Conference Paper

On the Role of Solar Photovoltaics in Global Energy Transition Scenarios

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The global energy system has to be transformed towards high levels of sustainability for executing the COP21 agreement. Solar PV offers excellent characteristics to play a major role for this energy transition. Key objective of this work is to investigate the role of PV for the global energy transition based on respective scenarios and a newly introduced energy transition model developed by the authors at the Lappeenranta University of Technology (LUT). The available energy transition scenarios have no consensus view on the future role of PV, but a progressive group of scenarios present results of a fast growth of installed PV capacities and a high energy supply share of solar energy to the total primary energy demand in the world in the decades to come. These progressive energy transition scenarios can be confirmed by the LUT Energy system model. The model derives total installed solar PV capacity requirements of 7.1 – 9.1 TWp for today's electricity sector and 27.4 TWp for the entire energy system in the mid-term (year 2030 assumptions set as reference). The long-term capacity is expected to be 42 TWp and due to the ongoing cost reduction of PV and battery technologies, this value is found to be the lower limit for the installed capacities. The cost reductions are taken into account for the year 2030, but are expected to further proceed beyond this reference year. Solar PV electricity is expected to be the largest, least cost and most relevant source of energy in the mid-to long-term for the global energy supply.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... To assess the impact of policy instruments and their ability to achieve climate change policy objectives different kinds of models are used: Pfenninger et al. [2] classify models according to different challenges they address. The majority of modelsincluding computable general equilibrium, integrated assessment or energy system models are able to convey the "big picture" of what is happening, often for a global scale [3][4][5][6][7]. Additional studies focussing on specific regions or continents are able to include further regional characteristics [8][9][10][11]. ...
... On the other hand the release and loading is constrained by the current storage level defined in equation (A.24). 3 The storage level in return is limited by minimum and maximum storage levels that can be increased by the model independently from turbine and pump capacity (A. 25, A.26). Therefore the model can decide upon the optimal energy to power ratio (E/P-Ratio). ...
... Therefore the model can decide upon the optimal energy to power ratio (E/P-Ratio). 3 The storage level in the first modeled hour must equal the storage level in the last modeled hour, to ensure continuity at the end and the start of each year. ...
Article
The European Union has set out to reduce the carbon intensity of its electricity generation substantially, as defined in the European Roadmap 2050. This paper analyses the impact of foresight towards decarbonization targets on the investment decisions in the European electricity sector using a specific model developed by the authors called dynELMOD. Incorporating the climate targets makes the investment into any additional fossil capacity uneconomic from 2025 onwards, resulting in a coal and natural gas phase-out in the 2040s. Limited foresight thus results in stranded investments of fossil capacities in the 2020s. Using a CO 2 budgetary approach, on the other hand, leads to an even sharper emission reduction in the early periods before 2030, reducing overall costs. We also find that renewables carry the major burden of decarbonization; nuclear power (3rd or 4th generation) is unable to compete with other fuels and will, therefore, be phased out over time.
... For the total electricity generation mix, PV contributes to 60%, 58%, 53% and 49% for region-wide, country-wide, area-wide and integrated scenario, respectively. This is the highest solar PV share we have found in our global studies in any region in the world [44]. Prosumers play a vital role in providing flexibility to the system and installing low cost RE options and more storage capacities. ...
... The installation of a HVDC transmission grid between sub-regions enables a significant decrease in the cost of electricity and in installed capacities of RE technologies in a 100% RE based system. The benefit due to grid integration varies for different regions of the world [28,44]For the SAARC region benefit due to grid integration seems to be marginal as local storage options seems to be more cost effective than transmission of the electricity. As there is a highly significant influence of solar in the system and almost stable solar conditions all around year, batteries store this energy to help balance the night time demand. ...
Conference Paper
The developing region of SAARC (South Asian Association for Regional Cooperation) is home to a large number of people living below the poverty line. In future, providing affordable, access to all, reliable, low to zero carbon electricity in this region will be the main aim of electricity generation. A cost optimal 100% renewable energy based system is simulated for this region for the year 2030 on an hourly resolved basis for an entire year. The region was divided into 16 sub-regions and three different scenarios were set up based on the level of high voltage direct current (HVDC) grid connections. The results obtained for a total system levelised cost of electricity (LCOE) showed a decrease from 71.6 €/MWh in a decentralized to 67.2 €/MWh for a centralized grid connected scenario. An additional scenario was simulated to show the benefits of integrating industrial gas production and seawater reverse osmosis desalination demand which was reflected as the system cost decreased by 5% and the total electricity generation decreased by 1%. The results show that a 100% renewable energy based system could be a reality in the SAARC region with the cost assumptions used in this research and it may be more cost competitive than the nuclear and fossil carbon capture and storage (CCS) alternatives.
... = * * * ℎ * Ȯ * Τ (1) Yearly average discharge ratio of the reservoir (m 3 /s) For the FPV plant assumptions, the power density and water evaporation prevention ratios are obtained from [5], at 66.82 Wp/m 2 and 1.1 m 3 H2O/m 2 FPV, respectively. As for FPV energy production, a simulation of the irradiation maps for optimally fixed-tilted PV systems was calculated per location according to the global annual irradiation profiles used by [15]. Influencing effects of the surrounding waters are neglected, such as cooling or albedo effects. ...
... Every reservoir surface area was assumed to be covered by only 25%, to protect the FPV from being affected by fluctuating water levels, (though as tested by [5] it seems not to be a constraint). The results are simulated according to the 145 geographic regions defined by [15]. ...
Conference Paper
Full-text available
Artificial water reservoirs have been created over history for a variety of purposes such as flood control, seasonal water storage for irrigation, fishing, hydropower generation, energy storage, etc. Globally, hydropower represents still the largest share of renewable electricity generation, with over 1170 GW of capacity installed, thereof 328 GW is hydro Run-of-River capacity, and the rest is hydro reservoir based (141 GW of which is hydro pumped storage), controlled to different degrees. These reservoirs cover a surface of approximately 265.7 thousand km 2 with the potential to host 4400 GW of floating photovoltaic (PV) power plants at 25% reservoir surface coverage and generate approximately 6270 TWh of electricity. This capacity can be extended to 5700 GW and about 8000 TWh of electricity if all reservoirs (hydropower and for other purposes) are covered at 25%, in both cases generating already more electricity than hydropower from reservoirs at about 2510 TWh. The flexibility of operation of hydro reservoir based power plants and their current connection to grids facilitates a "virtual battery" consisting of supplying the electricity demand with solar energy during peak irradiation hours, while balancing grids with hydropower during low/no irradiation times and providing a zero impact area for PV power plant deployment. The characteristics of the "virtual battery" are investigated and presented in this study. The PV power plants also could prevent approximately 74 billion m 3 of water evaporation, further benefiting hydropower production and water conservation, increasing water availability by an estimated 6.3%, adding an estimated 142.5 TWh of production to reservoir-based hydropower plants.
... However, due to the lower energy consumption and improvement in technology, reverse osmosis is expected to dominate the Saudi market in the future [18]. [24][25][26][27][28][29][30][31]. ...
... By 2050, about 369 GW of PV single-axis tracking and 76 GW of wind power plants are required. This result documents the outstanding impact of low cost solar PV supported by low cost battery storage which leads to a solar PV electricity generation share of 80%, which is significantly higher than the average of about 40% found in the global average for year 2030 assumptions [24], but also as the 48% solar PV share for the MENA region [44]. However, comparable results had been found already earlier for the case of Israel [29], where the solar PV share had be found for cost optimized systems to about 90% of the total electricity supply, however for less good wind conditions as in Saudi Arabia, but for year 2030 assumptions. ...
Conference Paper
Saudi Arabia is in the midst of redefining the vision for the country's future and creating an economy that is not dependent on fossil fuels. This work presents a pathway for Saudi Arabia to transition from the 2015 power structure to a 100% renewable energy based system by 2050 and analyse the benefits of integrating the power sector with the growing desalination sector. It is found that Saudi Arabia can transition to a 100% renewable energy power system by 2040 whilst meeting the growing water demand through seawater reverse osmosis (SWRO) desalination plants. The dominating renewable energy sources are PV single-axis tracking and wind power plants with 210 GW and 133 GW, respectively. The levelised cost of electricity (LCOE) of the 2040 system is 48 €/MWh. By 2050, PV single-axis tracking dominates the power sector due to the further reduction in the capital costs alongside cost reductions in supporting battery technology. This results in 80% share of solar PV in the total electricity generation. Battery storage is required to meet the total electricity demand and by 2050, accounts for 48% of the total electricity demand. The LCOE is estimated at 38 €/MWh, required capacity of PV single-axis tracking is 369 GW and wind power plants 75 GW. In the integrated scenario, due to flexibility provided by the SWRO plants, there is a reduced demand for battery storage and power-togas (PtG) plants. In addition, the ratio of the energy curtailed to the total energy generated is lower in all time periods from 2020 to 2050, in the integrated scenario. As a result, the annual levelised costs of the integrated scenario is found to be 2%-4% less than the non-integrated scenario.
... En esta figura se puede observar que existe una fuerte dependencia hacia las fuentes de energía no renovables, como lo es la térmica, la cual, además, genera altas cantidades de emisiones de carbono a la atmósfera. Es por esto que se ha realizado investigaciones en diferentes áreas con el fin de disminuir el consumo de combustibles fósiles, dando énfasis a fuentes de energía renovables, como lo es la hidroeléctrica, eólica y solar, con el fin de obtener un sistema sostenible (Breyer, 2017). ...
... Existen dos tecnologías para aprovechar la energía solar en la generación eléctrica. Estas son: las celdas fotovoltaicas, que utilizan dispositivos semiconductores tipo diodos, para la generación eléctrica y los concentradores de energía térmica de baja y alta temperatura, que concentran la energía térmica en un punto, para calentar un gas o fluido generando trabajo, a través de un ciclo termodinámico, el cual es convertido en electricidad (Breyer, 2017;Pandey, 2017;Losada, 2009). ...
Article
Full-text available
Conductive polymers are macromolecules that have a conjugated system of π bonds. This feature allows the delocalization of electrons through the molecule and generates the possibility of electrical conduction. Among the first reported conductive polymers we find polyacetylene (PA), poly(p-phenylene) (PPP), poly(p-phenylene vinylene) (PPV), polythiophene (PT), polyaniline (PANI) and polypyrrole (PPy). The discovery of the conductive properties of these polymers led to the quest of applications in electronics and in energy generation. In these areas, systems that meet the current technological needs and have a potential use in satisfying future technological requirements have been developed. The objective of this review article is to give an overview of conductive polymers, reviewing some historical data and demonstrating their importance in technological advancement through their application in photovoltaic cells and electronic devices.
... Maximum electricity storage capacity of the reservoir (Wh) Efficiency of turbine + generator (assumed 90% for hydropower) Density of water (kg/m3) Water flow (m3/s) Gravity constant (rounded to 9.81 m/s2) Head of the dam (m) Time (hours) Volume capacity of the reservoir (m3) Yearly average discharge ratio of the reservoir (m3/s) For the FPV plant assumptions, the power density and water evaporation prevention ratios are obtained from [5], at 66.82 Wp/m 2 and 1.1 m 3 H2O/m 2 FPV, respectively. As for FPV energy production, a simulation of the irradiation maps for optimally fixed-tilted PV systems was calculated per location according to the global annual irradiation profiles used by [15]. Influencing effects of the surrounding waters are neglected, such as cooling or albedo effects. ...
... Every reservoir surface area was assumed to be covered by only 25%, to protect the FPV from being affected by fluctuating water levels, (though as tested by [5] it seems not to be a constraint). The results are simulated according to the 145 geographic regions defined by [15]. ...
Article
Full-text available
Artificial water reservoirs have been created over history for a variety of purposes such as flood control, seasonal water storage for irrigation, fishing, hydropower generation, energy storage, etc. Globally, hydropower represents still the largest share of renewable electricity generation, with over 1170 GW of capacity installed, thereof 328 GW is hydro Run-of-River capacity, and the rest is hydro reservoir based (141 GW of which is hydro pumped storage), controlled to different degrees. These reservoirs cover a surface of approximately 265.7 thousand km² with the potential to host 4400 GW of floating photovoltaic (PV) power plants at 25% reservoir surface coverage and generate approximately 6270 TWh of electricity. This capacity can be extended to 5700 GW and about 8000 TWh of electricity if all reservoirs (hydropower and for other purposes) are covered at 25%, in both cases generating already more electricity than hydropower from reservoirs at about 2510 TWh. The flexibility of operation of hydro reservoir based power plants and their current connection to grids facilitates a “virtual battery” consisting of supplying the electricity demand with solar energy during peak irradiation hours, while balancing grids with hydropower during low/no irradiation times and providing a zero impact area for PV power plant deployment. The characteristics of the “virtual battery” are investigated and presented in this study. The PV power plants also could prevent approximately 74 billion m³ of water evaporation, further benefiting hydropower production and water conservation, increasing water availability by an estimated 6.3%, adding an estimated 142.5 TWh of production to reservoir-based hydropower plants.
