Conference PaperPDF Available

Updated earthquake Catalogue for South America suitable for PSHA: Time window pre-1964

Authors:

Abstract and Figures

On the frame of SARA (The Seismic Risk in South America), the task 4 project goal was to compile an earthquake catalogue for South America, homogeneous as far as possible, in terms of Mw. The methodology has been development of a critical inventory of all public studies related to earthquakes of South America, incorporating the CERESIS available data, recent national and international studies and analysis conducted during the project. The main problem of the catalogue is the need to express the values of magnitude in terms of Mw. This task was performed: i) adopting the Mw values already available from ISC-GEM, other catalogues and few macroseismic studies; ii) converting to Mw the available Ms and mb values, by making use of global empirical relationships and relation for Brazil (low magnitudes) published in literature; iii) using the method of Bakun and Wentworth calibrated regionally for some events that have a sufficient number of macroseismic data, based on what already has been worked out in Ecuador, Venezuela and recently in Colombia which was developed in SARA project iv) determining Mw(Intensity) relationships to Argentina, Bolivia, Colombia, Peru and Chile, for those earthquakes which do not have magnitude assessment but a value of maximum intensity or epicentral intensity is available. Finally, earthquake parameters are assessed for 2556 earthquakes in the time-window 1513-1963; the lower threshold is Mw=5[-0.2] for the Andean region. For Brazil is not applying a lower threshold. We have still more than 1700, low size earthquakes, for which the Mw(Intensity) relationships could not be applied, while for more than 200 earthquakes no size assessment is available.
Content may be subject to copyright.
16th World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017
Paper N° 1332
Registration Code: S-J1464705314
UPDATED EARTHQUAKE CATALOGUE FOR SOUTH AMERICA:
TIME WINDOW PRE-1964
A.A. Gómez-Capera(1), M. Stucchi(2), M. Arcila(3), M. Bufaliza(4), J. Choy(5), E. Minaya(6), L. Leyton(7) ,
M. Pirchiner(8), H. Rendón(9), L. Rodriguez(10), A. Sarabia(3), H. Tavera (11), H. Yepes (12)
(1)Istituto Nazionale di Geofisica e Vulcanologia, sezione di Milano, Italia
(2) Eucentre, Pavía, Italia
(3)Servicio Geológico Colombiano, Bogotá, Colombia
(4)Instituto Nacional de Prevención Sismica, San Juan, Argentina
(5)Universidad de los Andes, Facultad de Ciencias, Laboratorio de Geofísica, Mérida-Venezuela.
(6)Observatorio de San Calixto, La Paz, Bolivia
(7) Universidad de Chile, Santiago, Chile
(8)Universidade de São Paulo, Brasil
(9)FUNVISIS, Caracas, Venezuela
(10)CERESIS, Lima, Perú
(11)Instituto Geofísico del Perú, Lima, Perú
(12)Instituto Geofísico de la Escuela Politécnica Nacional, Quito, Ecuador
Abstract
On the frame of the project SARA (The South America Risk Assessment), the goal of task 4 (T4 from now on) is
to compile an earthquake catalogue for South America, in terms of Mw building on the CERESIS available data,
recent national and international studies and analysis conducted during the project. In particular, they include
the latest versions of catalogue CERESIS-91 prepared for the Pan American Institute of Geography and History
(PAIGH), which was later employed by the same CERESIS in linking the Global Seismic Hazard Assessment
Programme (GSHAP); the determination of parameters by recent studies, including those proposed by the ISC-
GEM catalogue, and where available, the national catalogues that meet the criteria of transparency required by
the project. The activities describe here refer to the pre-1964 time window.
The first phase of the study has been the development of a critical inventory of all public studies related to
earthquakes of South America. Studies for the same event have been associated with each other from the
comparison of the time, of the epicentre coordinates and the size of the earthquake. For each event, a set of
parameters considered reliable has been preliminarily selected.
The main problem of the catalogue is the need to express the values of magnitude in terms of Mw. Currently,
few studies on earthquakes provide that value. For many events, values in terms of Ms and mb are available;
although for most cases, because of the time of occurrence of these events, the magnitude values were calculated
from macroseismic data. For these earthquakes we have used empirical conversion relationships published in
literature (Mw / Ms and Mw / mb).
There are also events for which a value of Imax or Io is available, only. For these events, Mw/Io regional
relationships have been determined, using the most reliable and recent data terms of Mw and Io.
In a second phase, for some events that have a sufficient number of macroseismic data, the source parameters
have been determined using the method of Bakun and Wentworth, regionally calibrated, based on what already
has been worked out in Ecuador, Venezuela in literature and Colombia in the present project.
Keywords: earthquakes; catalogue; South America
16th World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017
1. Introduction
South America has a long tradition of intensive historical earthquake investigation [1]. The Regional Centre for
Seismology for South America (CERESIS) published a first continental scale earthquake catalogue in 1985, built
on the first published set of macroseismic data points in the world [2]. Investigation continued on a national
basis, mostly with reference to large earthquakes.
The South America Risk Assessment (SARA) project was a regional programme promoted by the Global
Earthquake Model (GEM) initiative which lasted between 2013 and 2015. The project aimed to calculate seismic
hazard and seismic risk, and to estimate the compounding social and economic factors that increase the physical
damage and decrease the post-event capacities of populations to respond to and recover from damaging
earthquake events in South America, by involving local experts from the region. On the frame of seismic hazard
component of SARA project, the task 4 project (T4 entry) goal was to compile a new earthquake catalogue for
South America, homogeneous as far as possible, in terms of Mw, building upon the methods, implementations
and products released by the GEM Global components (ISC-GEM catalogue [3] and Global Earthquake History
[4]), and the most updated public material available at CERESIS [5], at the national agencies and in the scientific
institutions of the region.
A critical inventory of all public studies related to earthquakes of South America has been compiled,
incorporating the CERESIS available data, recent national and international studies and analysis conducted
during the project. The main problem of the catalogue is the need to express the values of magnitude in terms of
Mw. This task was performed: i) adopting the Mw values already available from ISC-GEM, other catalogues and
a few macroseismic studies; ii) converting to Mw the available Ms and mb values, by making use of the
Scordilis [6], plus an ad-hoc, Brazilian relationship [7] for Brazil to events with low magnitudes; iii) using the
method of Bakun and Wentworth [8] calibrated regionally for some events that have a sufficient number of
macroseismic data, based on what already has been worked out in Ecuador, Venezuela and recently in Colombia
which was developed in SARA project [9] using macroseismic data from Colombian Geological Survey [10] iv)
determining regional Mw(Intensity) linear relations to Argentina, Bolivia, Colombia, Peru and Chile for those
earthquakes which do not have magnitude assessment but a value of maximum intensity or epicentral intensity is
available [9].
