
개선되었다고
하였으며
,
갑오징어
초산칼슘
(Kim et
al., 2003),
개조개
초산칼슘
(Lee et al., 2015),
바지락
초산칼슘
(Park et al., 2015),
꼬막
젖산칼슘
구연산칼슘
(Kang et al.,
2005)
경우도
유기산처리를
통한
칼슘제의
제조과정에서
색도가
개선됨을
확인할
있었다
.
완충능
시판
산화칼슘
(CaO)
중심합성계획에
따라
제조한
시제
BCCLs
완충능은
Fig. 1
나타내었다
.
시제
BCCLs
용액
(5%, w/v)
pH
젖산농도
/CP
첨가비율에
따라
pH 3.26-
12.20
범위였으며
,
이는
젖산농도에
비하여
CP
첨가
비율이
상대적으로
높을수록
pH
높아지는
경향이었다
.
한편
시판
화칼슘의
경우
, pH
12.75
였으며
, 0.8 mL
1 N HCl
첨가
Table 5. Hunter's color values and white index of calcium lactate from butter clam
Saxidomus purpuratus
calcined powder
Code L a b white index
1
BCSP 81.26 ±0.01 1.38 ±0.01 3.15 ±0.01 80.95
1
BCCP 87.33 ±0.03 0.32 ±0.01 5.39 ±0.01 86.23
187.52 ±0.01
j
0.21 ±0.01
d
4.44 ±0.01
c
86.75
287.80 ±0.02
i
1.38 ±0.00
a
3.28 ±0.01
d
87.29
388.59 ±0.04
g
1.05 ±0.01
b
-0.06 ±0.01
j
88.54
490.20 ±0.02
d
0.22 ±0.01
d
1.29 ±0.01
g
90.11
588.65 ±0.02
f
-0.36 ±0.01
h
2.48 ±0.01
e
88.38
691.34 ±0.02
a
-1.62 ±0.02
i
9.11 ±0.01
a
87.32
788.16 ±0.02
h
0.14 ±0.01
e
6.06 ±0.00
b
86.70
890.50 ±0.02
c
-0.10 ±0.01
g
0.88 ±0.01
h
90.46
991.08 ±0.02
b
-0.03 ±0.01
f
2.00 ±0.01
f
90.86
10 89.04 ±0.04
e
1.00 ±0.01
c
0.30 ±0.00
i
88.99
1Date were quoted from our previous paper (Kim et al., 2015).
Values represent the mean±SD of n=3.
Means with different letters within the same column are signicantly different at
P
<0.05 by Duncan's multiple range tests.
Fig. 1. Buffering capacity of calcium lactate prepared from butter
clam
Saxidomus purpuratuss
calcined powder.
0
3
6
9
12
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
pH
1 N HCl, mL
CaO 1
2 3
4 5
6 7
8 9
10 11
4.5
96.8 97.5 97.7 97.9 97.5 97.3 98.5 93.6 97.9 97.9 97.6
0
30
60
90
120
CaO 12345678910 11
Solubility, %
Sample
11.54
강한
완충능을
알칼리
영역에서
나타내었다
.
시제
BCCLs
대하여
1 N HCl
0.1 mL
단위로
첨가하면서
pH
변화를
검토한
완충능은
초기
0.1 mL
첨가에서
pH 3.24-
12.10
범위를
나타내었으며
, 1.0 mL
첨가에서는
pH 3.00-
4.41
범위로
완만한
pH
감소를
나타내었으며
,
약산성
영역에
완충능을
나타내었다
.
아울러
2 mL
첨가에서도
pH 2.82-
3.80
범위를
나타내어
완충능이
유지되는
것을
확인
있었
.
따라서
시제
BCCLs
칼슘
강화소재로서
다양하게
응용
능할
것으로
판단되었다
.
무기질 분석
앞서의
연구결과
(Kim et al., 2015)
에서
BCCP
칼슘함량
51,140 mg/100 g
이었으며
,
이를
사용하여
중심합성계획
윤인성
이균우
이현지
박성환
박선영
이수광
김진수
허민수
306
따라
제조한
시제
BCCLs
무기질
함량은
Table 6
.
먼저
칼슘
(Ca)
함량의
경우
, Code 2 (6,485 mg/100 g)
7
(6,200 mg/100 g)
제외하면
, 9
개의
시제
BCCLs
칼슘함
량은
11,201- 16,659 mg/100 g
범위였다
.
칼륨
(K)
함량은
11
개의
시제
BCCLs
30.78-81.98 mg/100 g
으로
젖산농도와
BCCP
첨가량
조건에
따라
칼륨
함량에
차이를
나타내었다
.
젖산농도에
비해
상대적으로
BCCP
첨가량이
많은
경우
,
높은
함량을
보여
이에
따른
차이라
추정되었다
.
시제
BCCLs
마그네슘
(Mg)
함량은
0.00-10.98 mg/100 g
이었으며
,
트륨
(Na)
경우
, 152.74-444.03 mg/100 g
나타내었다
.