... Various reports and literature discuss the global, regional, and countrywide transition to a 100% renewable energy-based system (Breyer et al., 2017b(Breyer et al., , 2017cJacobson et al., 2017;Teske et al., 2015). The learning curves for renewable energy technologies enable to understand future costs of electricity production from renewable energy power plants during the transition (Breyer et al., 2017a). ...
... These factors comprise of environmental concerns, expensive capital, rising energy costs, water reuse and recycling strategies, political concerns, and uncertainty about droughts. The environmental concern about greenhouse gas emissions and rising energy costs can be tackled through the coupling of renewable energy ( Kittner et al., 2017;Liebreich, 2016;Nykvist & Nilsson, 2015;Schmidt et al., 2017), concern about rising energy costs can be overcome, as pointed out by Breyer et al. (2017bBreyer et al. ( , 2017c for very high shares of renewable energy. Wilder et al. (2016) explains that proponents of seawater desalination perceive the technology as a drought-proof means of meeting a country's water demand and achieving water security. ...
Article
Seawater reverse osmosis (SWRO) desalination is expected to play a pivotal role in helping to secure future global water supply. Whilst the global reliance on SWRO plants for water security increases, there is no consensus on how the capital costs of SWRO plants will vary in the future. The aim of this paper is to analyse the past trends of the SWRO capital expenditures (capex) as the historic global cumulative online SWRO capacity increases, based on the learning curve concept. The SWRO capex learning curve is found based on 4237 plants that came online from 1977 to 2015. A learning rate of 15% is determined, implying that the SWRO capex reduced by 15% when the cumulative capacity was doubled. Based on SWRO capacity annual growth rates of 10% and 20%, by 2030, the global average capex of SWRO plants is found to fall to 1580 USD/(m3/day) and 1340 USD/(m3/day) respectively. A learning curve for SWRO capital costs has not been presented previously. This research highlights the potential for decrease in SWRO capex with the increase in installation of SWRO plants and the value of the learning curve approach to estimate future SWRO capex.
... In the New Policies Scenario, solar PV is expected to be a key low-carbon technology in many regions of the world, exceeding 1000 GW of installed capacity globally by 2040. This is one of the most conservative projections [13] While Fraunhofer institute for solar energy system (ISE) [14] in the Average Value Scenario predicted that the installed capacity of PV will reach 2016 GW globally by 2030. In this report, the levelized cost of electricity (LCOE) predicted for solar PV is around 45-70 €/MWh by 2030. ...
Conference Paper
Renewable energy (RE) has been already viewed as a minor contributor in the final energy mix of North America due to cost and intermittency constraints. However, recent dramatic cost reductions and new initiatives using RE, particularly solar PV and wind energy, as a main energy source for the future energy mix of the world pave the way for enabling this source of energy to become cost competitive and beneficial in comparison to fossil fuels. Other alternatives such as nuclear energy and coal-fired power plants with carbon capture and storage (CCS) cannot play an important role in the future of energy system, mainly due to safety and economic constraints for these technologies. Phasing out nuclear and fossil fuels is still under discussion, however the 'net zero' greenhouse gas emissions agreed at COP21 in Paris clearly guides the pathway towards sustainability. Consequently, RE would be the only trustable energy source towards a clean and sustainable world. In this study, an hourly resolved model has been developed based on linear optimization of energy system parameters under given constraints with a bright perspective of RE power generation and demand for North America. The geographical, technical and economic potential of different types of RE resources in North America, including wind energy, solar PV, hydro, geothermal and biomass energy sources enable the option to build a Super Grid connection between different North American regions' energy resources to achieve synergy effects and make a 100% RE supply possible. The North American region, including the US, Canada and Mexico in this paper, is divided into 20 sub-regions based on their population, demand, area and electricity grid structure. These sub-regions are interconnected by high voltage direct current (HVDC) power lines. The main objective of this paper is to assume a 100% RE-based system for North America in 2030 and to evaluate its results from different perspectives. Four scenarios have been evaluated according to different HVDC transmission grid development levels, including a region-wide, country-wide, area-wide and integrated scenario. The levelized cost of electricity (LCOE) is found to be 63 €/MWhel in a decentralized scenario. However, it is observed that this amount decreases to 53 €/MWhel in a more centralized HVDC grid connected scenario. In the integrated scenario, which consists of industrial gas production and reverse osmosis water desalination demand, integration of new sectors provides the system with required flexibility and increases the efficiency of the usage of storage technologies. Therefore, the LCOE declines to 42 €/MWhel and the total electricity generation is decreased by around 6.6% in the energy system compared to the non-integrated sectors due to higher system efficiency enabled by more flexibility. The results clearly show that a 100% RE-based system is feasible and a real policy option.
... Based on Breyer and Gerlach (2013) and Vartiainen et al. (2015), solar PV LCOE are projected to decline by further 30-40% from 2020 to 2040 as a consequence of progressive efforts to reduce materials use, improved efficiency and to the development of the manufacturing processes. It is also expected that the end results of a steady decline in PV cost will be the further dominance of PV technologies in the market beyond the year 2030 (Castellano et al., 2015;Breyer et al., 2016). These revelations are in line with Greenpeace (2015) advanced energy [r]evolution scenario, which projects that the hydro power generation capacity will be outstripped by solar energy after the year 2020 and that hydro power will have a smaller proportion of 41 GW (11%) compared to solar energy at 177 GW (47%) by 2030. ...
Conference Paper
This paper determines a least cost electricity solution for Sub-Saharan Africa (SSA). The power system discussed in this study is hourly resolved and based on 100% Renewable Energy (RE) technologies. Sub-Saharan Africa was subdivided into 16 sub-regions. Four different scenarios were considered according to the setup in high voltage direct current (HVDC) transmission grid. One integrated scenario that considers water desalination and industrial gas production were also analysed. This study uncovers that RE is sufficient to cover 866.4 TWh estimated electricity demand for 2030 and additional electricity needed to fulfil 319 million m 3 of water desalination and 268 TWhLHV of synthetic natural gas demand. Existing hydro dams can be used as virtual batteries for solar PV and wind electricity storage, diminishing the role of storage technologies. The results for total levelised cost of electricity (LCOE) decreases from 57.8 €/MWh for a highly decentralized to 54.7 €/MWh for a more centralized grid scenario. For the integrated scenario, including water desalination and synthetic natural gas demand, the levelised cost of gas and the levelised cost of water are 113.7 €/MWhLHV and 1.39 €/m 3 , respectively. A reduction of 6% in total cost and 19% in electricity generation was realized as a result of integrating desalination and power-togas sectors into the system.
... In 2030, the share of solar PV and wind will be 59% and 18% of the total electricity generation mix, respectively. This is the highest solar PV share the authors of this paper have found in their global studies in any region in the world [4]. The electricity generation mix as well as installed capacities of major renewable energy sources and storage in India in 2030 can be found in the Table 1 and Table 2 (Appendix). ...
... The projections of the WEO for PV can be regarded as a very conservative lower limit, since all projections of the last two decades have been substantially too low [33] and the installation projections to the year 2040 are continuously and substantially lower than already expected for years 2016 and 2017 [8,29,34]. This is due to the fact that PV is the least cost source of electricity on a LCOE basis in a fast growing number of regions around the world [35,36]. ...
Article
The main objective of this research is to present a solid foundation of capex projections for the major solar energy technologies until the year 2030 for further analyses. The experience curve approach has been chosen for this capex assessment, which requires a good understanding of the projected total global installed capacities of the major solar energy technologies and the respective learning rates. A literature survey has been conducted for CSP tower, CSP trough, PV and Li-ion battery. Based on the literature survey a base case has been defined for all technologies and low growth and high growth cases for further sensitivity analyses. All results are shown in detail in the paper and a comparison to the expectation of a potentially major investor in all of these technologies confirmed the derived capex projections in this paper.
... This has led to the emergence of energy storage as a key technology in the management of larger shares of energy from renewable sources. Sustainable energy scenarios have been introduced and developed for various parts of the world to highlight possible future energy systems and broaden the perspectives of decision makers on what they should take into consideration [1], [2]. Examining renewable based energy scenarios in Iran is a challenging and interesting case study because of the following country characteristics: ...
Conference Paper
This work presents a pathway for the transition to a 100% renewable energy (RE) system by 2050 for Iran. An hourly resolved model is simulated to investigate the total power capacity required from 2015 to 2050 in 5-year time steps to fulfil the electricity demand for Iran. In addition, shares of various RE resources and storage technologies have been estimated for the applied years, and all periods before in 5-year time steps. The model takes the 2015 installed power plant capacities, corresponding lifetimes and total electrical energy demand to compute and optimize the mix of RE plants needed to be installed to achieve a 100% RE power system by 2050. The optimization is carried out on the basis of assumed costs and technological status of all energy technologies involved. Moreover, the role of storage technologies in the energy system, and integration of the power sector with desalination and non-energetic industrial gas sectors are examined. Our results reveal that RE technologies can fulfil all electricity demand by the year 2050 at a price level of about 32-44 €/MWhel depending on the sectorial integration. Moreover, the combination of solar PV and battery storage is found as a least cost solution after 2030 for Iran. 1. Introduction A transition to an energy system based on 100% renewable energy (RE) is not only possible but also is necessary to respond to rapidly increasing energy demand and address the current climate crisis. However, variability of renewable sources (in particular solar and wind) poses concerns regarding the reliability and cost of an energy system that derives a large fraction of its energy from these sources. This has led to the emergence of energy storage as a key technology in the management of larger shares of energy from renewable sources. Sustainable energy scenarios have been introduced and developed for various parts of the world to highlight possible future energy systems and broaden the perspectives of decision makers on what they should take into consideration [1], [2]. Examining renewable based energy scenarios in Iran is a challenging and interesting case study because of the following country characteristics:
... This can be attributed to the steep decrease in the capex of solar PV and batteries, and excellent solar conditions all year around in all parts of India. The solar PV electricity generation share, of about 86% for 2050, is substantially higher than the world average of 40% found for 100% RE overnight scenarios based on year 2030 assumptions [30]. It is also higher than the obtained PV electricity share of 50% based on the same 2030 overnight scenario assumptions for the region India/SAARC [24]. ...
Conference Paper
Full-text available
The initiatives taken by India to tap its renewable energy (RE) potential have been extraordinary in recent years. However, large scale deployment of renewables requires various storage solutions to balance intermittency. In this work, a 100% RE transition pathway based on an hourly resolved model till 2050 is simulated for India, covering demand by the power, desalination and non-energetic industrial gas sectors. Energy storage technologies used in the model that provide flexibility to the system and balance the demand are batteries, pumped hydro storage (PHS), adiabatic compressed air energy storage (A-CAES), thermal energy storage (TES) and power-togas technology. The optimization for each time period (transition is modeled in 5-year steps) is carried out on assumed costs and technological status of all energy technologies involved. The model optimizes the least cost mix of RE power plants and storage technologies installed to achieve a fully RE based power system by 2050 considering the base year's (2015) installed power plant capacities, their lifetimes and total electricity demand. Results indicate that a 100% renewable energy based energy system is achievable in 2050 with the levelised cost of electricity falling from a current level of 57 €/MWhe to 42 €/MWhe in 2050 in a country-wide scenario. With large scale intermittent renewable energy sources in the system, the demand for storage technologies increases from the current level to 2050. Batteries provide 2596 TWh, PHS provides 12 TWh and gas storage provides 197 TWh of electricity to the total electricity demand. Most of the storage demand will be based on batteries, which provide as much as 42% of the total electricity demand. The combination of solar PV and battery storage evolves as the low-cost backbone of Indian energy supply, resulting in 3.2 – 4.3 TWp of installed PV capacities, depending on the applied scenario in 2050. The above results clearly prove that renewable energy options are the most competitive and least-cost solution for achieving a net zero emission energy system. This is the first study of its kind in full hourly resolution for India.