At the end, earthquake parameters have been assessed for 2556 earthquakes in the time-window 1513-1963. The
lower threshold is Mw=5(-0.2) for the Andean region: we did not use a lower threshold for Brazil. We have still
more than 1700, low size earthquakes, for which the Mw(Intensity) relationships could not be applied, while for
more than 200 earthquakes no size assessment is available at all.
2. Data sources
We first considered the following, public items available at a continental scale
• CERESIS [5] that is the catalogue of South America compiled for GSHAP;
Engdahl and Villaseñor [11], that is the “Centennial Earthquake Catalog”;
Storchak et al. [3, 12, 13], that is, the ISC-GEM instrumental earthquake catalogue.
The first South American catalogue was published in 1985 by CERESIS [2], that has been also
considered, to get information on the available macroseismic data points (MDPs).
Next, national current catalogues made available by the partners of this project have been considered. Tab.
1 summarizes the data sources considered and their contribution, while Fig. 1-3 show the distribution of
the entries.
In addition, we have consulted a number of earthquake studies (Tab. 1); only part of them were considered
by the compilers of the national catalogues. For the large earthquakes (M ≥ 7.0), the inventory compiled in
the frame of the GEM-GEH project [4, 14] has been an important source.
2
16th World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017
Table 1- Main data sources considered and relevant number of entries
Code
Short Reference
(for the complete one see the References)
Number of
entries
Continental scale data sources
CERES985
CERESIS (1985) [2]
2399
CERES995
CERESIS (1995) [5]
7669
ENGVI002
Engdahl and Villaseñor (2002) [11]
252
ISCGE015
Storchak et al. (2013; 2015) [3, 12, 13]
216
National, current parametric catalogues
OSC013
OSC (2013) [15]
246
BSB012
Catalogo Sismico Brasileiro (2012) [16]
203
SGC014
SGC (2014) [17]
148
ECU014
ECU (2014) [18]
134
FUN014
FUN (2014) [19]
513
INPRE015
INPRES (2015) [20]
48
LEYAL009
Leyton et al. (2009) [21]
484
TAVAL001
Tavera ed. (2001) [22]
3554
Earthquake studies
34 studies published between 1979-2015
[22 to 52]
295
The entries related to the same event have then been clustered. This operation has been performed in two steps:
first, automatically, then manually. The last one has allowed to detect and eliminate several duplications, mainly
inside CERESIS [5], with respect to border earthquakes. In figures 3b and 3c is presented the earthquake history
of Bolivian and Chilean catalogues, to give an idea of the time-distribution of the events.
Fig. 1 - Epicentres in the time-window before 1964
a) by CERESIS (1985); b) by CERESIS (1995)
3
16th World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017
Fig. 2 - Epicentres in the time-window before 1964
a) by Engdahl and Villaseñor (2002) b) Storchak et al. (2013; 2015)
Fig. 3 – a) National catalogues epicentres in the time-window before 1964 b) Earthquake history (before 1964)
of Bolivia (OSC, 2013); c) Earthquake history (before 1964) of Chile (Leyton et al., 2009)
4
16th World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017
3. Time, location and depth
One entry for each earthquake has been selected as “preferred” with reference to time, location and depth.
Priority was given according to the following order:
Storchak et al. [3, 12, 13]
Engdahl and Villaseñor [11]
recent earthquake studies [23 to 53]
• national catalogues [15 to 22]
• CERESIS catalogue [5]
• CERESIS, SISRA Project [2]
However, when entries from national catalogues clearly coincided with the one from CERESIS [5], the last one
was selected, as it was the root of them and it gives references.
After compiling this material it is possible to say that, in the time-window before 1964, the CERESIS catalogue
[5] contains more entries than the national catalogues which have been submitted to the SARA project
(Venezuela, Ecuador, Brazil, Bolivia, Colombia, Chile), or found in websites (Argentina, Peru). It appears that,
in many countries, some entries from CERESIS [5] were not included in the national catalogue because of size
threshold. On the other hand, some entries unknown to CERESIS [5] have been found in some national
catalogues.
Finally, for each earthquake we compiled a row, T4 entry, adopting time, location and depth from the preferred
one.
4. Earthquake size
4.1 The earthquake size in the data sources
The data sources considered provide varied type of magnitude (M). CERESIS [5] entries come with a variety of
magnitude types and values; for some entries several M values of varied type are given. We decided to adopt one
magnitude value according to the following priority scheme:
Mw, Ms, mb, ML, other M.
In addition, CERESIS [5] provides intensity values. The situation in the time-window before 1964, after
adopting the magnitude priority scheme, is the following:
Table 2 - Type of size in CERESIS (1995) and relevant numbers
Country Time-window
N of
entries
Mw Ms mb
Argentina
1692-1963
554
111
146
Bolivia
1650-1963
202
47
123
Brazil
1720-1963
268
24
207
Chile
1520-1963
1247
4
254
86
Colombia
1566-1963
783
705
20
Ecuador
1541-1963
721
70
78
Peru
1471-1963
3544
8
180
202
Venezuela
1530-1963
348
54
32
Total
Bef. 1964
7667
12
1445
894
Engdahl and Villaseñor [11], too, provide varied types and values of magnitude, including some of unknown
type (UK). Storchak et al. [3, 12, 13] provide Mw. The most updated national catalogues provide varied types of
magnitude. Bolivia gives Ms and mb; Brazil gives mainly mb; Colombia and Ecuador gives M of varied types;
Chile gives Ms; Peru mostly Ms and some Mw; Venezuela gives M (to be interpreted as Ms). As for the
earthquake studies, the modern ones gives Mw of macroseismic origin, mainly assessed with the Bakun and
Wentworth method [8]. Magnitudes not assessed in terms of Mw, Ms or mb have been converted to Ms or mb
5
16th World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017
according to [2, 5, 11, 17, 23, 24, 54]. The magnitude of the T4 entries have been compiled selecting the most
reliable value available, according to the above mentioned priority scheme: Mw, Ms, mb, (ML), other M.
In addition, if we have two or more Mw values, or two or more Ms, from two entries referred to the same
earthquake, we selected one of them according to expert judgement. As a general rule we prefer M values the
origin of which is known. At this stage, we had Mw values available for 34% of the entries: we had therefore the
task of determining Mw for about 66% entries.