가다랑어
소성분말
(Kim et al., 2000b)
칼슘은
36,300
mg/100 g,
갑오징어
소성분말
(Cho et al., 2001b)
칼슘이
70,518 mg/100 g,
타조알
껍질
소성분말
(Ko and No, 2002b)
경우는
49,980 mg/100 g,
그리고
바지락
소성분말
(Kim et
al., 2015)
칼슘
함량은
44,890 mg/100 g
으로
시료의
종류에
따라
칼슘함량에
차이가
있었다
.
한편
,
다슬기
소성
분말로부터
식초를
사용하여
제조한
초산칼슘
(Lee et al., 2004)
칼슘함량
사용한
식초의
종류
따라
16,310-27,150 mg/100 g
범위였
으며
,
개조개
초산칼슘
(Lee et al., 2015)
경우
, 20,671-22,769
mg/100 g
범위
, Kim et al. (2003)
갑오징어
소성분말로부
제조한
초산
젖산칼슘의
칼슘함량은
각각
21,320-25,700
mg/100 g
12,060-12,650 mg/100 g
범위
,
타조알
껍질
젖산
칼슘
(Ko and No, 2002a)
칼슘함량은
39,700 mg/100 g
이라
보고하였다
.
이상의
결과와
연구보고에서
가용성
개선을
하여
소성
처리하는
경우
칼슘함량이
증가하는
것은
고온가열
처리에
의해
이물질
유기물의
제거
이외에도
주성분인
탄산
칼슘으로부터
이산화탄소가
휘발하여
산화칼슘이
되어
칼슘이
차지하는
비율이
상대적으로
증가하기
때문이다
.
또한
,
이의
기산
처리를
통해
유기산과
산화칼슘인
소성분말간의
농도
비에
따른
화학반응으로
일정
칼슘함량
수준의
유기산
칼슘이
생성되는
것이
확인되었다
.
칼슘 용해도
중심합성계획에
따라
제조한
11
개의
시제
BCCLs
시판
CaO
20% (w/w)
용액에
대한
칼슘
용해도는
Fig. 2
같다
.
시판
CaO
칼슘
용해도는
4.5%
이었으며
,
시제
BCCLs
우에는
93.6-98.5%
범위의
칼슘
용해도를
나타내었다
.
실험
에서는
100 mL
탈이온수에
시판
CaO
0.9 g,
시제
BCCLs
18.7-19.7 g
용해되었다
.
따라서
,
불용성의
산화칼슘에
하여
,
유기산
처리과정을
통한
젖산칼슘의
용해도는
21.8
개선되었다
.
한편
,
산화칼슘
(M.W. 56.08)
젖산칼슘
(M.W.
308.29)
분자량을
고려한
칼슘용해도
(net calcium solu-
bility, %)
시판
CaO
0.63%,
그리고
시제
BCCLs
2.43-
2.56%
환산됨으로써
,
칼슘용해도는
3.8
개선된
으로
나타났다
.
앞서의
연구
(Lee et al., 2015)
에서
개조개
20%
Fig. 2. Comparison of calcium solubility of calcium lactate from
butter clam
Saxidomus purpuratus
calcined powder.
0
3
6
9
12
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
pH
1 N HCl, mL
CaO 1
2 3
45
6 7
89
10 11
4.5
96.8 97.5 97.7 97.9 97.5 97.3 98.5 93.6 97.9 97.9 97.6
0
30
60
90
120
CaO 12345678910 11
Solubility, %
Sample
Table 6. Minerals content (mg/100 g sample) of calcium lactate from butter clam
Saxidomus purpuratus
calcined powder
Code Ca KMg Na
115191.35 ±114
b
32.55 ±1.89
i
10.98 ±0.10
a
190.56 ±1.41
h
26485.15 ±106
h
50.10 ±1.80
f
7.40 ±0.11
c
189.06 ±1.91
h
316659.20 ±203
a
40.90 ±0.96
g
1.74 ±0.06
e
444.03 ±11.92
a
414756.94 ±14
c
30.78 ±0.47
i
0.87 ±0.00
g
176.61 ±1.75
i
512917.50 ±20
e
81.98 ±1.37
a
0.28 ±0.02
j
358.75 ±2.48
b
614562.50 ±27
c
53.98 ±1.13
d
10.55 ±0.07
b
211.38 ±1.37
f
76200.10 ±45
i
50.62 ±0.87
df
6.21 ±0.04
d
152.74 ±1.47
j
812105.30 ±10
f
64.20 ±0.60
b
0.00 ±0.01
k
325.07 ±2.58
c
913465.57 ±30
d
60.48 ±0.21
c
0.45 ±0.01
i
242.02 ±2.62
e
10 16590.00 ±324
a
52.98 ±1.70
de
1.05 ±0.07
f
290.25 ±2.38
d
11 11201.49 ±258
g
38.06 ±2.57
h
0.60 ±0.05
h
202.04 ±3.16
g
Values represent the mean±SD of n=3.