... Due to this, it was reported that in resource rich regions, depending on the relative cost of technologies and their resource qualities, the mix could be dominated by any one of the resources. Several studies have reported, using varying cost estimate, different levels of curtailment, wind-solar mix and storage size [4][5][6]10,33,34]. This shows that the optimal wind-solar mix should be found according to their best matching to the local load and by other technical benefits that they may provide to the respective energy system embedded in the economic requirements. ...
Conference Paper
Resource complementarities carry significant benefit to the power grid due to their smoothing effect on the variable renewable resources output. In this paper, we show that complementarity significantly reduces energy storage requirement by using simulation results generated for Israel, Saudi Arabia, California and Finland. In a complementarity study performed using Israeli and Californian data sets (focusing on the electricity sector alone), the wind-solar complementarities were shown to significantly increase grid penetration as compared to stand-alone wind/solar systems even without the need of energy storage. At even higher grid penetration their complementarity carries significant multidimensional benefits to the power grid. The most important observation was the achievement of very high grid penetration at reduced energy storage and balancing requirements as compared to stand-alone systems. Using specific energy storage capacity (186 GWh/22 GW) and setting the solar share to 0%, 50% and 100% of the total VRE capacity, the 50-50 wind-solar capacity mix has led to significantly higher penetration as compared to the stand-alone systems. For instance, by allowing 15% energy curtailment, it was shown that grid penetration of 63%, 80% and 55% of the annual demand, respectively, can be achieved. This was because of storage being able to follow a flexible dispatch strategy, which makes it applicable for various services depending on the season of the year and the available resources. A study on a 100% renewable energy system of Finland shows that one of the best scenarios was related to a 43%-57% wind-solar capacity mix for a 70% VRE penetration by 2050. A similar study on Saudi Arabia shows that broader resource complementarity and higher level of flexibility obtained through sector coupling has reduced the required storage very significantly. The results indicate that the multiple benefits obtained from resource complementarity should be emphasized during the transition to systems of high renewable energy shares.
... Most studies were simulated with an hourly resolution and many modelled the transmission grid, with examples covering the globe[116,117], North-East Asia[50], the Association of Southeast Asian Nations (ASEAN)[118], Europe[43,100,119,120,121], the Americas[122], China[123], the United States[124], Finland[125], Denmark[111], Germany[25], Ireland[126]and Berlin-Brandenburg in Germany[127]. Since then other 100% studies have considered the globe[27,128], Asia[129], Southeast Asia and the Pacific Rim[49], Europe[44,101,130,131,132], South-East Europe[133], South and Central America[48], North America[134], India and its neighbours[135], Brazil[35], Iran[136], Australia[137,138], the Canary Islands[139]and the Åland Islands[140]. ...
Article
Full-text available
A recent article ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’ claims that many studies of 100% renewable electricity systems do not demonstrate sufficient technical feasibility, according to the criteria of the article's authors (henceforth ‘the authors’). Here we analyse the authors’ methodology and find it problematic. The feasibility criteria chosen by the authors are important, but are also easily addressed at low economic cost, while not affecting the main conclusions of the reviewed studies and certainly not affecting their technical feasibility. A more thorough review reveals that all of the issues have already been addressed in the engineering and modelling literature. Nuclear power, which the authors have evaluated positively elsewhere, faces other, genuine feasibility problems, such as the finiteness of uranium resources and a reliance on unproven technologies in the medium- to long-term. Energy systems based on renewables, on the other hand, are not only feasible, but already economically viable and decreasing in cost every year.
... A recent 22 ex-post analysis of cost-optimization models for the UK found significant deviations of the actual system from the 23 cost-optimal or near-cost-optimal estimates (Trutnevyte 2016). Looking forward, the reliance on traditionaltechnologies plus CCS which is the consensus from CES-based GE-IAMs in Section 3 is contrasts with both current 1 deployment trends ( Breyer et al. 2017) and the literature that uses bottom-up, physically constrained analysis to model 2 a 100% carbon free economy and that considers solar and wind RE as the scalable workhorse technologies with some 3 reliance on biomass depending on the location but with no nuclear or CCS e.g. (Lund and Mathiesen 2009) for 4 ...
Article
Full-text available
Applying constant elasticity of substitution (CES) functions in general equilibrium integrated assessment models (GE-IAMs) for the substitution of technical factor inputs (e.g., replacing fossil fuels) fails to match historically observed patterns in energy transition dynamics. This method of substitution is also very sensitive to the structure of CES implementation (nesting) and parameter choice. The resulting methodology-related artifacts are (i) the extension of the status quo technology shares for future energy supply relying on fossil fuels with carbon capture, biomass, and nuclear; (ii) monotonically increasing marginal abatement costs of carbon; and (iii) substitution of energy with non-physical inputs (e.g., knowledge and capital) without conclusive evidence that this is possible to the extent modeled. We demonstrate these issues using simple examples and analyze how they are relevant in the case of four major CES-based GE-IAMs. To address this, we propose alternative formulations either by opting for carefully applied perfect substitution for alternative energy options or by introducing dynamically variable elasticity of substitution as a potential intermediate solution. Nevertheless, complementing the economic analysis with physical modeling accounting for storage and resource availability at a high resolution spatially and temporally would be preferable.
... Some of the major challenges that the present world economy faces are energy security, sustainability, pollution and climate change impacts. Some authors and organizations have defended a transition to a 100% renewable economy as a way to achieve an ultimate and lasting solution to these challenges [77,50,72,125,86,27,123,15]. That choice is based on the fact that renewables are already proven technologies, are experiencing rapid development and potentially have a zero carbon footprint. ...
Article
Full-text available
A 100% renewable economy would give a lasting solution to the challenges raised by climate change, energy security, sustainability, and pollution. The conversion of the present transport system appears to be one of the most difficult aspects of such renewable transition. This study reviews the technologies and systems that are being proposed or proven as alternative to fossil-fuel based transportation, and their prospects for their entry into the post-carbon era, from both technological and energetic viewpoints. The energetic cost of the transition from the current transportation system into global 100% renewable transportation is estimated, as well as the electrical energy required for the operation of the new renewable transportation sector. A 100% renewable transport providing the same service as global transport in 2014 would demand about 18% less energy. The main reduction is expected in road transport (69%), but the shipping and air sectors would notably increase their consumptions: 163% and 149%, respectively. The analysis concludes that a 100% renewable transportation is feasible, but not necessarily compatible with indefinite increase of resources consumption. The major material and energy limitations and obstacles of each transport sector for this transition are shown.
... On average about 1400 J/m 2 s energy is being radiated from sun towards earth that has significant potential to generate electricity more than the total consumption of the earth [3]. PV systems are being deployed all around the world at a significant higher rate with an annual addition of 50 GW on average of new power capacity into existing installed capacity [4]. Solar energy harvesting through PV technology is most effective form of renewable energy that has negligible impact on environment [5]. ...
... Some CCS parts may be switched to carbon capture and use (CCU), where the captured CO2 can potentially be used for the manufacturing of fuels, carbonates, polymers and chemicals. Some current studies ( Breyer et al., 2017, Breyer et al., 2018, Creutzig et al., 2017, Jacobson et al., 2018a, Jacobson et al., 2018b, Pursiheimo et al., 2018 show that fossil CCS is a solution of the past and no longer required in real progressive energy system modelling. Besides, CCS technology doubles the cost of power production which may be passed to the final consumers ( İşlegen and Reichelstein, 2011). ...
Thesis
Full-text available
Background: The provision of energy services is a vital component of the energy system. This is often considered emission-intensive and at same time, highly vulnerable to climate change conditions. This forms the fundamental objective of this thesis, poised to examine technoeconomic and environmental implications of policy intervention, targeted at cushioning impacts of climate change on the energy system. Aims: Four research queries are central to this work: (1) Review literature on impacts of CV&C on the energy system; (2) Estimate influence of seasonal climatic and socioeconomic factors on energy demand in Australia; (3) Model dynamic interactions between energy policies and climate variability and change (CV&C) impacts on the energy system in Australia and exploring the technoeconomic and environmental implications; and (4) Identify least-cost combination of electricity generation technologies and effective emissions reduction policies under climate change conditions in Australia. Methods: A systematic scoping review method was first applied to identify consistent pattern of CV&C impacts on the energy system, while spotting research gaps in studies that met the inclusion criteria. Databases consisting of Scopus and Web of Science were searched, and snowballing references in published studies was adopted. Data was collated and summarised to identify the characteristic features of the studies, consistent pattern of CV&C impacts, and locate research gaps to be filled by this study. The second study applied an autoregressive distributed lag (ARDL) model to estimate temperature sensitive electricity demand in Australia. Estimates were used with projected temperatures from global climate models (GCMs) to simulate future electricity demand under climate change scenarios. The study further accounted for uncertainties in electricity demand forecasting under climate change conditions, in relation to energy efficiency improvement, renewable energy adoption and electricity price volatility. The estimates from the ARDL model and projections from GCMs were used for energy system simulation using the Long-range Energy Alternative and Planning (LEAP) system. It considered climate induced energy demand in the residential and commercial sector, alongside linking the non-climate sensitive sector with energy supply sector. This model was vital to justifying policy options under investigation. Further, LEAP modelling analysis was extended by identifying effective emission reduction policies considering CV&C impacts. Here, the Open Source Energy Modelling System (OSeMOSYS) was used for optimisation analysis to identify least-cost combination of electricity generation technologies and GHG emission reduction policies. Whereas, in the third and final study, cost-benefit analysis and estimation of long run marginal cost of electricity were conducted, while decomposition analysis of GHGs were analysed in the third study alone. Data used in the ARDL model included socioeconomic data which includes gross state product, as well as population and electricity prices from 1990-2016. The LEAP and OSeMOSYS model as used, was dated to 2014 as the base year, while several technological (power plant characteristics, household technologies), economic (energy prices, economic growth, carbon price) and environmental (emission factors, emission reduction target) variables were used to develop Australia’s energy model. Results: The literature search generated 5,062 articles in which 176 studies met the inclusion criteria for the final literature review. Australian studies were scarce compared to other developed countries. Also, just few articles made attempt to examine decarbonisation under climate change. The ARDL model estimates and GCMs simulation of future electricity demand under CV&C show that Australia had an upward sloping climate-response functions, resulting to an increase in electricity demand. However, the researcher identified an annual increase in projected electricity demand for states and territory in Australia, which calls for the need to scale up RET. The LEAP model results showed substantial impacts on energy demand, as well as impacts on power sector efficiency. Under the BAU scenario, CV&C will result in an increase in energy demand by 72 PJ and 150 PJ in the residential and commercial sectors, respectively. Induced temperature enlarges the non-climate BAU demand, which will increase threefold before 2050. Under the non-climate BAU, there is an expansion of installed capacity to 81.8 GW generating 524.6 TWh. Due to CV&C impacts, power output declines by 59 TWh and 157 TWh in Representative Concentration Pathways (RCP) 4.5 and 8.5 climate scenarios. This leads to an increase in generation costs by 10% from the base year, but a decrease in sales revenue by 8% and 21% in RCP 4.5 and RCP 8.5, respectively. The LEAP-OSeMOSYS model suggests renewables and battery storage systems as least-cost option. However, the configuration varied across Australia. Carbon tax policy was observed to be effective in reducing Australia’s emission and foster huge economic benefits when compared to the current emission reduction target policy in the country. Also, renewable energy technologies increase electricity sales and decrease fuel cost better than fossil fuel dominated scenarios. Conclusions: Data from this study reveals that seasonal electricity demand in Australia will be influenced by warmer temperatures. Also, the study identified the possibility of winter peaking which is somewhat higher than summer peak demand in some states located in the southern regions of Australia. However, winter peaking is projected to decline by midcentury across the RCPs, while summer peak load is projected to increase, thereby, causing power companies to expand their generation capacity which may become underutilised. Owing to increase in cooling requirements up to 2050, policy uncertainties analysis recommend renewables to match an increasing future electricity demand. The energy model indicates that ignoring the influence of CV&C may result in severe economic implications which range from increased demand, higher fuel cost, loss in revenue from decreased power output, as well as increased environmental externalities. The study concludes that policy options to reduce energy demand and GHG emissions under climate change may be expensive on the short-run, though, may likely secure long-run benefits in cost savings and emission reductions. It is envisaged that this could provide power sector management with initiatives that could be used to overcome cost ineffectiveness of short-term cost. The modelling results makes a case for renewable energy in Australia as lower demand for energy and increased electricity generation from renewable energy source presents a win-win case for Australia.