4.2 Converting Ms or mb to Mw
We considered a number of conversion relationships, summarized in Tab. 3, while Fig. 4a and 4b show them
graphically. We preferred Scordilis relations [6], which gives values similar to the ones proposed by ISC-GEM
[12, 13] in addition, it provides uncertainty. We also considered Contreras Luarte [55] for Chile, but its range of
definition is very limited, and Assumpção et al. [7] for Brazil. Only this one shows a different behaviour;
therefore we adopted it for Brazil, only.
Table 3 - Magnitude conversions considered
Source
Relation
Range
σ
Scordilis [6]
Mw = 0.67(±0.005)Ms+2.07(±0.03)
3.0 ≤Ms ≤6.1
0.17
Scordilis [6]
Mw = 0.99 (±0.02)Ms+0.08(±0.13)
6.2 ≤Ms ≤8.2
0.20
Scordilis [6]
Mw = 0.85 (±0.04)mb+1.03 (±0.23)
3.5 ≤mb ≤6.2
0.29
ISC-GEM [12]
Mw = 0.67 Ms + 2.13
Ms ≤6.47
ISC-GEM [12]
Mw = 1.10 Ms- 0.67
Ms > 6.47
ISC-GEM [12]
Mw = e(-4.66+0.86mb)+ 4.56
4.5 ≤mb ≤6.0
Assumpção et al. [7]
Mw = 1.21 mb-0.76
1.6≤mb≤5.5
0.32
Contreras Luarte [55]
Mw = 1.32mb-1.56
5.0≤mb≤5.5
-
Contreras Luarte [55]
Mw = 1.00Ms+0.07
5.6≤Ms≤7.5
-
Lolli et al. [58]
Mw = exp(2.133+0.063Ms)-6.205
Ms≤5.5
0.17
Lolli et al. [58]
Mw = exp(-0.109+0.229Ms)+2.586
Ms>5.5
0.15
Lolli et al. [58]
Mw = exp(0.741+0.210mb)-0.785
3.6≤mb≤7.2
0.33
Fig. 4 - Comparison among a) varied Ms to Mw relationship;
b) varied mb to Mw relationships
6
16th World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017
5. Determining Mw from macroseismic data
At this stage we still had hundreds of entries without Mw, half of them from Peru. For all the entries we had Io
given by CERESIS catalogue [5]. The best would be to determine Mw from the macroseismic data points
(MDPs), making use of repeatable procedures such as the models proposed Bakun and Wentworth [8] or
Gasperini et al. [56, 57], as it has already been done for some earthquakes in Venezuela, Colombia and Ecuador
[1, 28, 29, 30, 37, 38 41, 45]. However, this requires MDPs, which are not always available, and the
determination of the regional coefficients of the models:
to Colombia through a calibration process; this process was developed by T4 [9] using the method of
Bakun and Wentworth [8] calibrated regionally for some events of 20-21st century that have a sufficient
number MDPs from Colombian Geological Survey [10] and it was applied to 29 historical earthquakes
of Colombian territory;
to Venezuela and Ecuador, the strategy adopted was to use Mw/I empirical relationships available from
literature [29, 41] (Tab. 4)
to Peru-Chile, Colombia, Bolivia and Argentina from Mw/I linear empirical relationships determined in
the present study (Tab.5)
Table 4 - Magnitude as a function of I from intensity attenuation relations selected
Table 5 - Relations Mw/I obtained for the areas of Peru-Chile, Colombia, Bolivia, Argentina
Area Dataset M = f(I)
N of
eq.
Intens.
range
σ
BO
CERES995
Bolivian Catalogue
Mw = 3.9438+0.292 I 18 4.94-6.47 4-8
0.20
PE
CL
CERES995
ISCGE015
*IGP015
Mw = 4.513+0.286 I 42 5.42-8.19 5-11 1906-
2014 0.47
CO
SGC013
ISCGE015
*RSNC
Mw = 2.761+0.425 I 18 4.30-7.11 4-10 1917-
2015 0.35
AR
CERES995
ISCGE015
INPRES015
Mw = 2.901+0.4287 I 24 4.86-7.45 5-9 1903-
2002 0.37
*IGP= Instituto Geofísico del Perú [59]; *RSNC: Red Sismológica Nacional de Colombia [60]
For sake of homogeneity we have assessed the final Mw uncertainty as equal to 0.60 unit, that correspond to the
mean of 95% confidence level to one intensity data point following the Bakun and Wentworth method [8, 61].
Country Source Mw/Intensity attenuation relations M = f(I)
VE
Palme et al. [41]
I = -2.2237+1.6684 Mw-0.041214x
x is the epicentral distance in km and
x ≤ 120km
Mw = 1.3328+0.5993 I
EC
Beauval et al. [29]
I= -0.85+2.41 Mw-5.39 logΔ
h
Δh is the hipocentral distance in km
Δh = (x2+h2)0.5
h is the focal depth fixed to10km
Mw = 2.58921+0.41494 I
7
16th World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017
6. Results and conclusion
We have established the lower Mw threshold at 5 (-0.2) for the areas of the Andean region; for Brazil, no lower
threshold has been established. In such a way we got 2556 events, the distribution of which by data sources is
presented in Fig. 5a, while the relevant count is given in Tab. 6.
Table 6 - Data sources and relevant number of entries
Short Reference
(for the complete one see the
References)
Number of
entries
Short Reference
Number of
entries
CERESIS (1985)
12
Storchak et al. (2013; 2015)
214
CERESIS (1995)
1968
National catalogues
241
Engdahl and Villaseñor (2002)
47
Earthquake Studies
74
Total 2556
Having now determined Mw for all these earthquakes, for the first time we can see the seismicity plotted in
terms of Mw (Fig. 5b). We can also show the earthquake history before 1964 (Fig. 6). In Fig. 7 we also show a
comparison between the T4 catalogue and the ISC- GEM [3, 12, 13]. This comparison shows the large
improvement that this work introduces in the coverage of historical events in South America.
We have still 1766 events with size below the adopted threshold, for most of which the Mw to other parameters
regressions cannot be applied, because they are out of reliability range. In addition, we have 227 without any
size.
8
16th World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017
Fig. 5 - Distribution of epicentres in T4 a) by data source ; b) by class of Mw (Mw ≥ 5.0)
Fig. 6 - Earthquake history before 1964 (Mw ≥ 5.0) of South America
Fig. 7 - Comparison of the T4 (red circles) and ISC-GEM catalogues (1900-1963)
9
16th World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017
7. References
[1] Giesecke A, Gómez Capera AA, Leschiutta I, Migliorini E (2004): The CERESIS earthquake catalogue and
database of the Andean Region: Background, characteristics and examples of use. Annals of Geophysics, 47, 2/3,
421-435.