Means with different letters within the same column are signicantly different at
P
<0.05 by Duncan's multiple range tests.
개조개 패각으로 제조한 젖산칼슘의 특성
307
(w/w)
초산칼슘
용액의
칼슘용해도는
97.0-99.6%
이었으며
,
자량을
고려한
칼슘
용해도는
4.27-4.38%
라고
하였다
.
험의
개조개
젖산칼슘은
개조개
초산칼슘에
비하여
단순
용해
도는
비슷한
수준이었으나
,
칼슘용해도에서는
55.5-60.0%
수준으로
초산칼슘에
비해
상대적으로
칼슘의
가용성이
낮은
것으로
나타났다
.
이는
갑오징어갑
소성분말로
제조한
초산
젖산칼슘의
칼슘
용해도가
각각
5.27-5.30%
1.35-1.38%
(w/v)
나타내어
초산칼슘의
용해도가
젖산칼슘
용해도
보다
높다고
보고와
유사하였다
(Kim et al., 2003).
이상의
결과와
연구보고에서
소성분말로부터
유기산처리는
획기적으로
칼슘
가용성을
높였으며
,
사용
유기산의
분자량이
작을수록
용해도가
높다는
것이
확인
되었다
.
FT-IR 및 SEM 분석
최적조건에서
제조한
BCCL
FT-IR
이용한
결정구조
(Fig. 3)
에서
,
시제
BCCL
spectrum
C-X
흡수밴드인
547 cm-1, C-H
흡수밴드인
672, 766, 859
2984 cm-1, C-O
흡수밴드인
1031, 1281 cm-1, C=C
흡수밴드인
1,438 cm-1,
C=C/C-H
흡수밴드인
1484 cm-1, C=O
흡수밴드인
1,578 cm-
1, O-H
흡수밴드인
3,375 cm-1
검출되었으며
,
젖산칼슘
5
화물
(calcium lactate pentahydrate)
동정되었다
.
한편
,
앞서
연구
(Kim et al., 2015)
에서
BCCP
spectrum
C-H
수밴드인
703, 875 cm-1, C-O
흡수밴드인
1,141 cm-1, C=C/C-
H
흡수밴드인
1,484 cm-1, C=O bond
흡수밴드인
1,781 cm-1
O-H bond
흡수밴드인
3,614 cm-1
검출되어
, portlandite
(
수산화칼슘
)
동정되었다
. Park et al. (2008)
탄산칼슘의
polymorphs
로서
calcite
aragonite
이용한
젖산칼슘의
FT-
IR
스펙트럼
특징은
3,000-3,500 cm-1
범위에서
강한
O-H
결합
1,500-1,750 cm-1
범위에서의
카르보닐
결합이라고
하였으
, Lee and Kim (2003)
다슬기
분말
젖산칼슘의
FT-IR
석에서도
젖산칼슘의
전형적인
특징인
O-H
결합
, C=O
결합
,
C-H
결합이
각각
3,000-3,500 cm-1, 1,500-1,750 cm-1, 1,300-
1,400 cm-1
파장범위에서
나타난다고
하여
,
연구결과와
치하는
경향이었다
.
주사
전자
현미경
(FESEM)
의한
개조개
CP
미세구조
(Kim et al., 2015)
다공성이
없는
1-10 μm
비정형의
결정
구조로
확인되었으며
,
개조개
소성분말로
제조
BCCL
미세구조
(Fig. 3)
에서도
마찬가지로
비정형
결정
(irregular crystal)
으로
관찰되었다
.
한편
,
침강성
탄산칼슘으로
제조한
젖산칼슘의
SEM
관찰을
통해
판상형의
결정이라고
실험결과와는
형태상에서
차이를
나타내었다
(Park et al.,
2008).
이러한
차이는
젖산칼슘의
제조에
있어
,
칼슘원의
차이
(
산화칼슘과
침강성
탄산칼슘
)
기인하는
것으로
판단되었다
.
패류의
대표적인
가공부산물인
패각은
칼슘소재뿐만
아니라
,
칼슘
용해도를
높인
유기산
칼슘의
제조를
통한
칼슘강화
식품
Fig. 3. FT-IR Spectra (Left) and Scanning electron micrograph (×2,000) (Right) of calcined powder (BCCP, Up) and calcium lactate (BCCL,
Bottom).
윤인성
이균우
이현지
박성환
박선영
이수광
김진수
허민수
308
소재로의
이용
가능성이
높다고
판단되었다
.
References
Barros MC, Bello PM, Bao M and Torrado JJ. 2009. From waste
to commodity: transforming shells into high purity cal-
cium carbonate. J Cleaner Prod 17, 400-407. http://dx.doi.
org/10.1016/j.jclepro.2008.08.013.
Cho ML, Heu MS and Kim JS. 2001a. Food component char-
acteristics of cuttle bone as a mineral source. J Korean Fish
Soc 34, 478-482.