... The transition is setting new requirements to power systems and especially to loads in the power system. The present trend is well visible in statistical data and is shown by many researchers in the past years [1]- [2]. ...
Conference Paper
Full-text available
The paper presents an overview of the present technical barriers and triggers on the utilization of small active resources in demand response (DR) market and suggests requirements to novel technical solutions enabling extensive penetration of such services. The paper describes the present status of the DR in the Finnish power system. The key technical triggers stalling the wide spread roll-out of the small-scale DR units are lack of sufficient light weight protocol, capable of handling privacy and security issues, and cost-efficient client hardware.
... The power industry is also undergoing a gradual change from carbonintensive to renewable energy sources at a faster rate than historical transitions might suggest [138]. It is anticipated that with the impending change, more renewable energy sources would be integrated into the distribution network with solar panels envisaged to be the most relevant option for energy supply globally, due to its reducing costs [139]. Hence, colocated energy harvesting, especially for macrocells, can present new opportunities for cellular network operators. ...
Article
Full-text available
The projected rise in wireless communication traffic has necessitated the advancement of energy-efficient (EE) techniques for the design of wireless communication systems, given the high operating costs of conventional wireless cellular networks, and the scarcity of energy resources in low-power applications. The objective of this paper is to examine the paradigm shifts in EE approaches in recent times by reviewing traditional approaches to EE, analyzing recent trends, and identifying future challenges and opportunities. Considering the current energy concerns, nodes in emerging wireless networks range from limited-energy nodes (LENs) to high-energy nodes (HENs) with entirely different constraints in either case. In view of these extremes, this paper examines the principles behind energy-efficient wireless communication network design. We then present a broad taxonomy that tracks the areas of impact of these techniques in the network. We specifically discuss the preponderance of prediction-based energy-efficient techniques and their limits, and then discuss the trends in renewable energy supply systems for future networks. Finally, we recommend more context-specific energy-efficient research efforts and cross-vendor collaborations to push the frontiers of energy efficiency in the design of wireless communication networks.
... Most analysts now realize that renewable sources of electricity and energy storage (Kittner et al 2017) are becoming bigger and cheaper at a phenomenal yet sustainable pace (Breyer et al 2016, Creutzig et al 2017, Haegel et al 2017 driven by increasing economic returns-the more we buy and learn, the cheaper the technology gets, so we buy and learn more, so it gets cheaper. Thus positive feedback occurs not only in climate but also in decarbonizing technology coevolving with policy (Abramczyk et al 2017). ...
Article
Full-text available
IPCC’s 2018 Special Report is a stark and bracing reminder of climate threats. Yet literature, reportage, and public discourse reflect imbalanced risk and opportunity. Climate science often understates changes’ speed and nonlinearity, but Integrated Assessment Models (IAMs) and similar studies often understate realistic mitigation options. Since ∼2010, global mitigation of fossil CO 2 —including by often-uncounted modern renewable heat comparable to solar-plus-wind electricity—has accelerated to about the pace (if sustained) needed for a 2 °C trajectory. Mitigation has uncertainties, emergent properties, feasibility thresholds, and nonlinearities at least comparable to climate’s, creating opportunities for aggressive action. Renewable electricity’s swift uptake can now be echoed as proven integrative design can make end-use efficiency severalfold larger and cheaper, often with increasing returns (lower cost with rising quantity). Saved energy—the world’s largest decarbonizer and energy ‘source’ (bigger than oil)—can then potentiate renewables and cut supply investments, as a few recent efficiency-centric IAMs confirm. Optimizing choices, combinations, timing, and sequencing of technologies, urban form, behavioral shifts, etc could save still more energy, money, and time. Some rigorous engineering-based national studies outside standard climate literature even imply potential 1.5 °C global trajectories cheaper than business-as-usual. A complementary opportunity—rapidly and durably abating hydrocarbon industries’ deliberate upstream CH 4 releases from flares and engineered vents, by any large operator’s profitably abating its own and others’ emissions—could stabilize (or more) the global methane cycle and buy time to abate more CO 2 . Together, these findings justify sober recalibration of the prospects for a fairer, healthier, cooler, and safer world. Supported by other disciplines, improved IAMs can illuminate this potential and support its refinement. Ambitious policies and aggressive marketplace and societal adoption of profitable new abatement opportunities need not wait for better models, but better models would help them to attract merited attention, scale faster, and turn numbing despair into collectively powerful applied hope.
... Therefore, WACC is split into two categories in this study. The WACC variation does not substantially alter the cost of the energy system ( Breyer et al., 2017). Additionally, the risk profile of nuclear and coal is much higher than RE, which should result in a higher WACC level for nuclear energy and coal compared to RE technologies ( Ram et al., 2018), however, these higher risks are not taken into account in the research. ...
Article
Full-text available
Transition to a cost effective and fossil carbon-free energy system is imminent for South Africa, so is the miti-gation of issues associated with the 'water-energy nexus' and their consequent impacts on the climate. The country's key fossil carbon mitigation option lies in the energy sector, especially in shifting away from the coal-dependent power system. Pathways towards a fully decarbonised and least cost electricity system are investigated for South Africa. The energy transition is simulated for five scenarios, assessing the impact of various factors such as sector coupling, with and without greenhouse gas (GHG) emission costs. South Africa's energy transition is simulated using an hourly resolved model until 2050. This modelling approach synthesises and reflects in-depth insights of how the demand from the power sector can be met. The optimisation for each 5-year time period is carried out based on assumed costs and technological status until 2050. The modelling outcomes reveal that solar PV and wind energy, supplying about 71% and 28% of the demand respectively in the Best Policy Scenario for 2050, can overcome coal dependency of the power sector. The levelised cost of electricity increases just slightly from 49.2 €/MWh in 2015 to 50.8 €/MWh in the Best Policy Scenario, whereas it increases significantly to 104.9 €/MWh in the Current Policy Scenario by 2050. Further, without considering GHG emissions costs, the cost of electricity slightly increases from 44.1 €/MWh in 2015 to 47.1 €/MWh in the Best Policy Scenario and increases up to 62.8 €/MWh in the Current Policy Scenario by 2050. The cost of electricity is 25% lower in the Best Policy Scenario than in the Current Policy Scenario without factoring in GHG emissions costs and further declined to 50% with GHG emissions costs. The Best Policy Scenario without GHG emissions costs led to 96% renewables and the remaining 4% is supplied by coal and gas turbines, indicating pure market economics. The results indicate that a 100% renewable energy system is the least-cost, least-water intensive, least-GHG-emitting and most job-rich option for the South African energy system in the mid-term future. No new coal and nuclear power plants are installed in the least-cost pathway, and existing fossil fuel capacities are phased out based on their technical lifetime.
... Two main solar energy export megaprojects have been discussed in the literature which are solar energy exports from Gobi desert, Mongolia [22][23][24][25] to China, Korea, and Japan and solar energy export from the Middle East (ME) and North African (NA) (MENA) countries to Europe. [26][27][28][29][30] The researchers of solar energy export from MENA to Europe have failed to consider the load curves of the customer's countries with the PV energy generation time in ME. North Africa and Middle Eastern countries are analyzed together while these countries have a difference of 3 h in their local time. ...
Article
High energy utilization per capita and the country's gross domestic product (GDP) dependence on oil exports are the major problems of the Kingdom of Saudi Arabia (KSA). Abundant solar energy resources available in the country can help KSA to diversify its GDP. In this work, the photovoltaic (PV) energy outputs of KSA are compared with the potential PV energy customer such as European Countries, China, India, and Pakistan based on the levelized cost of energy (LCOE) and the net present cost (NPC). The PV energy is analyzed by a 4 GW grid connected PV system placed in the capital of each country. The grid sale price of PV energy is taken as half of the grid purchase energy price for each respective country. The high voltage direct current (HVDC) transmission of solar energy generated by the 4 GW PV system in KSA exported to potential customers is analyzed based on the NPC, LCOE, and payback period. Gwadar (Pakistan), (Antalya) Turkey, Karachi (Pakistan), and Ahmedabad (India) are economically feasible options with an LCOE of 5.2 ¢/kWh, 5.5 ¢/kWh, 6.2 ¢/kWh, and 7.5 ¢/kWh, respectively. The European countries are infeasible for PV energy export from KSA based on their load curves and NPC. The megacity of Karachi can be the first customer of KSA solar energy transmitted by HVDC.
Chapter
According to the report on the global status of renewable energies 2016 published by REN21 (Renewable Energy Policy Network For The 21st Century) the production of solar photovoltaic energy for the year 2015 reached 227 GW with more than 50 GW compared to the year 2014 that was 177 GW this rapid growth is due to research and dedicated scientific developments for this type of energies all these last have the same goal to improve the energy production capacity of these panels. In order to increase the efficiency of the solar panels, we have thought about the design and the realization of a two-axis solar tracker, which will allow the panels to follow the sun and to have the optimal position where there is the maximum of solar power that our panel can acquire. In principle, our system consists of three cards, the first one is the acquisition card or the sensors card it delivers the information on the position of the sun, the second is the control card where we have programmed our algorithm which is responsible for continuously regulating of the position of our tracker, the third is a power card that acts as the intermediary between the control board and the actuators (the two motors of the two axes). By using a PID algorithm and after a real test of our solar tracker it was found that the regulation is done in a correct way but we noticed that the actuators consume a lot of energy to keep the optimal position and we lose the information after the position change, this is why we introduced the notion of artificial intelligence through the development of an algorithm based on advanced fuzzy logic with adaptable rules. Our algorithm will replace the old algorithm (PID) to control the movement of the axes of our tracker as well to find the optimal point where there is the maximum of solar irradiation. Our algorithm will also memorize all the optimal points found during the day for used as much as references and to add it’s as the elements that constitute these rules taking into account also the energy consumption of the system. Our system is developed from such a fate to be reliable, fair and tough.
Presentation
Presentation on the occasion of the Energy Lancaster Seminar, Lancaster, February 17, 2017.
Conference Paper
Full-text available
This case study investigates the economics of potential re-use, (informal) recycling and (illegal) disposal scenarios for end-of-life (EoL)1 photovoltaic panels from large-scale photovoltaic systems2 and compares these with the economics and socioeconomic impacts of high value recycling. Stakeholders have raised concerns, that (illegal) shipments of end-of-life photovoltaic panels ('PV waste trafficking'), be it for re-use, (informal) recycling or (illegal) disposal from today's major photovoltaic markets into world regions with no appropriate regulatory framework and infrastructure for the management of end-of-life photovoltaic panels could lead to environmental and health risks. Given the fast evolution of PV technologies – reflected in efficiency improvements and cost reductions and the correspondingly small proportion of total system cost attributed to the PV module over the last couple of years – as well as in PV recycling technologies, the study demonstrates that the economic incentives for re-use, of end-of-life photovoltaic panels from large scale PV systems are not sufficient to induce a large volume stream towards those options and motivate PV waste trafficking, which has been a topic of raising concern with regard to other WEEE fractions. We therefore conclude that the likelihood of a thriving secondary market for PV panels is very low, given that future new panels will be relatively inexpensive and of higher efficiency, which in turn will drive down BOS costs, making secondary panels unattractive from a system cost perspective.
Preprint
Full-text available
Most studies of near-zero-carbon power systems consider Europe and the United States. In this paper, we focus on the Middle East and North Africa (MENA), where weather conditions, especially for solar, differ substantially from those in Europe. We use a green-field linear capacity expansion model with over-night investment to assess the effect on system cost of (i) limiting/expanding the amount of land available for wind and solar farms, (ii) allowing for nuclear power and (iii) disallowing for international transmission. This is done under three different cost regimes for solar PV and battery storage. We find that: - The amount of available land for wind and solar farms can have a great impact on the system cost. We found a cost increase of 0-50% as a result of reduced available land. In MENA, the impact on system cost is greatly influenced by the PV and battery cost regime, which is not the case in Europe. - Allowing for nuclear has nearly no effect in MENA, while it can decrease system costs in Europe by up to 23%. In Europe, the effect on system cost of whether nuclear power is allowed is highly dependent on the PV and battery cost regime, which is not the case in MENA. - Disallowing for international transmission increases costs by up to around 25% in both Europe and MENA. The cost increase depends on cost regime for PV and batteries. The impact on system cost off these three controversial parts of a decarbonized power system thus plays out differently, depending on (i) the region and (ii) uncertain future costs for solar PV and storage. We conclude that a renewable power system in MENA, is less costly than in Europe irrespective of the cost regime. In MENA, the system costs vary between 37 and 83 euro/MWh. In Europe, the system costs vary between 43 and 89 euro/MWh.
