Air layer exists between glass covers and cells in most building-integrated photovoltaic/thermal (BIPV/T) systems. This layer significantly reduces heat loss and improves the thermal efficiency of BIPV/T systems. However, the frame border that supports the glass cover casts a shadow over cells near the frame according to the air layer thickness, system orientation and location of the sun, thereby
... [Show full abstract] affecting photovoltaic performance. This study aims to find out the effect of such air layer on thermal and photovoltaic performance of BIPV/T systems. The distribution of frame shadows and photovoltaic loss caused by such shadows is analyzed. Then thermal and photovoltaic performance of BIPV/T system with different air layer thicknesses is evaluated. The influences caused by the air layer thickness, orientation of the BIPV/T system, solar altitude, and solar azimuth are analyzed. An approach is presented to evaluate the annual performance of the BIPV/T system. The results show that the frame shadow reduces system photovoltaic efficiency to 2.6% (normal efficiency, 13.0%) in the worst case scenario in Hefei (E117°17′, N31°52′). The maximum annual electrical loss caused by the frame shadow is 70.15 kWh/m² at an azimuthal angle of −45°. The quantity of total outputs increases with increasing air thickness. But the maximum comprehensive outputs are 359.95 kWh at 20 mm air thickness.