Cho ML, Heu MS and Kim JS. 2001b. Study on pretreatment
methods for calcium extraction from cuttle bone. J Korean
Fish Soc 34, 483-487.
Guthrie HA. 1971. Introductory Nutrition, 2nd edn. Mosby,
Saint Louis, U.S.A., 109-111.
Kang MS, Soh GS and Shin DH. 2005. Purity improvement of
calcium lactate and calcium citrate prepared with shell of
Anadarac tegillarca granosa. J Fd Hyg Safety 20, 128-133.
Kim HS, Lee MY and Lee SC. 2000b. Characteristics of sepiae
os as a calcium source. J Korean Soc Food Sci Nutr 29, 743-
746.
Kim JS, Cho ML, Heu MS, Cho TJ, An HJ and Cha YJ. 2003.
Solubility improvement of cuttle bone powder using or-
ganic acids. J Korean Fish Soc 36, 11-17. http://dx.doi.
org/10.5657/kfas.2003.36.1.011.
Kim JS, Cho ML and Heu MS. 2000a. Preparation of calcium
powder from cooking skipjack tuna bone and its char-
acteristics. J Korean Fish Soc 33, 158-163. http://dx.doi.
org/10.3746/jkfn.2007.36.6.766.
Kim JS, Jung NY, Jang SJ, Lee HJ, Park SH, Kim MJ and Heu
MS. 2015. Characteristics of the shells and calcined pow-
ders from the butter clam Saxidomus purpuratus and little-
neck clam Ruditapes philippinarum as a natural calcium re-
source. Korean J Fish Aquat Sci 48, 168-177. http://dx.doi.
org/10.5657/KFAS.2015.0168.
Ko MK and No HK. 2002a. Preparation of calcium lactate from
ostrich egg shell. J Korean Soc Food Sci Nutr 31, 241-245.
http://dx.doi.org/10.3746/jkfn.2002.31.2.241.
Ko MK and No HK. 2002b. Studies on characteristics of ostrich
egg shell and optimal ashing conditions for preparation of
calcium lactate. J Korean Soc Food Sci Nutr 31, 236-240.
http://dx.doi.org/10.3746/jkfn.2002.31.2.236.
Kwon YT, Lee CW and Yun JH. 2009. Development of vermi-
cast from sludge and powdered oyster shell. J Clean Prod 17,
708-711. http://dx.doi.org/10.1016/j.jclepro.2008.11.014.
Lee GK, Kim YM and Min YC. 1988. The production of cal-
cium lactate by Lactobacillus sporogenes. II. Production of
calcium lactate. Korean J Food Nutr 1, 102-107.
Lee HJ, Jung NY, Park SH, Song SM, Kang SI, Kim JS and Heu
MS. 2015. Characteristics and preparation of calcium acetate
from butter clam (Saxidomus purpuratus) shell powder by
response surface methodology. J Korean Soc Food Sci Nutr
44, 888-895. http://dx.doi.org/10.3746/jkfn.2015.44.6.888.
Lee MY, Lee YK and Kim SD. 2004. Quality characteristics
of calcium acetate prepared with vinegars and ash of black
snail. J Korean Soc Food Sci Nutr 33, 593-597.
Lee YK and KIM SD. 2003. Preparation and characteristics
of calcium lactate from black snail. Nutraceuticals Food 8,
166-172.
Maekawa A, Matsushima Y, Onodera H, Shibutani M, Yoshida
J, Kodama Y, Kurokawa Y and Hayashi Y. 1991. Long-term
toxicity/carcinogenicity study of calcium lactate in F344
rats. Food Chem Toxcol 29, 589-594.
Ministry of Ocean and Fisheries. 2014. Yearbook of marine
resource. [Internet] Retrieved from http://www.mof.go.kr/
article/view.do?articleKey=5197&boardKey=32&menuKe
y=396&currentPageNo=1 on Jun 2015.
Mizunuma H, Okano H, Soda MY, Tokizawa S, Kagami I, Mi-
yamoto S, Honjo SI and Ibuki Y. 1996. Calcium supplements
increase bone mineral density in women with low serum
calcium levels during long-term estrogen therapy. Endocr J
43, 411-415. http://dx.doi.org/10.1507/endocrj.43.411.
Oliveira DA, Benelli P and Amante ER. 2013. A literature review
on adding value to solid residues: egg shells. J Clean Prod
46, 42-47. http://dx.doi.org/10.1016/j.jclepro.2012.09.045.
Park JW, Cho KH, Park JK, Ahn JW and Han C. 2008. A study
on the synthesis of calcium lactate using precipitated cal-
cium carbonate. J Korean Ind Eng Chem 19, 173-178.
Park SH, Jang SJ, Lee HJ, Lee GW, Lee JK, Kim YJ, Kim JS
and Heu MS. 2015. Optimization of calcium acetate prepa-
ration from littleneck clam (Ruditapes philippinarum) shell
powder and its properties. Korean J Food Sci Technol 47,
321-327. http://dx.doi.org/10.9721/kjfst.2015.47.3.321.