Article
Full-text available
Photovoltaic (PV) module operation is critical in PV systems for optimum generation of electrical power. Modules installed in the field suffer uneven soiling caused by bird droppings and dust build-up on their front surface. This study investigated the impact of partial shading caused by non-uniform soiling on the electrical characteristics of multi-crystalline silicon (mc-Si) modules and strings, and compared this with simulated I-V parameters. Light and heavy uneven soiling on mc-Si solar cells resulted in current mismatch which can be simulated. The effects of partial soiling on the I-V characteristics of mc-Si module strings were experimentally measured and agreed with the simulated results.
Article
Crystalline silicon (c-Si) photovoltaics has long been considered energy intensive and costly. Over the past decades, spectacular improvements along the manufacturing chain have made c-Si a low-cost source of electricity that can no longer be ignored. Over 125 GW of c-Si modules have been installed in 2020, 95% of the overall photovoltaic (PV) market, and over 700 GW has been cumulatively installed. There are some strong indications that c-Si photovoltaics could become the most important world electricity source by 2040–2050. In this Review, we survey the key changes related to materials and industrial processing of silicon PV components. At the wafer level, a strong reduction in polysilicon cost and the general implementation of diamond wire sawing has reduced the cost of monocrystalline wafers. In parallel, the concentration of impurities and electronic defects in the various types of wafers has been reduced, allowing for high efficiency in industrial devices. Improved cleanliness in production lines, increased tool automation and improved production technology and cell architectures all helped to increase the efficiency of mainstream modules. Efficiency gains at the cell level were accompanied by an increase in wafer size and by the introduction of advanced assembly techniques. These improvements have allowed a reduction of cell-to-module efficiency losses and will accelerate the yearly efficiency gain of mainstream modules. To conclude, we discuss what it will take for other PV technologies to compete with silicon on the mass market. Crystalline silicon solar cells are today’s main photovoltaic technology, enabling the production of electricity with minimal carbon emissions and at an unprecedented low cost. This Review discusses the recent evolution of this technology, the present status of research and industrial development, and the near-future perspectives.
Article
Full-text available
The Paris Agreement points out that countries need to shift away from the existing fossil-fuel-based energy system to limit the average temperature rise to 1.5 or 2 °C. A cost-optimal 100% renewable energy based system is simulated for East Asia for the year 2030, covering demand by power, desalination, and industrial gas sectors on an hourly basis for an entire year. East Asia was divided into 20 sub-regions and four different scenarios were set up based on the level of high voltage grid connection, and additional demand sectors: power, desalination, industrial gas, and a renewable-energy-based synthetic natural gas (RE-SNG) trading between regions. The integrated RE-SNG scenario gives the lowest cost of electricity (€52/MWh) and the lowest total annual cost of the system. Results contradict the notion that long-distance power lines could be beneficial to utilize the abundant solar and wind resources in Australia for East Asia. However, Australia could become a liquefaction hub for exporting RE-SNG to Asia and a 100% renewable energy system could be a reality in East Asia with the cost assumptions used. This may also be more cost-competitive than nuclear and fossil fuel carbon capture and storage alternatives.
Article
Full-text available
In recent years, photovoltaic (PV) technology has experienced a rapid cost reduction. This trend is expected to continue, which in many countries drives interest in utility-scale PV power plants. The main disadvantage of such plants is that they operate only when the sun is shining. The installation of PV modules together with energy storage and/or fossil fuel backup is a way to solve that issue, but consequently increases the costs. In the last few years, however, lithium-ion batteries as well have shown a promising price reduction. This paper studies the competitiveness of a hybrid power plant that combines a PV system, lithium-ion battery and gas turbine (GT) compared to conventional fossil-fuel power plants (coal and natural gas-fired) with focus on the battery cost. To fulfil the demand an auxiliary GT is used in the hybrid PV plant, but its annual generation is limited to 20% of the total output. The metric for the comparison of the different technologies is the levelized cost of energy (LCOE). The installation of the plants is showcased in Morocco, a country with excellent solar resources. Future market scenarios for 2020 and 2030 are considered. A sensitivity analysis is performed to identify the key parameters that influence LCOE.
Article
Full-text available
This paper introduces a value chain design for transportation fuels and a respective business case taking into account hybrid PV-Wind power plants, electrolysis and hydrogen-to-liquids (H2tL) based on hourly resolved full load hours (FLh). The value chain is based on renewable electricity (RE) converted by power-to-liquids (PtL) facilities into synthetic fuels, mainly diesel. Results show that the proposed RE-diesel value chains are competitive for crude oil prices within a minimum price range of about 79 - 135 USD/barrel (0.44 – 0.75 €/l of diesel production cost), depending on the chosen specific value chain and assumptions for cost of capital, available oxygen sales and CO2 emission costs. A sensitivity analysis indicates that the RE-PtL value chain needs to be located at the best complementing solar and wind sites in the world combined with a de-risking strategy and a special focus on mid to long-term electrolyser and H2tL efficiency improvements. The substitution of fossil fuels by hybrid PV-Wind power plants could create a PV-wind market potential in the order of terawatts.
Article
Full-text available
In a future fossil-free circular economy, the petroleum-based plastics industry must be converted to non-fossil feedstock. A known alternative is bio-based plastics, but a relatively unexplored option is deriving the key plastic building blocks, hydrogen and carbon, from electricity through electrolytic processes combined with carbon capture and utilization technology. In this paper the future demand for electricity and carbon dioxide is calculated under the assumption that all plastic production is electricity-based in the EU by 2050. The two most important input chemicals are ethylene and propylene and the key finding of this paper is that the electricity demand to produce these are estimated to 20 MWh/ton ethylene and 38 MWh/ton propylene, and that they both could require about 3 tons of carbon dioxide/ton product. With constant production levels, this implies an annual demand of about 800 TWh of electricity and 90 Mton of carbon dioxide by 2050 in the EU. If scaled to the total production of plastics, including all input hydrocarbons in the EU, the annual demand is estimated to 1600 TWh of electricity and 180 Mton of carbon dioxide. This suggests that a complete shift to electricity-based plastics is possible from a resource and technology point of view, but production costs may be 2 to 3 times higher than today. However, the long time frame of this paper creates uncertainties regarding the results and how technical, economic and social development may influence them. The conclusion of this paper is that electricity-based plastics, integrated with bio-based production, can be an important option in 2050 since biomass resources are scarce, but electricity from renewable sources is abundant.
Article
Full-text available
The Anthropocene is a proposed time subdivision of the earth’s history correlated with the strong perturbation of the ecosystem created by human activity. Much debate is ongoing about what date should be considered as the start of the Anthropocene, but much less on how it will evolve in the future and what are its ultimate limits. It is argued here that the phenomena currently defining the Anthropocene will rapidly decline and disappear in times of the order of one century as a result of the irreversible dispersal of the thermodynamic potentials associated with fossil carbon. However, it is possible that, in the future, the human economic system may catalyze the dissipation of solar energy in forms other than photosynthesis, e.g., using solid-state photovoltaic devices. In this case, a strong human influence on the ecosystem may persist for much longer times, but in forms very different than the present ones.
Article
Full-text available
Human activity is leaving a pervasive and persistent signature on Earth. Vigorous debate continues about whether this warrants recognition as a new geologic time unit known as the Anthropocene. We review anthropogenic markers of functional changes in the Earth system through the stratigraphic record. The appearance of manufactured materials in sediments, including aluminum, plastics, and concrete, coincides with global spikes in fallout radionuclides and particulates from fossil fuel combustion. Carbon, nitrogen, and phosphorus cycles have been substantially modified over the past century. Rates of sea-level rise and the extent of human perturbation of the climate system exceed Late Holocene changes. Biotic changes include species invasions worldwide and accelerating rates of extinction. These combined signals render the Anthropocene stratigraphically distinct from the Holocene and earlier epochs. Copyright
Poster
Full-text available
Poster on the occasion of the 4th Conference on Carbon Dioxide as Feedstock for Fuels, Chemistry and Polymers in Essen, Germany, on September 29 - 30, 2015.
Conference Paper
Full-text available
With growing demand for liquefied natural gas (LNG) and concerns about climate change, this paper introduces a new value chain design for LNG and a respective business case taking into account hybrid PV-Wind power plants. The value chain is based on renewable electricity (RE) converted by power-togas (PtG) facilities into synthetic natural gas (SNG), which is finally liquefied into LNG. This RE-LNG can be shipped everywhere in the world. The calculations for hybrid PV-Wind power plants, electrolysis and methanation are done based on both annual and hourly full load hours (FLh). To reach the minimum cost, the optimized combination of fixed-tilted and single-axis tracking PV, wind power, and battery capacities have been applied. Results show that the proposed RE-LNG value chain is competitive for Brent crude oil prices within a minimum price range of 87-145 USD/barrel, depending on assumptions for cost of capital, available oxygen sales and CO2 emission costs. RE-LNG is competitive with fossil LNG from an economic perspective, while removing environmental concerns. This range would be an upper limit for the fossil LNG price in the long-term and RE-LNG can become competitive whenever the fossil prices are higher than the level mentioned and the cost assumptions expected for the year 2030 are achieved. The substitution of fossil fuels by hybrid PV-Wind power plants could create a PV-wind market potential in the order of 9.5 terawatts.
Conference Paper
Full-text available
Global energy demand has grown steadily since the industrial revolution. During the two decades from 1991 to 2012, total primary energy demand (TPED) grew from 91,200 to 155,400 TWhth, or by 70%, and projections expect this number to increase by a further 40% by 2040. Although greenhouse gas emissions in the energy sector have to be reduced to zero by mid-century or earlier to avoid an ecologic disaster, less than 15% of this energy demand is supplied by renewable resources nowadays. The International Energy Agency (IEA) has a significant impact on both political and economic decisions of governments and stakeholders regarding energy. The World Energy Outlook (WEO) report published annually by the IEA projects for the decades to come how TPED and electricity generation, amongst others, will evolve for all major technologies. Since the WEO is often used as a basis for policy making on renewable and conventional energy, a comprehensive analysis of past WEO projections is crucial. Such analysis will ensure well-grounded and realistic energy policy making and can contribute to efforts to fight climate change and to achieve energy security. In this article, the deviation between the real figures documented in the latest WEO reports and the projections of earlier ones is analysed, as well as the different projections of all reports from 1994 to 2014. The results obtained so far show that projections for solar technologies and wind energy have been strongly underestimated, whereas projections for nuclear energy are contradictory from one year to the next. A key reason for the high deviations of solar PV and wind capacities in the projections and the historic data is an incorrectly applied growth pattern. The WEO reports assume linear growth, whereas history shows an exponential growth for the new renewable energy (RE) technologies. The current exponential growth is part of long-term logistic growth of new RE technologies. Furthermore, a model proposed regarding RE technologies shows that to satisfy the world's needs with sustainable technologies in the decades to come, the approach of the WEO reports needs to be substantially reworked. Due to continuously falling prices of renewable energy technology, one can expect a fast deployment of renewables and a replacement of conventional energy. In its latest projections the WEOs did not take into account recent developments, including measures on climate protection and divestment of finance from the conventional energy sector. Therefore, policy-makers are advised to consider the expansion of renewables well beyond the WEO projections in their energy policies in order to avoid stranded investments in future.
Conference Paper
Full-text available
Photovoltaic (PV) is one of the fastest growing electricity generation technologies in the world. Average annual growth rates of global PV-installations have reached around 45% for the last 15 years, which triggered a fast and ongoing reduction of production cost in PV industry. The presented work aims at consolidating historical price and cost information, deriving refined learning curves for PV modules and systems, and analysing the main factors of learning. For c-Si modules a valid learning rate of 17% is found based on a meta-analysis of various studies. In early years, even a learning rate of 30% is observed. As an example for thin-film PV, CdTe module cost reduce by 16% as the cumulated production output doubles. Interestingly, efficiency improvements contribute only in second order to the overall cost reduction for both technologies, emphasising the relevance of production excellence and economies of scale. On PV system level, a cost reduction of 14% per doubling of cumulated installed capacity is derived. Finally, a sensitivity analysis reveals that learning rate variations are only of minor influence on the overall global PV market potential.