[2] CERESIS, Centro Regional de Sismología para América del Sur (1985): Destructive earthquakes of South America
1530-1894, Earthquake Mitigation Program in the Andean Region, SISRA Project, Lima, 14 vols.
[3] ISC-GEM (2015): V 2.0 of the ISC-GEM Catalogue, http://www.isc.ac.uk/iscgem/update_log/
[4] GEH, Global Earthquake History (2013): The GEM Global Historical Earthquake Catalogue (1000-1903).
Available at: http://www.globalquakemodel.org/what/global-projects/historical-catalogue/
[5] CERESIS, Centro Regional de Sismología para América del Sur (1995): Catalogue for South America and he
Caribbean prepared in the framework of GSHAP, http://www.seismo.ethz.ch/static/gshap/ceresis/.
[6] Scordilis EM (2006): Empirical global relations converting Ms and mb to moment magnitude, J. Seismol, 10, 225-
236.
[7] Assumpção M, Ferreira J, Barros L, Bezerra H, França GS, Barbosa JR, Menezes E, Carlos Ribotta L, Pirchiner M,
Nascimento A, and Dourado JC (2014): Intraplate seismicity in Brazil. In Intraplate Earthquakes, pages 5071,
Cambridge University Press, ISBN 9781139628921, http://dx.doi.org/10.1017/CBO9781139628921.004.
[8] Bakun WH, and Wentworth CM (1997): Estimating earthquake location and magnitude from seismic intensity
data, Bull. Seismol. Soc. Am., 87, 1502–1521.
[9] Gómez-Capera AA, Stucchi M, with the collaboration of Arcila M, Bufaliza M, Choy J, Leyton L, Pirchiner M,
Rendon H, Rodriguez Valverde L, Sarabia AM, Tavera H, and Yepes H (2016): The T4 working catalogue before
1964 of the SARA project. The South America Risk Assessment SARA, Global Earthquake Model [GEM], 38p.
[10] Servicio Geológico Colombiano (2013): Sismicidad Histórica de Colombia. Disponible en: http://agata.
sgc.gov.co:9090/SismicidadHistorica/ (consulta:15.02.2014).
[11] Engdahl ER and Villaseñor A (2002): Global Seismicity: 19001999, In: W.H.K. Lee, H. Kanamori, P.C.
Jennings, and C. Kisslinger (eds), International Handbook of Earthquake and Engineering Seismology, Academic
Press, Part A, Chapter 41, pp. 665690. (Data from http://earthquake.usgs.gov/data/centennial/)
[12] Storchak DA, Di Giacomo D, Bondár I, Harris J, Engdahl ER, Lee WHK, Villaseñor A, Bormann P, and Ferrari G
(2012): ISC-GEM Global Instrumental Earthquake Catalogue (19009-2009), Final Scientific Report, 99p.
Consulta: 2014.02.15, http://www.globalquakemodel.org/what/seismic-hazard/ instrumental-catalogue.
[13] Storchak DA, Di Giacomo D, Bondár I, Engdahl ER, Harris J, Lee WHK, Villaseñor A and Bormann P (2013):
Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009), Seism. Res. Lett., 84, 5,
810-815.
[14] Albini P, Musson RMW, Rovida A, Locati M, Gómez-Capera AA, Viganó D (2014): The Global Earthquake
History. Earthquake Spectra, 30, 2, 607-627, Earthquake Engineering Research Institute.
[15] Observatorio San Calixto (2013): Catálogo OSC revisado del 1650 al 2001 final, archivo provisorio al task4.
[16] Catalogo Sismico Brasileiro (2012): Available in: http://goo.gl/lNTtVk
[17] Servicio Geológico Colombiano (2014): Catálogo de terremotos de Colombia; archivo provisorio al task4.
[18] Ecuador (2014): Catalogo de terremotos del Ecuador (archivo provisorio al task4), developed by Beauval et al.
(2013).
[19] FUNVISIS (2014): Catalogo de terremotos del Venezuela, (in progress) archivo provisorio al task4.
[20] INPRES, Instituto Nacional de Prevencion Sismica (2015): Terremotos históricos de la República Argentina.
http://www.inpres.gov.ar/seismology/historicos.php.
[21] Leyton, F., Ruiz S., and Sepúlveda A.A. (2009): Preliminary re-evaluation of probabilistic seismic hazard
assessment in Chile: from Arica to Taitao Peninsula, Adv. Geosci., 22, 147-153.
10
16th World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017
[22] Tavera, H. ed. (2001): Catálogo Sísmico del Perú 1471 1982, Versión Revisada y Actualizada, Instituto
Geofísico del Perú, Direccion de Sismologia, Lima, 547p. At: http://www.igp.gob.pe/ (consulta 14.12.2015).
[23] Abe K (1979): Size of Great Earthquakes of 1837-1974 Inferred From Tsunami Data, 84, B4, Journal Of
Geophysical Research.
[24] Abe K and Noguchi S (1983): Determination of magnitude for large shallow earthquakes 1898-1917, Physics of
the Earth and Planetary Interiors, 32, 45-59.
[25] Alvarado P, and Beck S (2006): Source characterization of the Sam Juan (Argentina) crustal earthquakes of 15
January 1944 (Mw 7.0) and 11 June 1952 (Mw 6.8), Earth and Planetary Science Letters 243, 615-631.
[26] Alvarado P, Barrientos S, Saez M, Astroza M, Beck S (2009): Source study and tectonic implications of rhe
historic 1958 Las Melosas crustal earthquake, Chile, compared to earthquake damage, Physics of the Earth and
Planetary Interiors, 175, 26-36.
[27] Audemard FM (1999): Nueva percepcion de la sismicidad historica del segmento en tierra de la Falla El Pilar,
Venezuela Nororiental, a partir de primeros resultados paleosismicos. Mem. VI congreso Venez. Sismologia e
Ingenieria Sismica (CD-ROM), Merida, Venezuela.
[28] Beauval C, Yepes H, Palacios P, Segovia M, Alvarado A, Font Y, Aguilar J, Troncoso L and Vaca D (2013): An
Earthquake Catalog for Seismic Hazard Assessment in Ecuador, Bull. Seism. Soc. Am. 103, 2A,773-786.
[29] Beauval C, Yepes H, Bakun WH, Egred J, Alvarado and Singaucho JC (2010): Locations and magnitudes of
historical earthquake in the Sierra of Ecuador (1587-1996). Geoph. Journ. Intern., 181,1613-1633.