Pirkul T, Temiz A and Erdem YK. 1997. Fortication of yoghurt
with calcium salts and its effect on starter microorganisms
and yoghurt quality. Inter Dairy J 7, 547-552. http://dx.doi.
org/10.1016/s0958-6946(97)00030-7.
Prabharaksa C, Olek AC and Steinkraus KH. 1989. Enrichment
of soybean milk with calcium. Acta Biotechnol 9, 9-16.
http://dx.doi.org/10.1002/abio.370090103.
Ranhotra GS, Gelroth JA, Leinen SD and Schneller FE. 1997.
Bioavailability of calcium in breads fortied with different
calcium sources. Cereal Chem 74, 361-363. http://dx.doi.
org/10.1094/cchem.1997.74.4.361.
Reshef R, Rozen P, Fireman Z, Fine N, Barzilai M, Shasha SM
and Shkolnik T. 1990. Effect of a calcium-enriched diet on
the colonic epithelial hyperproliferation induced by N-meth-
yl-N'-nitro-N-nitrodoguanidine in rats on a low calcium and
fat diet. Cancer Res 50, 1764-1767.
Seco N, Fernandez-Sanjurjo MJ, Nunez-Delgado A and Alva-
rez E. 2014. Spreading of mixtures including wastes from
the mussel shell treatment industry on an acid soil: effects
on the dissolved aluminum species and on pasture produc-
개조개 패각으로 제조한 젖산칼슘의 특성
309
tion. J Clean Prod 70, 154-163. http://dx.doi.org/10.1016/j.
jclepro.2014.02.038.
Sharma M, Beuchat LR, Doyle MP and Chen J. 2001. Survival
of Salmonellae in pasteurized, refrigerated calcium-fortied
orange juice. J Food Prot 64, 1299-1304.
Shelef LA. 1994. Antimicrobial effects of lactates: a review. J
Food Prot 57, 445-415.
Shrestha BM, Mundorff SA and Bibby BG. 1982. Preliminary
studies on calcium lactate as an anticaries food additive.
Caries Res 16, 12-17. http://dx.doi.org/10.1159/000260570.
Wang L, Sondi I and Matijevic E. 1999. Preparation of uniform
needle-like aragonite particles by homogeneous precipita-
tion. J. Colloid Interface Sci 218, 545-553. http://dx.doi.
org/10.1006/jcis.1999.6463.
Wargovich M, Allnutt D, Palmer C, Anaya P and Stephens LC.
1990. Inhibition of the promotional phase of azoxymetha-
neinduced colon carcinogenesis in the F344 rat by calcium
lactate: Effect of simulating two human nutrient density lev-
els. Cancer Lett 53, 17-25. http://dx.doi.org/10.1016/0304-
3835(90)90005-i.
Xu K and Xu P. 2014. Efcient calcium lactate production by
fermentation coupled with crystallization-based in situ prod-
uct removal. Bioresour Technol 163, 33-39. http://dx.doi.
org/10.1016/j.biortech.2014.04.002.
... 2,18 Calcium lactate is composed of two lactate (CH 3 CHOHCO 2 − ) anions and one calcium (Ca 2+ ) cation. Two crystal forms, namely, calcium lactate pentahydrate (Ca(CH 3 CHOHCOO) 2 ·5H 2 O) 19,20 and calcium lactate monohydrate (Ca(CH 3 CHOHCOO) 2 ·H 2 O), 21 were previously reported in the literature. Calcium lactates have been employed as an antidote for soluble fluoride ingestion, 22 for hypocalcemia, 23 for prevention of tetany, as an anti-tartar agent in some mouthwashes and toothpaste, as an antacid, 24 and as a calcium source for treating calcium deficiencies. ...
... The results showed that the reaction temperature of 100°C, reaction time of 5 h, waste powder-to-lactic acid ratio of 1:17 g/mL, excessive rate of the eggshell of 60%, stationary time of 15 min in eggshell isolation, and stirring time of 10 min provided the highest calcium lactate production yield (94.66%). Yoon et al. 20 prepared calcium lactate by using a butter-clam shell as a natural calcium resource. The optimal preparation condition was examined by the response surface methodology (RSM). ...
... This high solubility property of CL6 CS is suitable for the preparation of immediate-release tablets for use as a calcium source for treating calcium deficiencies. 18 The solubility values obtained in this research with the highest value of 97.75% for CL6 CS products are in good agreement with the data reported by Yoon et al. 20 They used the butterclam shell as a calcium source to prepare calcium lactate powders in the pentahydrate from (Ca(CH 3 CHOHCOO) 2 · 5H 2 O). They prepared 11 calcium lactate samples, investigated the solubility of each sample, and observed the variable solubility in the range of 93.6−98.5% with an average value of 97.3%. ...