Conference Paper
Full-text available
PV and wind power are the major renewable power technologies in most regions on earth. Depending on the interaction of solar and wind resources, PV and wind power industry will become competitors or allies. Time resolved geospatial data of global horizontal irradiation and wind speeds are used to simulate the power feed-in of PV and wind power plants assumed to be installed on an equally rated power basis in every region of a 1°x1° mesh of latitude and longitude between 65°N and 65°S. An overlap of PV and wind power full load hours is defined as measure for the complementarity of both technologies and identified as ranging between 5% and 25% of total PV and wind power feed-in. Critical overlap full load hours are introduced as a measure for energy losses that would appear if the grid was dimensioned only for one power plant of PV or wind. In result, they do not exceed 9% of total feed-in but are mainly around 3% - 4%. Thus the two major renewable power technologies must be characterized by complementing each other.
Article
It seems generally accepted that change will occur in global energy systems. There also appears to be consensus on the kinds of changes that may possible for the future, even though there may be disagreement over the exact mix of technologies and policies needed to increase sustainability or mitigate climate change. The terms transition and transformation have both been used to denote the type of change needed in large socio-technical systems. However, the terms have been used both in contradiction of each other and synonymously by different authors. A comprehensive review of both theory and usage in scientific publications was conducted to determine if the terms have been used to denote fundamentally different concepts and if the concept of change is framed differently by usage so as to affect understanding. Despite two camps being readily identifiable, it was concluded that the terms generally refer to the same fundamental concept. At the same time, framing of the concept can be viewed as somewhat different, resulting in a potential for confusion on the part of the reader that may detract from achieving the outcome of change. It is suggested that change to physical forms and systems be denoted as transformations, and that changes to large socio-technical systems be denoted as transitions when the focus is on a higher order of change that highlights the ways that society motivates, facilitates, and benefits from change.
Article
Power systems for South and Central America based on 100% renewable energy (RE) in the year 2030 were calculated for the first time using an hourly resolved energy model. The region was subdivided into 15 sub-regions. Four different scenarios were considered: three according to different high voltage direct current (HVDC) transmission grid development levels (region, country, area-wide) and one integrated scenario that considers water desalination and industrial gas demand supplied by synthetic natural gas via power-togas (PtG). RE is not only able to cover 1813 TWh of estimated electricity demand of the area in 2030 but also able to generate the electricity needed to fulfil 3.9 billion m 3 of water desalination and 640 TWh LHV of synthetic natural gas demand. Existing hydro dams can be used as virtual batteries for solar and wind electricity storage, diminishing the role of storage technologies. The results for total levelized cost of electricity (LCOE) are decreased from 62 €/MWh for a highly decentralized to 56 €/MWh for a highly centralized grid scenario (currency value of the year 2015). For the integrated scenario, the levelized cost of gas (LCOG) and the leve-lized cost of water (LCOW) are 95 €/MWh LHV and 0.91 €/m 3 , respectively. A reduction of 8% in total cost and 5% in electricity generation was achieved when integrating desalination and power-to-gas into the system.
Thesis
As electricity generation based on volatile renewable resources is subject to fluctuations, data with high temporal and spatial resolution on their availability is indispensable for integrating large shares of renewable capacities into energy infrastructures. The scope of the present doctoral thesis is to enhance the existing energy modelling environment REMix in terms of (i.) extending the geographic coverage of the potential assessment tool REMix-EnDaT from a European to a global scale, (ii.) adding a new plant siting optimization module REMix-PlaSMo, capable of assessing siting effects of renewable power plants on the portfolio output and (iii.) adding a new alternating current power transmission model between 30 European countries and CSP electricity imports from power plants located in North Africa and the Middle East via high voltage direct current links into the module REMix-OptiMo. With respect to the global potential assessment tool, a thorough investigation is carried out creating an hourly global inventory of the theoretical potentials of the major renewable resources solar irradiance, wind speed and river discharge at a spatial resolution of 0.45°x0.45°. A detailed global land use analysis determines eligible sites for the installation of renewable power plants. Detailed power plant models for PV, CSP, wind and hydro power allow for the assessment of power output, cost per kWh and respective full load hours taking into account the theoretical potentials, technological as well as economic data. The so-obtined tool REMix-EnDaT can be used as follows: First, as an assessment tool for arbitrary geographic locations, countries or world regions, deriving either site-specific or aggregated installable capacities, cost as well as full load hour potentials. Second, as a tool providing input data such as installable capacities and hourly renewable electricity generation for further assessments using the modules REMix-PlasMo and OptiMo. The plant siting tool REMix-PlaSMo yields results as to where the volatile power technologies photovoltaics and wind are to be located within a country in order to gain distinct effects on their aggregated power output. Three different modes are implemented: (a.) Optimized plant siting in order to obtain the cheapest generation cost, (b.) a minimization of the photovoltaic and wind portfolio output variance and (c.) a minimization of the residual load variance. The third fundamental addition to the REMix model is the amendment of the module REMix-OptiMo with a new power transmission model based on the DC load flow approximation. Moreover, electricity imports originating from concentrating solar power plants located in North Africa and the Middle East are now feasible. All of the new capabilities and extensions of REMix are employed in three case studies: In case study 1, using the module REMix-EnDaT, a global potential assessment is carried out for 10 OECD world regions, deriving installable capacities, cost and full load hours for PV, CSP, wind and hydro power. According to the latter, photovoltaics will represent the cheapest technology in 2050, an average of 1634 full load hours could lead to an electricity generation potential of some 5500 PWh. Although CSP also taps solar irradiance, restrictions in terms of suitable sites for erecting power plants are more severe. For that reason, the maximum potential amounts to some 1500 PWh. However, thermal energy storage can be used, which, according to this assessment, could lead to 5400 hours of full load operation. Onshore wind power could tap a potential of 717 PWh by 2050 with an average of 2200 full load hours while offshore, wind power plants could achieve a total power generation of 224 PWh with an average of 3000 full load hours. The electricity generation potential of hydro power exceeds 3 PWh, 4600 full load hours of operation are reached on average. In case study 2, using the module REMix-PlaSMo, an assessment for Morocco is carried out as to determine limits of volatile power generation in portfolios approaching full supply based on renewable power. The volatile generation technologies are strategically sited at specific locations to take advantage of available resources conditions. It could be shown that the cost optimal share of volatile power generation without considering storage or transmission grid extensions is one third. Moreover, the average power generation cost using a portfolio consisting of PV, CSP, wind and hydro power can be stabilized at about 10 €ct/kWh by the year 2050. In case study 3, using the module REMix-OptiMo, a validation of a TRANS-CSP scenario based upon high shares of renewable power generation is carried out. The optimization is conducted on an hourly basis using a least cost approach, thereby investigating if and how demand is met during each hour of the investigated year. It could be shown, that the assumed load can safely be met in all countries for each hour using the scenario's power plant portfolio. Furthermore, it was proven that dispatchable renewable power generation, in particular CSP imports to Europe, have a system stabilizing effect. Using the suggested concept, the utilization of the transfer capacities between countries would decrease until 2050.
Article
There are a fast growing number of global energy scenarios based on high shares of renewable energy (RE). However, many of them lack comprehensive analyses of energy storage systems. A review of global scenarios reveals that energy storage systems are assessed mainly qualitatively; quantitative assessments of global energy storage demand are scarce. The possible future roles of energy storage systems are plentiful: they can be used in short-term control (e.g. in power grid frequency control), as a medium-term balance mechanism (to shift daily production to meet demand), as long-term storage (seasonal shift), or to substitute grid extensions. Typically, only power storage is considered, if energy storage is assessed at all. Scenario-makers do not always assess the dynamics and synergies of energy storage systems in the power, heat and mobility sectors. To date, publications of the dynamics between continent-wide renewable energy production, transmission grids and energy storage capacities are not numerous. The existing body of research indicates that transmission lines connecting individual countries are regarded as a key component in enabling RE-based, low-cost energy systems. However, various issues could restrain the implementation of proposed grid connections. These barriers could be overcome by partially substituting energy grid reinforcements with energy storage solutions. Furthermore, less storage related curtailment of renewable energy could lead to improved energy system efficiency and cost. Therefore, energy scenarios that capture quantitatively different configurations of international energy exchange and its influence on regional storage systems are needed. High spatial and temporal resolution energy system models are needed to assess scenarios for high share of renewable energy supply and demand for energy storage.
Article
In this study, a 100% renewable energy (RE) system for Brazil in 2030 was simulated using an hourly resolution model. The optimal sets of RE technologies, mix of capacities, operation modes and least cost energy supply were calculated and the role of storage technologies was analysed. The RE generated was not only able to fulfil the electricity demand of the power sector but also able to cover the 25% increase in total electricity demand due to water desalination and synthesis of natural gas for industrial use. The results for the power sector show that the total installed capacity is formed of 165 GW of solar photovoltaics (PV), 85 GW of hydro dams, 12 GW of hydro run-of-river, 8 GW of biogas, 12 GW of biomass and 8 GW of wind power. For solar PV and wind electricity storage, 243 GWhel of battery capacity is needed. According to the simulations the existing hydro dams will function similarly to batteries, being an essential electricity storage. 1 GWh of pumped hydro storage, 23 GWh of adiabatic compressed air storage and 1 GWh of heat storage are used as well. The small storage capacities can be explained by a high availability of RE sources with low seasonal variability and an existing electricity sector mainly based on hydro dams. Therefore, only 0.05 GW of PtG technologies are needed for seasonal storage in the electricity sector. When water desalination and industrial gas sectors’ electricity demand are integrated to the power sector, a reduction of 11% in both total cost and electric energy generation was achieved. The total system levelized cost of electricity decreased from 61 €/MWh to 53 €/MWh for the sector integration.
Conference Paper
Energy is a key driver for social and economic change. Many countries trying to develop economically and socially and many developed countries trying to maintain their economic growth will create a huge demand for energy in the future. The growth in energy production will put our climate at risk, without change in the existing fossil fuel based energy system. In this paper, 100% renewable energy based system is discussed for East Asia, integrating the two large regions of Southeast Asia and Northeast Asia. Regional integration of the two regions does not provide significant benefit to the energy system in terms of cost reduction. However, reduction of 0.4-0.7% in terms of total annual cost of the system can be achieved for East Asia, mainly realised in optimising the bordering regions of South China and Vietnam, Laos and Cambodia. The idea of Australia being an electricity source for Asia, does not pay off due to the long distances and local storage of the generated electricity in the regions is more cost competitive. However, such an integration provides a sustainable and economically feasible energy system with the cost of electricity between 53-66 €/MWh for the year 2030 with the assumptions used in this study. The described energy system will be very cost competitive to the widely discussed nuclear and fossil carbon-capture and storage (CCS) alternatives.
Conference Paper
Need to transform the energy system towards 100% renewable generation is well understood and such a transformation has already started. However, this transformation will be full of challenges and there will be no standard solution for energy supply, every regional energy system will be specific, because of local specific climatic and geographical conditions and consumption patterns. Based on the two major energy sources all regions can be divided into two categories: PV and Wind energy based regions. Moreover, local conditions will not only influence the optimal generation mix, but also optimal storage capacities choice. In this work we observe a strong coupling between PV and short-term storage utilisation in all major regions in the world: in the PV generation based energy systems short-term storage utilisation is much higher than in wind-based systems. Finally, PV-based energy systems demand a significant capacity for short-term storage, the more the more PV generation takes place locally.
Article
The main objective of this research is to present a solid foundation of capex projections for the major solar energy technologies until the year 2030 for further analyses. The experience curve approach has been chosen for this capex assessment, which requires a good understanding of the projected total global installed capacities of the major solar energy technologies and the respective learning rates. A literature survey has been conducted for CSP tower, CSP trough, PV and Li-ion battery. Based on the literature survey a base case has been defined for all technologies and low growth and high growth cases for further sensitivity analyses. All results are shown in detail in the paper and a comparison to the expectation of a potentially major investor in all of these technologies confirmed the derived capex projections in this paper.
Conference Paper
The existing fossil fuel based power sector has to be transformed towards carbon neutrality in close future to limit global warming to 2ºC. The 100% renewable energy (RE) based system will be discussed in the paper. Such a system can be built using already existing energy generation, storage and transmission technologies. A regional integration of Europe, Eurasia and MENA energy systems will facilitate access to lower cost energy sources in neighboring regions, provide additional flexibility in the system and decrease the need in energy storage and increase the system stability because of more distributed generation. Additional demand from synthetic gas generation will additionally decrease the energy storage demand, additional flexibility enables the system to use lower cost energy sources and the primary energy generation cost decreases. Finally, such an integration can provide a sustainable and economically feasible energy system with total LCOE of about 50 €/MWh for the year 2030 cost assumptions. Even for a much higher energy demand in the system the total LCOE will be around 42 €/MWh – lower than coal-CCS or new nuclear options.