[30] Choy JE, Palme C, Guada C. Morandi M and Klarica S (2010): Macroseismic Interpretation of the 1812
Earthquake in Venezuela Using Intensity Uncertainties and A Priori Fault-Strike Information, Bull. Seismol. Soc.
Am., 100, 1, 241-255.
[31] Cisternas M (2012): El terremoto de Chile central de 1647 como un evento intra-placa, XIII Congreso Geológico
Chileno, Antofagasta, Chile, Libro de resúmenes, 1037-1039.
[32] Dimaté C, Rivera L and Cisternas A (2005): Re-visiting large historical earthquakes in the Colombian Eastern
Cordillera, J. Seismol., 9, 1-22.
[33] Dorbath A, Cisternas A, and Dorbath C (1990): Assessment of the size of large and great historical earthquakes in
Peru, Bull. Seism. Soc. Am., 80, 3, 551-576.
[34] Dorel J (1981): Seismicity and seismic gap in the Lesser Antilles arc and earthquake hazard in Guadeloupe,
Geophys. J. R. Astron. Soc., 67, 679695.
[35] Egred J (2004): El terremoto de Riobamba del 4 de febrero de 1797, in Investigaciones en Geociencias, vol. 1, pp.
67-86, eds Alvarado A, Garcia-Aristizabal A, Mothes P., Segovia M, IRD-Instituto Geofísico, Corporación Editora
Nacional, Municipio del Distrito Metropolitano de Quito.
[36] Espinosa Baquero A. (2003): Historia Sísmica de Colombia. Academia Colombiana de Ciencias Exactas, Físicas y
Naturales, Universidad del Quindío, Bogotá. CD-ROM.
[37] mez-Capera AA, Cifuentes H, Sarabia A, Bindi D, Choy J, Galan R, Pirchiner M, Rodriguez LM, Sanchez A,
Salcedo Hurtado E (2014): Parámetros del terremoto de Cúcuta del 1875 a partir de intensidades macrosísmicas,
IASPEI-LASCS (Asamblea Regional Comisión Latinoamericana y del Caribe de Sismología) Regional Assembly
2014 July 23-25, Bogotá Colombia, Proc. in Earth. Sci. Res. J. Vol. 18 Special Issue, p. 199 (July. 2014).
[38] mez-Capera AA, Salcedo-Hurtado E de J, Bindi D, Choy JE, García Peláez J (2014): Localización y magnitud
del terremoto del 1785 en Colombia a partir de intensidades macrosismicas. Revista de la Academia Colombiana
de Ciencias Exactas, Físicas y Naturales, 38,147, 206-217.
[39] Lomnitz, C (2004): Major Earthquakes of Chile: A Historical Survey, 1535-1960, Seismological Research Letters,
75, 3, 368-378.
[40] Mocquet A (2007): Analysis and interpretation of the October 21, 1766 earthquake in the Southeastern Caribbean,
J. Seismol., 11, 381-403.
[41] Palme de Osechas C, Morandi M, and Choy JE (2005): Re-evaluación de las intensidades de los grandes sismos
históricos de la región de la cordillera de Mérida utilizando el método de Bakun & Wentworth, Revista Geográfica
Venezolana, número especial, 233-253.
11
16th World Conference on Earthquake, 16WCEE 2017
Santiago Chile, January 9th to 13th 2017
[42] Palme C, Choy J, y Guada C. (2009): Wilhalm Sievers y el Terremoto del 29-oct-1900 reflexiones preliminares, V
Jornadas Venezolanas de Sismología Histórica y VI Simposio Venezolano de Historia de las Geociencias, 25-28
de Junio, Mérida, 145-150.
[43] Rengifo M and Lafaille J (2000): Reevaluación del sismo del 28 de abril de 1894, Acta Científica Venezolana, 51,
160-175.
[44] Salcedo Hurtado E de J, Romero Vergara MD, Vallejo Chocué MA (2007), Contribución al análisis macrosísmico
del terremoto del 7 de junio de 1925: principales efectos en la ciudad de Cali, Revista de la Academia Colombiana
de Ciencias Exactas, Físicas y Naturales, 31, 379-394.
[45] Salcedo Hurtado E de J y mez-Capera AA (2013): Estudio macrosísmico del terremoto del 18 octubre del 1743
en la región central de Colombia, Boletín de Geología, Universidad Industrial de Santander, Bucaramanga 35, 1,
111-313.
[46] Salcedo Hurtado E de J, y Castaño AN (2011): Reevaluación macrosísmico del terremoto del 12 de julio de 1785
en Colombia, Boletín de Geología, Universidad Industrial de Santander, Bucaramanga, 33, 2, 15-32.
[47] Sarabia Gómez AM, Cifuentes Avendaño HG, y Robertson K (2010): Análisis histórico de los sismos ocurridos en
1785 y 1917 en el centro de Colombia, Revista Colombiana de Geografía, Bogotá, 19, 153-162.
[48] Sarabia AM, y Cifuentes H (2011): Sismicidad Histórica de Colombia: Estudios macrosísmicos 1644-2008 (en
línea), Bogotá. At:http://aplicaciones1.sgc.gov.co/sicat/html/ConsultaBasica.aspx (consulta: 15.02 2014)
[49] Sismología Histórica de Venezuela (2011): At the Universidad de Los Andes, http://sismicidad.ciens.ula.ve/
[50] Sismicité historique de la France, Antilles-Guyane-Mer des Caraïbes, SisFrance-Antilles (2015): histoire et
caractéristiques des séismes ressentis aux Antilles françaises et dans l’archipel des Caraibes,
http://www.sisfrance.net/Antilles/index.asp
[51] Tanner JG, and Shepherd JB (1997): Seismic hazard in Latin America and the Caribbean, Seismic Hazard in Latin
America and the Caribbean, vol. 1. Final Report to the International Development Research Centre, Ottawa,
Canada, Instituto Panamericano de Geografia y Historia, Mexico, D.F., 142 pp.
[52] Tello G, y Pérez I (2005): El Terremoto de 1894: Investigación Histórica. INSUGEO, Serie Correlación
Geológica, 19, 23-40.
[53] Udías A, Madariaga R, Buforn E, Muñoz D. and Ros M (2012): The Large Chilean Historical Earthquakes of
1647, 1657, 1730, and 1751 from Contemporary Documents, Bull. Seismol. Soc. Am., 102, 4, 16391653.
[54] Abe K (1981): Magnitudes of large shallow earthquakes from 1904 to 1980, Physics of the Earth and Planetary
Interiors, 27, 72-92.
[55] Contreras Luarte VA (2009): Curvas de atenuación espectrales para sismos chilenos. Memoria para optar el titulo
de Ingeniero Civil, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Departamento de Ingeniería
Civil, Santiago de Chile, 204p.