Article
Full-text available
This work presents the efficient, green, and low-cost preparation of calcium lactate by using bivalve-shell wastes (cockle, mussel, and oyster shells) as raw materials. Three bivalve shells, a cockle, mussel, and oyster, were used separately as an alternative calcium-source material for the preparation of calcium lactate. The bivalve-shell waste was cleaned and milled, obtaining calcium carbonate (CaCO3) powder, which reacted to the lactic acid, forming calcium lactate. The effects of different calcium sources (cockle, mussel, and oyster) and different lactic acid concentrations (6, 8, and 10 mol/L) on the physicochemical properties of the synthesized calcium lactates were then investigated. The results pointed out that the highest solubility of the product was observed when 6 mol/L lactic acid and cockle-shell derived CaCO3 were employed for the calcium lactate preparation. The thermal decompositions of all calcium lactates occurred in three processes: dehydration, ethyl-lactate elimination, and decarbonization, respectively. The results, obtained from an infrared spectrometer, X-ray diffractometer, thermogravimetric analyzer, and scanning electron microscope, confirmed the formation of calcium lactate pentahydrate (Ca(CH3CHOHCOO)2·5H2O). The diffractograms also indicated the presence of two enantiomers of Ca(CH3CHOHCOO)2·5H2O, namely, of dl- and l-enantiomers, which depended on the lactic acid concentration used in the preparation process. The morphologies of calcium lactates show the firewood-like crystals in different microsizes, together with smaller irregular crystals. In summary, this work reports an effective process to prepare the valuable calcium lactates by using the cheap bivalve-shell-derived CaCO3 as a renewable calcium source.
... (Shelef, 1994), (Mizunuma et al., 1996), (Shrestha et al., 1982), (Reshef et al., 1990;Wargovich et al., 1990) . (CaCO 3 ) (CaO) , (Gurthrie, 1971;Park et al., 2015;Yoon et al., 2016). , , (Xu and Xu, 2014), . ...
... 46% . , (Yoon et al., 2016) 23.10-97.68% , (31.85-98.30%) ...
... , (Yoon et al., 2016) 0.1 mL pH 3.24-12.10 , 2.0 mL pH 2.82-3.80 ...
Article
Full-text available
Clamshells, which comprise more than 50% of a clam’s weight, are a major byproduct of the clam industry and are mainly composed of insoluble calcium carbonate. This study investigates the use of clamshells as a natural calcium resource. Highly soluble powdered calcium lactate (LCCL) was prepared from the calcined powdered shells of littleneck clams (LCCP) using response surface methodology (RSM) to predict optimum conditions. These conditions, as derived from pH, solubility, and yield of 11 LCCLs manufactured according to the RSM model, were 1.80 M lactic acid and 1.13 M LCCP. The actual values of pH (6.98), solubility (93.99%), and yield 351.23%) under the optimized conditions were as predicted. The derived LCCL exhibited a strong buffering capacity in the range of pH 2.78-3.90 when combined with less than 2 mL of 1 N HCl. The ranges of calcium content and solubility of LCCL were 7.7-17.5 g/100 g and 96.6-98.9%, respectively. Fourier transform infrared spectroscopy (FT-IR) of the LCCL identified it as calcium lactate pentahydrate, and field emission scanning electron microscopy (FESEM) revealed an irregular and rod-like microstructure. These results confirm the potential use of clamshells, converted to highly soluble organic acid calcium, as an additive to enhance calcium content in food ingredients.
... As shown in FTIR spectra in Figure 2b, the wide absorption peak between 3500 and 2700 cm −1 was associated with the water O-H stretching vibrations for the crystalline product. Moreover, the C=O stretching and C−H bending vibrations were assigned to the absorption peaks at ∼1560 cm −1 , and ∼1315 cm −1 , respectively [27]. ...
Article
The objective of this study is to investigate the thermal degradation kinetics and thermodynamics of the calcium lactate pentahydrate (CLP) crystals by means of a thermogravimetric analyzer (TGA) at four different heating rates from 25°C to 1000°C in N2 atmosphere. First, the CLP crystals were precipitated at pH 6 and 25°C in a batch-type crystallizer and the obtained crystals were characterised by X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The XRD result showed that the calcium l-lactate pentahydrate (L-CLP) was the only crystalline phase produced. Then, the activation energy and pre-exponential factor of thermal degradation were determined based on the Coats–Redfern, Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Starink models. The degradation reaction order was determined as 1.5 by Coats-Redfern model. The average activation energy of the CLP was 34.7, 33.0, and 33.3 kJ/mol for the FWO, KAS, and Starink models, respectively. Thermodynamic parameters as changes in enthalpy, entropy and Gibbs free energy were calculated depending on the conversion degree. Finally, TGA in combination with FTIR and mass spectrometer (MS) was utilised to detect the evolved gases during the degradation of CLP. H2O and CO2 were identified as the main evolved products.