Conference Paper
Saudi Arabia is in the midst of redefining the vision for the country's future and creating an economy that is not dependent on fossil fuels. This work presents a pathway for Saudi Arabia to transition from the 2015 power structure to a 100% renewable energy based system by 2050 and analyse the benefits of integrating the power sector with the growing desalination sector. It is found that Saudi Arabia can transition to a 100% renewable energy power system by 2040 whilst meeting the growing water demand through seawater reverse osmosis (SWRO) desalination plants. The dominating renewable energy sources are PV single-axis tracking and wind power plants with 210 GW and 133 GW, respectively. The levelised cost of electricity (LCOE) of the 2040 system is 48 €/MWh. By 2050, PV single-axis tracking dominates the power sector due to the further reduction in the capital costs alongside cost reductions in supporting battery technology. This results in 80% share of solar PV in the total electricity generation. Battery storage is required to meet the total electricity demand and by 2050, accounts for 48% of the total electricity demand. The LCOE is estimated at 38 €/MWh, required capacity of PV single-axis tracking is 369 GW and wind power plants 75 GW. In the integrated scenario, due to flexibility provided by the SWRO plants, there is a reduced demand for battery storage and power-togas (PtG) plants. In addition, the ratio of the energy curtailed to the total energy generated is lower in all time periods from 2020 to 2050, in the integrated scenario. As a result, the annual levelised costs of the integrated scenario is found to be 2%-4% less than the non-integrated scenario.
Article
The Paris Agreement duly reflects the latest scientific understanding of systemic global warming risks. Limiting the anthropogenic temperature anomaly to 1.5–2 °C is possible, yet requires transformational change across the board of modernity.
Conference Paper
This paper determines a least cost electricity solution for Sub-Saharan Africa (SSA). The power system discussed in this study is hourly resolved and based on 100% Renewable Energy (RE) technologies. Sub-Saharan Africa was subdivided into 16 sub-regions. Four different scenarios were considered according to the setup in high voltage direct current (HVDC) transmission grid. One integrated scenario that considers water desalination and industrial gas production were also analysed. This study uncovers that RE is sufficient to cover 866.4 TWh estimated electricity demand for 2030 and additional electricity needed to fulfil 319 million m 3 of water desalination and 268 TWhLHV of synthetic natural gas demand. Existing hydro dams can be used as virtual batteries for solar PV and wind electricity storage, diminishing the role of storage technologies. The results for total levelised cost of electricity (LCOE) decreases from 57.8 €/MWh for a highly decentralized to 54.7 €/MWh for a more centralized grid scenario. For the integrated scenario, including water desalination and synthetic natural gas demand, the levelised cost of gas and the levelised cost of water are 113.7 €/MWhLHV and 1.39 €/m 3 , respectively. A reduction of 6% in total cost and 19% in electricity generation was realized as a result of integrating desalination and power-togas sectors into the system.
Conference Paper
Renewable energy (RE) has been already viewed as a minor contributor in the final energy mix of North America due to cost and intermittency constraints. However, recent dramatic cost reductions and new initiatives using RE, particularly solar PV and wind energy, as a main energy source for the future energy mix of the world pave the way for enabling this source of energy to become cost competitive and beneficial in comparison to fossil fuels. Other alternatives such as nuclear energy and coal-fired power plants with carbon capture and storage (CCS) cannot play an important role in the future of energy system, mainly due to safety and economic constraints for these technologies. Phasing out nuclear and fossil fuels is still under discussion, however the 'net zero' greenhouse gas emissions agreed at COP21 in Paris clearly guides the pathway towards sustainability. Consequently, RE would be the only trustable energy source towards a clean and sustainable world. In this study, an hourly resolved model has been developed based on linear optimization of energy system parameters under given constraints with a bright perspective of RE power generation and demand for North America. The geographical, technical and economic potential of different types of RE resources in North America, including wind energy, solar PV, hydro, geothermal and biomass energy sources enable the option to build a Super Grid connection between different North American regions' energy resources to achieve synergy effects and make a 100% RE supply possible. The North American region, including the US, Canada and Mexico in this paper, is divided into 20 sub-regions based on their population, demand, area and electricity grid structure. These sub-regions are interconnected by high voltage direct current (HVDC) power lines. The main objective of this paper is to assume a 100% RE-based system for North America in 2030 and to evaluate its results from different perspectives. Four scenarios have been evaluated according to different HVDC transmission grid development levels, including a region-wide, country-wide, area-wide and integrated scenario. The levelized cost of electricity (LCOE) is found to be 63 €/MWhel in a decentralized scenario. However, it is observed that this amount decreases to 53 €/MWhel in a more centralized HVDC grid connected scenario. In the integrated scenario, which consists of industrial gas production and reverse osmosis water desalination demand, integration of new sectors provides the system with required flexibility and increases the efficiency of the usage of storage technologies. Therefore, the LCOE declines to 42 €/MWhel and the total electricity generation is decreased by around 6.6% in the energy system compared to the non-integrated sectors due to higher system efficiency enabled by more flexibility. The results clearly show that a 100% RE-based system is feasible and a real policy option.
Conference Paper
The developing region of SAARC (South Asian Association for Regional Cooperation) is home to a large number of people living below the poverty line. In future, providing affordable, access to all, reliable, low to zero carbon electricity in this region will be the main aim of electricity generation. A cost optimal 100% renewable energy based system is simulated for this region for the year 2030 on an hourly resolved basis for an entire year. The region was divided into 16 sub-regions and three different scenarios were set up based on the level of high voltage direct current (HVDC) grid connections. The results obtained for a total system levelised cost of electricity (LCOE) showed a decrease from 71.6 €/MWh in a decentralized to 67.2 €/MWh for a centralized grid connected scenario. An additional scenario was simulated to show the benefits of integrating industrial gas production and seawater reverse osmosis desalination demand which was reflected as the system cost decreased by 5% and the total electricity generation decreased by 1%. The results show that a 100% renewable energy based system could be a reality in the SAARC region with the cost assumptions used in this research and it may be more cost competitive than the nuclear and fossil carbon capture and storage (CCS) alternatives.
Conference Paper
The Middle East and North Africa (MENA) region, comprised of 19 countries, is currently facing a serious challenge to supply their growing economies with secure, affordable and clean electricity. The MENA region holds a high share of proven crude oil and natural gas reserves in the world. Further, it is predicted to have increasing population growth, energy demand, urbanization and industrialization, each of which necessitates a comparable expansion of infrastructure, resulting in further increased energy demand. When planning this expansion, the effects of climate change, land use change and desertification must be taken into account. The MENA region has an excellent potential of renewable energy (RE) resources, particularly solar PV and wind energy, which can evolve to be the main future energy sources in this area. In addition, the costs of RE are expected to decrease relative to conventional energy sources, making a transition to RE across the region economically feasible. The main objective of this paper is to assume a 100% RE-based system for the MENA region in 2030 and to evaluate its results from different perspectives. Three scenarios have been evaluated according to different high voltage direct current (HVDC) transmission grid development levels, including a region-wide, area-wide and integrated scenario. The levelized cost of electricity (LCOE) is found to be 61 €/MWhel in a decentralized scenario. However, it is observed that this amount decreases to 55 €/MWhel in a more centralized HVDC grid connected scenario. In the integrated scenario, which consists of industrial gas production and reverse osmosis water desalination demand, integration of new sectors provides the system with required flexibility and increases the efficiency of the usage of storage technologies. Therefore, the LCOE declines to 37 €/MWhel and the total electricity generation is decreased by 6% in the system compared to the non-integrated sectors. The results clearly show that a 100% RE-based system is feasible and a real policy option.
Presentation
Hybridization of PV Systems for a better Match of Demand Requirements and a faster Diffusion of solar PV
Conference Paper
With growing demand for transportation fuels such as diesel and concerns about climate change, this paper introduces a new value chain design for transportation fuels and a respective business case taking into account hybrid PV-Wind power plants. The value chain is based on renewable electricity (RE) converted by power-to-liquids (PtL) facilities into synthetic fuels, mainly diesel. This RE-diesel can be shipped to everywhere in the world. The calculations for the hybrid PV-Wind power plants, electrolysis and hydrogen-to-liquids (H2tL) are done based on annual full load hours (FLh). A combination of 5 GWp PV single-axis tracking and wind onshore power have been applied. Results show that the proposed RE-diesel value chains are competitive for crude oil prices within a minimum price range of about 79-135 USD/barrel (0.44 – 0.75 €/l of diesel production cost), depending on the chosen specific value chain and assumptions for cost of capital, available oxygen sales and CO2 emission costs. RE-diesel could become competitive to conventional diesel from an economic perspective, while removing environmental concerns. The cost range would be an upper limit for the conventional diesel price in the long-term and RE-diesel can become competitive whenever the fossil fuel prices are higher than the level mentioned and the cost assumptions expected for the year 2030 are achieved. A sensitivity analysis indicates that the RE-PtL value chain needs to be located at the best complementing solar and wind sites in the world combined with a de-risking strategy and a special focus on mid to long-term electrolyser and H2tL efficiency improvements. The substitution of fossil fuels by hybrid PV-Wind power plants could create a PV-wind market potential in the order of terawatts.
Conference Paper
In this study, a 100% renewable energy (RE) system for Brazil in 2030 was simulated using an hourly resolution model. The optimal sets of RE technologies, mix of capacities, operation modes and least cost energy supply were calculated and the role of storage technologies was analysed. The RE generated was not only able to fulfil the electricity demand of the power sector but also able to cover the 25% increase in total electricity demand due to water desalination and synthesis of natural gas for industrial use. The results for the stand-alone power sector show that the total installed capacity is formed of 165 GW of solar photovoltaics (PV), 85 GW of hydro dams, 12 GW of hydro run-of-river, 8 GW of biogas, 12 GW of biomass and 8 GW of wind power. For solar PV and wind electricity storage, 243 GWhel of battery capacity is needed. According to the simulations the existing hydro dams will function similarly to batteries, being an essential electricity storage. 1 GWh of pumped hydro storage, 23 GWh of adiabatic compressed air storage and 1 GWh of heat storage are used as well. The small storage capacities can be explained by a high availability of RE sources with low seasonal variability and an existing electricity sector mainly based on hydro dams. Therefore, only 0.05 GW of PtG technologies are needed for seasonal storage in the electricity sector. When water desalination and industrial gas sectors' electricity demand are integrated to the power sector, a reduction of 11% in both total cost and electric energy generation was achieved. The levelized cost of gas and the levelized cost of water are 71 €/MWhLHV and 1 €/m 3 , respectively. The total system levelized cost of electricity (LCOE) decreased from 61 €/MWh to 53 €/MWh when the sector integration was added.
Conference Paper
In recent years, PV technology has experienced a rapid cost reduction. This trend is expected to continue, which in many countries drives interest in utility-scale PV power plants. The main disadvantage of such plants is that they operate only when the sun is shining. The installation of PV modules together with energy storage and/or fossil fuel backup is a way to solve that issue, but consequently increases the costs. In the last few years, however, lithium-ion batteries as well have shown a promising price reduction. This paper studies the competitiveness of a hybrid power plant that combines a PV system, lithium-ion battery and gas turbine (GT) compared to conventional fossil-fuel power plants (coal and natural gas-fired) with focus on the battery cost. To fulfil the demand an auxiliary GT is used in the hybrid PV plant, but its annual generation is limited to 20% of the total output. The metric for the comparison of the different technologies is the levelized cost of energy (LCOE). The installation of the plants is showcased in Morocco, a country with excellent solar resources. Future market scenarios for 2020 and 2030 are considered. A sensitivity analysis is performed to identify the key parameters that influence LCOE.