[56] Gasperini P, Bernardini F, Valensise G, and Boschi E (1999): Defining seismogenic sources from historical felt
reports, Bull. Seismol. Soc. Am., 89, 94110.
[57] Gasperini P, Vannucci G, Tripone D, and Boschi E (2010): The location and sizing of historical earthquakes using
attenuation of macroseismic intensity with distance, Bull. Seismol. Soc. Am., 100, 20352066.
[58] Lolli B, Gasperini P. and Vannucci G (2014): Empirical conversión between teleseismic magnitudes (mb and Ms)
and moment magnitude (Mw) at the Global, Euro-Mediterranean and Italian scale, Geophys. J. Int. (2014), 199,
805-828.
[59] Instituto Geofísico del Perú (2015): Boletines sísmicos, http://www.igp.gob.pe/portal/
[60] Red Sismológica Nacional de Colombia (2015): Boletines de sismicidad, catálogo de sismicidad instrumental del
Servicio Geológico Colombiano, http://seisan.sgc.gov.co/RSNC/index.php/boletines-de-sismicidad
[61] Bakun WH, and Wentworth CM (1999): Erratum to Estimating earthquake location and magnitude from seismic
intensity data, Bull. Seism. Soc. Am., 89, 557.
12
... Ahora, la leve diferencia entre el valor de la magnitud Mw encontrada en este trabajo y la que proponen Palme de Osechas, et al. (2005) puede atribuirse a que estos autores usaron el método de Bakun & Wentworth (1997), el cual fija la profundidad de 10 km, obligando a que geométricamente el centro de intensidades sea restringido a este hipocentro, constriñendo, por lo tanto, el cálculo de la magnitud. Algo similar podría ocurrir con la ecuación que relaciona la magnitud (Mw) en el territorio venezolano con la atenuación de la intensidad macrosísmica, la cual se seleccionó para la actualización del catálogo sismológico de América del Sur en una ventana temporal antes de 1964 (Gómez, et al., 2017). Dicha ecuación se expresa como: ...
Article
Full-text available
El terremoto del 28 de abril de 1894 ocurrido en los Andes venezolanos es uno de los más destructores del siglo XIX en este país. Dejó grandes daños materiales y pérdidas humanas en diversas poblaciones vecinas a la frontera entre Colombia y Venezuela. En la zona epicentral causó grandes grietas, dislocaciones en el terreno y eyecciones de lodo, petróleo y gases. Varios estudios paleosismológicos, históricos y sismológicos se han publicado con información sobre los efectos causados e interpretaciones macrosísmicas de sus parámetros focales. En el presente trabajo se utilizaron datos extraídos de la exploración de un mapa de isosista publicado anteriormente para determinar los principales parámetros focales del terremoto. Los resultados obtenidos ubican el epicentro local (El) en las coordenadas geográficas ϕ = 8,55°N y λ = -71,72°W, y el normal (En) en ϕ = 8,56°N y λ = -71,51°W. La profundidad normal hn = 18,24±1,66 km, y el foco local hl = 8,8±2,23 km; la magnitud de Richter y la energía sísmica liberada corresponden a Ml = 7,3 y E = 1,58*1023 ergios, respectivamente. Se determinó el momento sísmico escalar M0 = 3,16*1027 dinascm y la magnitud de momento sísmico Mw = 7,6. La magnitud de ondas superficiales fue Ms = 6,6 y también se obtuvo la aceleración sísmica, a = 0,69 g. Los parámetros obtenidos son compatibles con los publicados por otros autores y se aporta nueva información que permite alimentar los catálogos sismológicos.
... Respecto a los modelos de atenuación de la intensidad macrosísmica, en el presente trabajo se usa el modelo GC&SH2002 propuesto por Gómez-Capera y Salcedo-Hurtado (2002), y el de calibración del proyecto SARA, modelo SARA2017 (Gómez-Capera et al., 2017, 2020, ambos para el territorio colombiano. ...
Article
Full-text available
El terremoto ocurrido el 24 de mayo de 2008 en el municipio de Quetame (Colombia), es un evento reciente detectado por la Red Sismológica Nacional de Colombia (RSNC) y la Red Sismológica Mundial, que reportaron parámetros como: epicentro, profundidad, magnitud, momento sísmico escalar y mecanismo focal, entre otros. Basado en los daños y efectos causados, INGEOMINAS (Servicio Geológico Colombiano) evaluó el campo macrosísmico elaborando el mapa de intensidades con datos en diversas poblaciones de los departamentos de Cundinamarca, Tolima y Meta, principalmente. Tomando como base esta información macrosísmica, en el presente trabajo se aplican algunos métodos de análisis macrosísmico para obtener los correspondientes parámetros focales. Los resultados muestran fuertes correlaciones o similitudes entre los parámetros instrumentales y macrosísmicos. Instrumentalmente se reportó: Epicentro 4,4°N y 73,81°O; 5,9 Mw, 5,9 Ms, 5,6 mb, 5,7 ML; h=14,7 km, M0=7,95*1024 dinas-cm. Mientras que macrosísmicamente se obtuvo: Epicentro 4,34°N y 73,86°O; 5,94 Mw, 5,5 Ms, 5,6±0,2 mb, 5,63 ML; hn=12,1 km, hl=2,23 km; E=4,57*1020 ergios, M0=9,14*1024 dinas-cm; también se determinaron los parámetros de las dimensiones del foco sísmico y la deformación sismotectónica expresada por el flujo sísmico de la masa rocosa. Los procedimientos aplicados muestran el carácter de complementariedad entre los datos instrumentales y macrosísmicos.
Article
Full-text available
Starting on the day after the mainshock, we mapped in the field and compiled all the available observations on earthquake environmental effects (EEEs) caused by the Mw 7.8 subduction earthquake that hit the coastal region of Ecuador on 16 April 2016 (Pedernales earthquake). These effects include: i) permanent ground deformation, ii) open cracks, iii) liquefaction, iv) landslides, and v) tsunami waves. We use these observations to evaluate the macroseismic field of the Environmental Seismic Intensity - ESI-07 scale and compare our results with published macroseismic data collected using traditional, damage-based, intensity scales. We found systematic difference in the assessed earthquake intensity, and in the intensity attenuation with distance. A comparison of our dataset with macroseismic data of six, instrumental, large subduction earthquakes occurred between Ecuador and Chile, suggests that for the Pedernales earthquake the ESI-07 works better in the near field whereas damage-based scales are more reliable in the far field. Therefore, we generate a single integrated intensity dataset for the Pedernales earthquake, including data measured with EMS-98, MM and ESI-07 scales. This new integrated macroseismic field provides reliable and comparable information on the seismogenic source, suggesting that a similar approach could be successfully applied to refine the source model of past subduction earthquakes in Ecuador and elsewhere.