Article
Full-text available
The scallop shell waste (Pectinidae, one of saltwater clams) was used as a raw material (precursor) to prepare calcium lactate (Ca(C2H4OHCOO)2), and the physicochemical properties of scallop-derived calcium lactate were then investigated. The scallop waste was first ground to obtain calcium carbonate (CaCO3) powder, and the calcium lactate compounds were successfully synthesized by the reactions between shell-derived CaCO3 and lactic acid (C2H4OHCOOH). The short preparation time, high percentage yield, and low-cost production are the preferred manners, and, in this research, it was the reaction of 70 wt % lactic acid and scallop-derived CaCO3. The thermal decompositions of both CaCO3 precursor and all prepared calcium lactates resulted in the formation of calcium oxide (CaO), which is widely used as a catalyst for biodiesel production. By comparing with the literature, the results obtained from the characterization instruments (infrared spectrophotometer, X-ray diffractometer, thermogravimetric analyzer, and scanning electron microscope) confirmed the formation and crystal structure of both CaCO3 and its calcium lactate product. The morphologies of calcium lactate show different sizes depending on the acid concentration used in the reaction process. Consequently, this work reports an easy, uncomplicated, low-cost technique to change the cheap calcium compound product (scallop CaCO3) derived from shellfish waste to the valuable compound (calcium lactate), which can be used in many industries.
Article
Full-text available
For effective utilization of butter clam shell as a natural calcium resource, the optimal conditions for preparation of calcium acetate (BCCA) with high solubility were determined using response surface methodology (RSM). The polynomial models developed by RSM for pH, solubility, and yield were highly effective in describing the relationships between factors (P<0.05). Increased molar ratio of calcined powder (BCCP) from butter clam shell led to reduction of solubility, yield, color values, and overall quality. Critical values of multiple response optimization to independent variables were 2.70 M and 1.05 M for acetic acid and BCCP, respectively. The actual values (pH 7.04, 93.0% for solubility and 267.5% for yield) under optimization conditions were similar to predicted values. White indices of BCCAs were in the range of 89.7∼93.3. Therefore, color value was improved by calcination and organic acid treatment. Buffering capacity of BCCAs was strong at pH 4.88 to 4.92 upon addition of ∼2 mL of 1 N HCl. Calcium content and solubility of BCCAs were 20.7∼22.8 g/100 g and 97.2∼99.6%, respectively. The patterns of fourier transform infrared spectrometer and X-ray diffractometer analyses from BCCA were identified as calcium acetate monohydrate, and microstructure by field emission scanning electron microscope showed an irregular form.
Article
Full-text available
The optimal condition for preparation of powdered calcium acetate (LCCA) which has high solubility, from calcined powder (LCCP) of the littleneck clam shell by response surface methodology (RSM) was examined. Increased molar ratio of LCCP led to reduced solubility, yield, color values, and overall quality. The critical values of multiple response optimization of independent variables were 2.57 M of acetic acid and 1.57 M of LCCP. The actual values (pH 7.0, 96.1% for solubility, and 220.9% for yield) under the optimized condition were similar to the predicted values. LCCA showed strong buffering capacity between pH 4.89 and 4.92 on addition of ~2 mL of 1 N HCl. The calcium content and solubility of LCCA were 21.9-23.0 g/100 g and 96.1-100.1%, respectively. The FT-IR and XRD patterns of LCCA were identified as calcium acetate monohydrate, and FESEM images revealed an irregular and rod-like microstructure.
Article
Full-text available
Shell waste from the butter clam Saxidomus purpuratus and littleneck clam Ruditapes philippinarum is a large by-product of shellfish aquaculture, and it is desirable to convert it into value-added products for industrial applications. In this study, calcium carbonate (CaC) polymorphs from butter clam (BCSP) and littleneck clam (LCSP) shell powders and commercial CaC were characterized using Fourier transmission infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results revealed that the optimal calcination conditions to eliminate organic substances and improve solubility for both BCSP and LCSP were 800°C for 8 h in an electrical furnace. Calcination improved the white index of the butter clam (BCCP) and littleneck clam (LCCP) calcined powder compared with shell powders. The calcium content in BCCP (51.1%) was higher than that of LCCP (44.9%) or commercial calcium oxide (CaO, 44.7%). The XRD patterns of BCCP and LCCP were similar to that of CaO. Cubic-like crystals of CaC and irregular crystals of BCCP and LCCP were observed by SEM. The FT-IR and XRD analyses revealed the presence of calcite and aragonite in the BCSP and aragonite in the LCSP, whereas the CaC contained calcite. These results indicate that butter and littleneck clam shells are potential biomass resources for calcium carbonate and calcium oxide.