Conference Paper
There are a fast growing number of energy scenarios based on high shares of renewable energy (RE). The types of these scenarios range from bottom-up, cost-optimized simulations with a high level of technological accuracy to top-down, macroeconomic assessments including all sectors contributing to national economies, to descriptive storylines capturing sociological uncertainties and to visions of united global energy systems. However, reviewed global energy scenarios lack comprehensive analyses of energy storage systems. A review of global scenarios reveals that energy storage systems are assessed mainly qualitatively; quantitative assessments of global energy storage demand are scarce. The possible future roles of energy storage systems are plentiful: they can be used in short-term control (e.g. in power grid frequency control), as a medium-term balance mechanism (to shift daily production to meet demand), as long-term storage (seasonal shift), or to substitute grid extensions. Typically, only power storage is considered, if energy storage is assessed at all. Scenario-makers do not always assess the dynamics and synergies of energy storage systems in the power, heat and mobility sectors. To date, publications of the dynamics between continent-wide renewable energy production, transmission grids and energy storage capacities are not numerous. The existing body of research indicates that transmission lines connecting individual countries are regarded as a key component in enabling RE-based, low-cost energy systems. However, various issues could restrain the implementation of proposed grid connections. These barriers could be overcome by partially substituting energy grid reinforcements with energy storage solutions. Furthermore, less storage related curtailment of renewable energy could lead to improved energy system efficiency and cost. Therefore, energy scenarios that capture quantitatively different configurations of international energy exchange and its influence on regional storage systems are needed. High spatial and temporal resolution energy system models are needed to assess scenarios for high share of renewable energy supply and demand for energy storage.
Conference Paper
In this work, a 100% renewable energy (RE)-based energy system for the year 2030 for Southeast Asia and the Pacific Rim 1 , and Eurasia was prepared and evaluated and various impacts of adiabatic compressed air energy storage (A-CAES) were researched on an hourly resolution for one year. To overcome the intermittency of RE sources and guarantee regular supply of electricity, energy sources are complemented by five energy storage options: batteries, pumped hydro storage (PHS), thermal energy storage (TES), (A-CAES) and power-togas (PtG). In a region-wide scenario the energy system integration is within a sub-region of the individual large areas of Southeast Asia and Eurasia. In this scenario simulation were performed with and without A-CAES integration. For Southeast Asia and Eurasia, the integration of A-CAES has an impact on the share of a particular storage used and this depends on the seasonal variation in RE generation, the supply share of wind energy and demand in the individual areas. For the region-wide scenario for Southeast Asia (region with low seasonal variation and lower supply share of wind energy) the share of A-CAES output was 1.9% in comparison to Eurasia (region with high seasonal variation and a high supply share of wind energy) which had 28.6%. The other impact which was observed was the distribution of the storage technologies after A-CAES integration, since battery output and PtG output were decreased by 72.9% and 21.6% (Eurasia) and 5.5% and 1.6% (Southeast Asia), respectively. However, a large scale grid integration reduces the demand for A-CAES storage drastically and partly even to zero due to substitution by grids, which has been only observed for A-CAES, but not for batteries and PtG. The most valuable application for A-CAES seems to be in rather decentralized or nationwide energy system designs and as a well-adapted storage for the typical generation profiles of wind energy.
Conference Paper
Grid integration for renewable energy (RE) is in many studies observed as the major option to increase energy system reliability and decrease costs: overflows in the grid can support the system in case of component failure and decrease the need for balancing capacities. Energy transmission grids additionally increase capacity utilisation and efficiency by smoothing of total demand, especially for geographically wide expanded grids. Wherefore it had been often assumed that a development of close to 100% RE systems may be only possible with the installation of extended power grids as was discussed in the Desertec or Gobitec vision and other comparable centralised RE approaches. In this work impacts of the different levels of high voltage direct current (HVDC) grid integration on cost optimized 100% RE system were researched for the example of Northeast Asia. Three grid scenarios were applied for the area: region-wide open trade, where the energy system integration happens only inside one region; country-wide open trade, where a HVDC transmission grid connects regions inside one country; and area-wide open trade scenario, where all the countries are interconnected. These scenarios were simulated using the LUT energy system model for the two cost years 2020 and 2030. The optimized energy system included solar photovoltaics (PV), concentrating solar thermal power, wind onshore, hydropower, geothermal energy and biomass as energy sources. The storage options are batteries, thermal energy storage, pumped hydro storage, adiabatic compressed air energy storage (A-CAES) and gas storage including power-togas. It was found, that grid integration leads to a significant decrease of total levelised cost of electricity (LCOE) for the years 2020 and 2030: LCOE for the area-wide scenario was 8% lower than the region-wide scenario for the year 2020 and 5% lower for year 2030. However, the cost spread for 2030 is 50% lower (3 €/MWh vs 6 €/MWh) because of expected storage cost development and consequently different storage and grid utilisation. The optimal storage structure for both years is 20% of long-term storage and 80% of short to mid-term storage. Short-term storage technologies, Li-ion batteries and PHS are insignificant for the Northeast Asian case. The cost development of storage technologies results in increased storage and reduced grid supply share of 16% to 22% and 14% to 9% for the year 2020 and 2030, respectively, i.e. reduced storage costs lead to a reduced relevance of long distance grid integration. The total share of the flexible power sources stays stable for both cost years at around 30%. Finally, the lower cost spread for the year 2030 makes it possible in some cases to take a transformation towards 100% RE into account without massive grid installations.
Article
This study demonstrates how seawater reverse osmosis (SWRO) plants, necessary to meet increasing future global water demand, can be powered solely through renewable energy. Hybrid PV–wind–battery and power-to-gas (PtG) power plants allow for optimal utilisation of the installed desalination capacity, resulting in water production costs competitive with that of existing fossil fuel powered SWRO plants. In this paper, we provide a global estimate of the water production cost for the 2030 desalination demand with renewable electricity generation costs for 2030 for an optimised local system configuration based on an hourly temporal and 0.45° × 0.45° spatial resolution. The SWRO desalination capacity required to meet the 2030 global water demand is estimated to about 2374 million m3/day. The levelised cost of water (LCOW), which includes water production, electricity, water transportation and water storage costs, for regions of desalination demand in 2030, is found to lie between 0.59 €/m3–2.81 €/m3, depending on renewable resource availability and cost of water transport to demand sites. The global system required to meet the 2030 global water demand is estimated to cost 9790 billion € of initial investments. It is possible to overcome the water supply limitations in a sustainable and financially competitive way.
Research
Supplementary Material for the publication "Hydropower and Power-to-Gas Storage Options: The Brazilian Energy System Case" at the 10th International Renewable Energy Storage Conference (IRES) in Düsseldorf, March 15-17, 2016
Article
In order to define a cost optimal 100% renewable energy system, an hourly resolved model has been created based on linear optimization of energy system parameters under given constrains. The model is comprised of five scenarios for 100% renewable energy power systems in North-East Asia with different high voltage direct current transmission grid development levels, including industrial gas demand and additional energy security. Renewables can supply enough energy to cover the estimated electricity and gas demands of the area in the year 2030 and deliver more than 2000 TW hth of heat on a cost competitive level of 84 €/MW hel for electricity. Further, this can be accomplished for a synthetic natural gas price at the 2013 Japanese liquefied natural gas import price level and at no additional generation costs for the available heat. The total area system cost could reach 69.4 €/MW hel, if only the electricity sector is taken into account. In this system about 20% of the energy is exchanged between the 13 regions, reflecting a rather decentralized character which is supplied 27% by stored energy. The major storage technologies are batteries for daily storage and power-to-gas for seasonal storage. Prosumers are likely to play a significant role due to favourable economics. A highly resilient energy system with very high energy security standards would increase the electricity cost by 23% to 85.6 €/MW hel. The results clearly show that a 100% renewable energy based system is feasible and lower in cost than nuclear energy and fossil carbon capture and storage alternatives.
Conference Paper
Increasing ecological problems provoked by human activities, including the fossil fuel based energy sector, emerge the development of a renewable energy (RE) based system as the way to stop pollution and global warming but also to reduce total energy system cost. Small population density and availability of various types of RE resources in Eurasian regions including solar, wind, hydro, biomass and geothermal energy resources enables the very promising project of building a Super Grid connecting different Eurasian regions' energy resources to reach synergy effects and make a 100% RE supply possible. For every sub-region it is defined a cost-optimal distributed and centralized mix of energy technologies and storage options, optimal capacities and hourly generation. Charge and discharge profiles of storages are computed for regions interconnected by high-voltage direct current (HVDC) power lines. System cost and levelized cost of electricity (LCOE) for each sub-region are computed. The results show that a 100% RE-based system is lower in cost than nuclear and fossil carbon capture and storage (CCS) alternatives.
Data
Presentation on the occasion of the GÜNDER Workshop held as part of the 45th IEA PVPS Task 1 Meeting in Istanbul on October 27, 2015.
Conference Paper
Today's almost fully non-sustainable global energy system needs to be transformed towards a 100% sustainable basis. Solar photovoltaic (PV) is considered by a growing base of organizations and researchers as a backbone technology for global energy supply in the decades to come. Global energy scenarios of the recent years are compared in their level of acknowledging the significant role of solar PV. Using logistic growth functions it is possible to extrapolate the trend in the various studies to the years 2050 and 2100. The studies can be distinguished in a group of progressive and conservative ones. The reports of the IEA set the lower limit of all studies. The three most progressive studies are from the WBGU, the IEA PVPS and the Solar Economy scenario published in this paper. The Solar Economy scenario is based on a stabilized population which may require by the end of this century about 400,000 TWhel for all energetic needs. The PV share of TPED among the studies varies between 3-73% in the year 2100 when the currently available long-term forecasts are being compared. According to the Solar Economy scenario a PV share of up to 40%, would lead to a total installed capacity of up to 93 TWp and annual installations of up to 2.3 TWp for harvesting sustainable energy on a cost level of about 11-12 €/MWh in the global average. The global energy problem might be easier solvable than most people expect today.
Conference Paper
Photovoltaics (PV) is expected to become one of the cheapest forms of electricity generation during the next decades. The Levelised Cost of Electricity (LCOE) of PV has already reached grid parity with retail electricity in many markets and is approaching wholesale parity in some countries. In this paper, it is estimated that the PV LCOE in main European markets is going to decrease from 2015 to 2030 by about 45% and to 2050 by about 60%. The LCOE for utility-scale PV in Europe will be about 25-45 €/MWh in 2030 and about 15-30 €/MWh in 2050 depending on the location. The weighted average cost of capital (WACC) is the most important parameter together with the annual irradiation in the calculation of the PV LCOE. The uncertainty in capital and operational expenditure (CAPEX and OPEX) is relatively less important while the system lifetime and degradation have only a minor effect. The work for this paper has been carried out under the framework of the EU PV Technology Platform.
Research
Presentation on the occasion of the Rio 15 – World Climate & Energy Event in Rio de Janeiro on September 4, 2015.
Research
Poster on the occasion of the 2nd International Conference on Desalination using Membrane Technology in Singapore on July 26 - 29, 2015.
Research
Presentation on the occasion of the World Conference of Futures Research 2015: Futures Studies Tackling Wicked Problems (17th International Futures Conference) in Turku on June 12, 2015.
Conference Paper
Grid-parity is a very important milestone for further photovoltaic (PV) diffusion. An updated grid-parity model is presented, which is based on levelized cost of electricity (LCOE) coupled with the experience curve approach. Relevant assumptions for the model are given and its key driving forces are discussed in detail. Results of the analysis are shown for 215 countries/ islands and a total of 645 market segments all over the world. High PV industry growth rates have enabled a fast reduction of LCOE. Depletion of fossil fuel resources and climate change mitigation forces societies to internalize these effects and pave the way for sustainable energy technologies. First grid-parity events have already occurred. The 2010s are characterized by ongoing grid-parity events throughout the most regions in the world, reaching an addressable market of up to 96% of total global electricity market till 2030. In consequence, new political frameworks for maximizing social benefits will be required. In parallel, PV industry tackle its next milestone, fuel-parity. In conclusion, PV is on the pathway to become a highly competitive energy technology.
Conference Paper
Solarthermie-Systeme werden meist zusammen mit Gas-Brennwertgeräten zur Erzeugung von Trinkwarmwasser und Raumwärme eingesetzt. Mit stark gefallenen Preisen für Photo-voltaik-Systeme drängen seit kurzem Systemlösungen in Kombination mit elektrischen Wärmepumpen auf den Markt, die in Konkurrenz zur Solarthermie stehen. Diese Ausar-beitung untersucht das Betriebsverhalten von Solarthermie- und Photovoltaik-Wärmepum-pen-Systemen hinsichtlich des Einflusses von Gebäudestandards und Umweltbedingungen auf die erzielbaren Endenergieeinsparungen. Anhand von Simulationsberechnungen wird aufgezeigt, dass die Systeme neben saisonalen Effizienzunterschieden vor allem auf die spezifischen Wärmebedarfe der untersuchten Gebäude unterschiedlich reagieren.