Article
Starting on the day after the mainshock, we mapped in the field and compiled all the available observations on earthquake environmental effects (EEEs) caused by the Mw 7.8 subduction earthquake that hit the coastal region of Ecuador on 16 April 2016 (Pedernales earthquake). These effects include: i) permanent ground deformation, ii) open cracks, iii) liquefaction, iv) landslides, and v) tsunami waves. We use these observations to evaluate the macroseismic field of the Environmental Seismic Intensity - ESI-07 scale and compare our results with published macroseismic data collected using traditional, damage-based, intensity scales. We found systematic difference in the assessed earthquake intensity, and in the intensity attenuation with distance. A comparison of our dataset with macroseismic data of six, instrumental, large subduction earthquakes occurred between Ecuador and Chile, suggests that for the Pedernales earthquake the ESI-07 works better in the near field whereas damage-based scales are more reliable in the far field. Therefore, we generate a single integrated intensity dataset for the Pedernales earthquake, including data measured with EMS-98, MM and ESI-07 scales. This new integrated macroseismic field provides reliable and comparable information on the seismogenic source, suggesting that a similar approach could be successfully applied to refine the source model of past subduction earthquakes in Ecuador and elsewhere.
Article
Full-text available
El 18 de octubre de 1743 ocurrió en el territorio colombiano uno de los terremotos históricos más devastadores de la región central del país, dejando graves daños en Santa Fe que desde 1740 acababa de ser reinstaurada nuevamente como la capital del Virreinato de Nueva Granada. Fueron destruidas completamente la ermita de Monserrate y la de Guadalupe, otras iglesias sufrieron grandes averías. Los daños se extendieron hasta las poblaciones vecinas de Fómeque, Chía, Usaquén, Cáqueza, entre otras, donde también se destruyeron las iglesias y se notaron fenómenos de hundimientos, grandes grietas, fisuras y deslizamientos que taponaron caminos y algunos ríos y ocasionaron la muerte de varias personas y animales. Aplicando la Escala Macrosísmica Europea de 1998 (EMS-98), en el presente trabajo se hace la reevaluación de la intensidad en cada una de las poblaciones afectadas, y se presenta el mapa de puntos de intensidad. Para las poblaciones de Fómeque, Guachavita y Cáqueza se asignó una intensidad de VIII. Aplicando la metodología de Bakun and Wentworth (1997) y la relación de atenuación de la intensidad macrosísmica propuesta por Gómez Capera y Salcedo Hurtado (2002), de manera preliminar se calcula la magnitud macrosísmica igual a 6.30±0.35 y la localización del epicentro en (4.43N, 73.91W) entre los municipios de municipio de Cáqueza y Guachavita.
Article
Full-text available
En este artículo se analiza la información histórica de dos sismos —el del 12 de julio de 1785 y el del 31 de agosto de 1917— que causaron un fuerte impacto en Bogotá. Además de las implicaciones para la amenaza sísmica de Bogotá, estos eventos son interesantes puesto que estudios previos han ubicado sus epicentros en zonas donde no hay evidencias de actividad tectónica reciente. Los nuevos registros históricos documentales encontrados en este estudio contienen datos relacionados con daños y efectos en diferentes poblaciones, los cuales se organizaron y analizaron para obtener registros de intensidad. La distribución de las intensidades resultantes, superpuestas con las fuentes sismogénicas, sugieren nuevas zonas epicentrales para estos sismos.
Article
Full-text available
RESUMEN El nororiente venezolano ha sido afectado por diversos sismos destructores desde la conquista española, a partir del siglo XVI. El primer evento reportado en esta región y sentido a nivel nacional es el sismo de 1530 que arruinó fuertemente la ciudad de Cumaná. Esta ciudad ha sido repetidamente dañada desde entonces, por los sismos de 1684, 1766, 1797, 1853, 1929 y el reciente terremoto de Cariaco de 1997. A excepción de los sismos del presente siglo, todos los otros han sido asociados a la falla de El Pilar, sin ninguna confirmación por vía geológica. Más aún, algunos de ellos han sido atribuidos a segmentos de la falla en particular, basados en los mapas de intensidades macrosísmicas. Considerando la información recopilada del sismo de Cariaco del 09 de julio de 1997, queda claramente demostrado que los daños en la ciudad de Cumaná están fuertemente supeditados a condiciones de sitio, que son responsables de amplificación de la señal sísmica y de la generación de efectos inducidos por la sismicidad. En consecuencia, muchas evaluaciones macrosísmicas de sismos históricos destructores deben ser sujetos a revisión como consecuencia de sobrestimaciones de intensidades para Cumaná, introducidas por los factores antes mencionados, que conllevan a ubicar erróneamente los epicentros de dicho eventos pasados. Resultados paleosísmicos preliminares, obtenidos de tres trincheras excavadas en 1998 a través de la ruptura de superficie asociada al sismo de 1997 y de un afloramiento antrópico adicional, permiten atribuir el evento de 1684 al mismo segmento de falla generador del reciente sismo de Cariaco, cuya ruptura cosísmica afloró por unos 36 km en tierra (entre Muelle de Cariaco y Río Casanay, entre los golfos de Cariaco y Paria) y se extendió hacia el Oeste hasta el poblado de San Antonio del Golfo, por unos otros 15 km (en base a la distribución de las réplicas de dicho evento). Igualmente, se registra otro evento mucho más reciente, contemporáneo a la "Era del Plástico", por lo cual pensamos que se trata del sismo de Casanay del 12 de junio de 1974, que se extiende por lo menos entre Cariaco y Guarapiche (ubicación de las dos trincheras más alejadas). Otros resultados arrojados por la revaluación de la actividad sísmica histórica de esta falla son: a) el evento de 1766 parece haber sido generado por una fuente distinta a la falla de El Pilar, en función del área sentida de este sismo (mapa macrosísmico difiere del de aquellos eventos claramente asociados a la falla de El Pilar), lo cual sugiere que el foco fue de profundidad intermedia; b) los daños de Cumaná durante el evento de 1797 sugieren que son producto de un sismo local y que este sismo podría ser un equivalente previo al sismo de 1929, el cual rompió justo al Este de la ciudad de Cumaná, desde Punta Baja adentrándose en el golfo de Cariaco; y c) la asociación sismotectónica de los eventos de 1530 y 1853 es aún incierta, aunque están fuera del segmento bajo evaluación y se cree que pueden sus focos ubicarse en el segmento submarino de la falla de El Pilar al Oeste de Cumaná por la generación de grandes olas sísmicas.