Article
Full-text available
As a pan of a study on effective use of seafood processing by-products, such as cuttle bone as a calcium source, we examined on the kind of organic acid (acetic acid and lactic acid), reaction concentration (mole ratio of calcium to mole of organic acid), reaction temperature and reaction time (624 hours) as reaction conditions for the solubility improvement of cuttle bone powder. The high soluble cuttle bone powder was also prepared from the optimal reaction conditions and partially characterized. From the results on examination of reaction conditions, the high soluble cuttle bone powder was prepared with 0.4 in mole ratio of a calcium to mole of a acetic acid at room temperature for 12 hours, Judging from the patterns of IR and X-ray diffraction, the main component of the high soluble cuttle bone powder was presented as a form of calcium acetate, and a scanning electron micrograph showed an irregular form. The soluble calcium content in the high soluble cuttle bone powder was and it was improved about 1,380 times compared to a raw cuttle bone powder. For the effective use of the high soluble cuttle bone powder as a material for a functional improvement in processing, it should be used after the calcium treatment at room temperature for about 1 hour in tap water or distilled water. from these results, we concluded that it is possible to use the high soluble cut시e bone powder as a material for a functional improvement in processing.
Article
Full-text available
As a part of basic investigation for utilizing of cuttle bone as a calcium source, we examined on the extraction methods (calcining at for 2 hrs, autoclaving at for 10 hrs and ultrasonic treatments at for 10 hrs) as a pretreatment methods for preparation of calcium-based powder from cuttle bone, The color of calcined calcium-based powder from cuttle bone was white, while that treated by other methods was light yellow. The calcium content in calcined calcium-based powder was , and revealed high about 2 times compared to those pretreated by other methods. And, calcium solubility in calcined calcium-based powder was improved 22 times compared to raw cuttle bone powder, Among calcining, autoclaving and ultrasonic treatments as a pretreaoent methods for preparation of calcium-based powder from cuttle bone, calcining treatment was superior to other methods on the aspect of color, calcium solubility and purity of calcium-based powder, Judging from X-ray diffraction pattern of calcined calcium-based powder, most of calcium was present as a form of calcium oxide, But, pH of calcined calcium-based powder revealed strong alkali of pH 12.9. This pH value might invoke health risk in using food resource. Therefore, for utilization effectively calcined calcium-based powder from cuttle bone, it requires a suitable treatment such as adjustment of pH to neutral condition.
Article
Calcium lactate (CL) prepared from powdered black snail (PBS) or its ashed powder (ABS), was investigated for ideal manufacturing conditions to optimize color, solubility and sensory quality. Based on the amount of PBS and 100 mL lactic acid (LA), the yields of PBS-CL were 300% and 15 g in 10% LA and 260% and 20 g in 20% LA. Yields of ABS-CL based on the amount ABS and 100 mL LA were 400% and 60 g in 10% LA and 329% and 66 g in 20% LA. Both of the yields were decreased with an increase of the LA concentration on the basis of PBS and ABS amounts, but proportionally increased with the increment in the LA concentration on the basis of LA volume. Optimal preparation times of the dehydrated PBS-CL and ABS-CL were, respectively, 4 hr and 5 hr at 100^{\circ}C, 3 hr and 4 hr at 120^{\circ}C, and 1 hr and 2 hr at 150^{\circ}C, which showed shorter time in preparing the dehydrated ABS-CL. PBS-CL and ABS-CL were confirmed to be Ca(CH_3CHOHCO_2)_2 by the analysis results of IR and ^1H-NMR. Calcium contents of the anhydrous PBS-CL and ABS-CL were individually 15.4% (w/w) and 17.3% (w/w) representing 84.2% and 94.5% or each theoretical value. Colors or PBS-CL and ABS-CL were light yellow and light-greenish white each. Solubilities of PBS- CL and ABS-CL in distilled water at pH 3~8 were 5.43 and 6.11 g/100 mL, respectively, which demonstrated higher mean solubilities rather than the 4.74 g/100 mL of standard CL. Solubilities of PBS-CL (3.14~5.03 g/100 mL) and ABS-CL (4.69~6.05 g/100 mL) against soup soy sauce, 3% brine, Soju (Korean distilled liquor), thick soy sauce, grape juice and orange juice were higher than those of standard CL (2.94~5.84 g/100 mL). ABS-CL was believed to have a wide use range due to its low sourness while different applications of PBS-CL in food are expected due to its mild astringent taste and strong savory taste despite its strong bitter taste as estimated by sensory evaluation.
Article
Production of calcium lactate very useful for medical supplies of Ca-therapy was obtained by lactic acid fermentation of lactobacillus sporogenes, a spore forming lactic acid bacterium. Corn steep liquor 1%, soybean enzyme hydrolysate 3%, yeast extract powder 2% can substitute for yeast extract and peptone as nutrient sort traces in fermentation medium using 10% glucose concentration. In the calcium lactate production medium containing yeast extract powder 2%, glucose 18%, CaCO3 12%, the lactic acid fermentation was carried out at 45 for 4days with continuous agitation of 100 rpm. As results, fermentation yield was 97.5%. The five steps such as protein coagulation, decolorizing evaporating, crystallizing, and drying were carried out to harvest calcium lactate from 10l of supernatant of fermented medium to be removed cell and CaCO3. As results, 2065.0g of white crystal calcium lactate dihyrate was recovered and a yield of 84.9% was obtained.