Chapter
Full-text available
We describe the development of the Brazilian earthquake catalogue and the distribution of seismicity in Brazil and neighbouring areas in mid-plate South America. This large mid-plate region is one of the least seismically active stable continental regions (SCR) in the world: the maximum known earthquake had a magnitude of 6.2 mb and events with magnitudes 5 and above occur with a return period of 4 years. Several seismic zones can be delineated in Brazil, including some along craton edges and in sedimentary basins. Overall, the exposed cratonic regions tend to have half as many earthquakes compared to the average expected rate for all of mid-plate South America. Earthquakes tend to occur in Neoproterozoic foldbelts especially in areas of thin lithosphere, or near craton edges around cratonic keels. Areas with positive isostatic gravity anomalies tend to have more earthquakes, indicating that flexural stresses from uncompensated lithospheric loads are an important factor in explaining the intraplate seismicity. We also found that earthquakes are two to three times more likely to occur within 20 km of mapped neotectonic faults, compared to events at larger distances. On closer examination, however, we observe that most of these events occur near but not directly on the major neotectonic faults. This discrepancy could be explained by the model of stress concentration near intersecting structures. The Brazilian passive margin is also a region of higher than average seismicity. Although clear differences are found between different areas along the passive margin (extended crust in southeast Brazil having especially high seismicity compared to thin continental shelves elsewhere), overall the Brazilian passive margin has 70% more earthquakes (magnitudes above 3.5) than the average stable continental region.
Article
El terremoto del 12 de julio de 1785 es uno de los grandes eventos sísmicos ocurridos en la región central de Colombia que han dejado graves daños en la capital de la república y sus alrededores. En los archivos y bibliotecas de la nación se localiza información dejada por testigos oculares que dan cuenta de los daños y efectos causados por este sismo en diversas poblaciones. Varios investigadores han utilizado esta información para dar hipótesis de intensidad aplicando las escalas macrosísmicas de Mercalli Modificada, MCS y EMS- 92. Los valores de intensidad reportados en muchos casos son discordantes y en algunos dan interpretaciones erradas de la información. En el presente trabajo se hace la reevaluación macrosísmica utilizando la Escala Macrosísmica Europea de 1998, dando nuevas hipótesis de intensidad, donde el máximo valor es asignado a Santa Fe (hoy Bogotá D. C.), y se presenta el respectivo mapa de puntos de intensidad. La ubicación espacial de los puntos de intensidad muestra que los efectos dejados por el sismo se propagaron a lo largo del cinturón cordillerano andino siguiendo una tendencia lineal en dirección SW - NE, coincidiendo también con la traza de las principales fallas activas presentes en la región.
Article
We analysed the conversion problem between teleseismic magnitudes (M-s and m(b)) provided by the Seismological Bulletin of the International Seismological Centre and moment magnitudes (M-w) provided by online moment tensor (MT) catalogues using the chi-square general orthogonal regression method (CSQ) that, differently from the ordinary least-square regression method (OLS), accounts for the measurement errors of both the predictor and response variables. To account for the non-linearity of the relationships, we used two types of curvilinear models: (i) the exponential model (EXP), recently proposed by the authors of the Global Catalogue sponsored by the Global EarthquakeModel (GEM) Foundation and (ii) a connected bilinear (CBL) model, similar to that proposed by Ekstr " om & Dziewonski, where two different linear trends at low and high magnitudes are connected by an arc of circle that preserves the continuity of the function and of its first derivative at the connecting points. For M-s, we found that the regression curves computed for a global data set (GBL) are likely to be biased by the incompleteness of global MT catalogues for M-w < 5.0-5.5. In fact, the GBL curves deviate significantly from a similar regression curve computed for a Euro-Mediterranean data set (MED) integrated with the data provided by two regional MT catalogues including many more events with M-w < 5.0-5.5. The GLB regression curves overestimate the M-w proxies computed from M-s up to 0.5 magnitude units. Hence for computing M-w proxies at the global scale of M-s <= 5.5, we suggest to adopt the coefficients obtained from the MED regression. The analysis of the frequency-magnitude relationship of the resulting M-w proxy catalogues confirms the validity of this choice as the behaviour of b-value as a function of cut-off magnitude of the GBL data set is much more stable using such approach. The incompleteness of M-w's provided fromMT global catalogues also affects the m(b) GBL data set but in this case the use of the CSQ regression method, in place of the OLS, mitigates the bias and then, at low magnitudes, the EXP regression curve computed from the more complete MED data set almost coincides with that computed from the GBL data set. Our results also indicate that the slope at low magnitudes of the M-w-M-s relationship is substantially consistent with the hypothesized theoretical value of 2/3 for M-s < 5.0 while the slope of the M-w-m(b) relationship at high magnitudes probably reaches the theoretically expected value of 2 only in the proximity of the upper limit of m(b) determinations in our data set (m(b) = 7.2).
Article
Contribución al análisis macrosísmico del terremoto del 7 de junio de 1925: principales efectos en la ciudad de Cali. Rev. Acad. Colomb. Cienc. 31(120): 379-394, 2007. ISSN 0370-3908. Uno de los terremotos históricos importantes ocurridos en Colombia tuvo lugar el 7 de junio de 1925. A pesar de figurar en el catalogo sísmico mundial con magnitud de 6.75 (Gutenberg y Ricthter, 1954) y haber causado daños relevantes en la ciudad de Cali y otros centros urbanos del suroccidente, no ha sido objeto de suficientes investigaciones macrosísmicas. Recientemente, va-rios investigadores han realizado algunos estudios de relocalización instrumental que intentan eva-luar su posible fuente sismogénica, sin que este problema se haya resuelto definitivamente. El presente trabajo, como contribución macrosísmica, utiliza fuentes documentales (archivos his-tóricos, prensa y bibliografía) para describir los principales efectos en diferentes poblaciones, espe-cialmente en la ciudad de Cali, donde se elabora un mapa de localización de la zona con mayores daños. En términos de la escala EMS-98 se evalúa la intensidad macrosísmica y el factor de calidad (Q) para cada lugar, mostrándose también el respectivo mapa de intensidades. Cabe anotar que la información procesada aún no permite elaborar un mapa de isosistas confiable, ni establecer con precisión paráme-tros como la intensidad epicentral, el epicentro macrosísmico, la profundidad y la relación de atenua-ción, dejándose abierta una ventana de investigación macrosísmica más profunda acerca de este terre-moto.