Chapter

Coarse-Grained Molecular Dynamics Simulations of the Bacterial Cell Wall

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Understanding mechanisms of bacterial sacculus growth is challenging due to the time and length scales involved. Enzymes three orders of magnitude smaller than the sacculus somehow coordinate and regulate their processes to double the length of the sacculus while preserving its shape and integrity, all over a period of tens of minutes to hours. Decades of effort using techniques ranging from biochemical analysis to microscopy have produced vast amounts of data on the structural and chemical properties of the cell wall, remodeling enzymes and regulatory proteins. The overall mechanism of cell wall synthesis, however, remains elusive. To approach this problem differently, we have developed a coarse-grained simulation method in which, for the first time to our knowledge, the activities of individual enzymes involved are modeled explicitly. We have already used this method to explore many potential molecular mechanisms governing cell wall synthesis, and anticipate applying the same method to other, related questions of bacterial morphogenesis. In this chapter, we present the details of our method, from coarse-graining the cell wall and modeling enzymatic activities to characterizing shape and visualizing sacculus growth.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Here we only briefly describe our simulation system. For a more detailed description, please see our previous papers 2, 40 . The source code of our simulations is provided with the manuscript as Supplementary Software. ...
... To build the initial cell wall cylinder, glycan strands were placed along circumferential hoops of the same radius, then opposing peptides on adjacent hoops were connected to form crosslinks 40 . Previously, in order to reduce the computational cost, most of our simulations started with a small sacculus with a circumference composed of 100 tetrasaccharides 2 . ...
... PG remodeling enzymes. To model enzyme activities, we assumed they function in complexes 2,40 . Four enzyme complexes were added at the midcell. ...
Article
Full-text available
To divide, Gram-negative bacterial cells must remodel cell wall at the division site. It remains debated, however, whether this cell wall remodeling alone can drive membrane constriction, or if a constrictive force from the tubulin homolog FtsZ is required. Previously, we constructed software (REMODELER 1) to simulate cell wall remodeling during growth. Here, we expanded this software to explore cell wall division (REMODELER 2). We found that simply organizing cell wall synthesis complexes at the midcell is not sufficient to cause invagination, even with the implementation of a make-before-break mechanism, in which new hoops of cell wall are made inside the existing hoops before bonds are cleaved. Division can occur, however, when a constrictive force brings the midcell into a compressed state before new hoops of relaxed cell wall are incorporated between existing hoops. Adding a make-before-break mechanism drives division with a smaller constrictive force sufficient to bring the midcell into a relaxed, but not necessarily compressed, state.
Article
Antimicrobial peptides (AMPs) offer advantages over conventional antibiotics; for example, bacteria develop more resistance to small-molecule antibiotics than to AMPs. The interaction of the AMPs with the lipopolysaccharide (LPS) layer of the Gram-negative bacteria cell envelope is not well understood. A MARTINI model was constructed of a Gram-negative bacterial outer membrane interacting with the AMP Magainin 2. In a 20 μs molecular dynamics (MD) simulation, the AMP diffused to the LPS layer of the cell envelope and remained there, suggesting interactions between the Magainin 2 and the LPS layer, causing the AMP to concentrate at that position. The free energy profile for the insertion of the Magainin 2 into the membrane was also calculated using umbrella sampling, which showed that the AMP positioned such that the cationic side chains of the AMP coordinated to the negatively charged phosphate groups of the LPS layer. These simulations indicate that the AMP Magainin 2 partition into the LPS layer of a bacterial membrane.
Article
Full-text available
It is, nowadays, possible to simulate biological processes in conditions that mimic the different cellular compartments. Several groups have performed these calculations using molecular models that vary in performance and accuracy. In many cases, the atomistic degrees of freedom have been eliminated, sacrificing both structural complexity and chemical specificity to be able to explore slow processes. In this review, we will discuss the insights gained from computer simulations on macromolecule diffusion, nuclear body formation, and processes involving the genetic material inside cell-mimicking spaces. We will also discuss the challenges to generate new models suitable for the simulations of biological processes on a cell scale and for cell-cycle-long times, including non-equilibrium events such as the co-translational folding, misfolding, and aggregation of proteins. A prominent role will be played by the wise choice of the structural simplifications and, simultaneously, of a relatively complex energetic description. These challenging tasks will rely on the integration of experimental and computational methods, achieved through the application of efficient algorithms.
Article
Full-text available
Significance The rod shape of walled bacteria is determined by the peptidoglycan (PG) sacculus, but how rod shape is maintained as cells grow remains a fundamental question in bacterial cell biology. We have developed a coarse-grained modeling method to study rod shape maintenance. Individual PG remodeling enzymes, including transglycosylases, transpeptidases, and endopeptidases, are for the first time, to our knowledge, explicitly modeled to explore how they can coordinate to remodel a sacculus several orders of magnitude larger than the enzymes themselves. Rather than requiring top-down regulation of new PG insertion sites, our work shows that local coordination of the PG remodeling enzymes within discrete complexes can be sufficient to maintain the integrity and rod shape of the sacculus.
Article
Full-text available
Bacteria face the challenging requirement to maintain their shape and avoid rupture due to the high internal turgor pressure, but simultaneously permit the import and export of nutrients, chemical signals, and virulence factors. The bacterial cell wall, a mesh-like structure composed of cross-linked strands of peptidoglycan, fulfills both needs by being semi-rigid, yet sufficiently porous to allow diffusion through it. How the mechanical properties of the cell wall are determined by the molecular features and the spatial arrangement of the relatively thin strands in the larger cellular-scale structure is not known. To examine this issue, we have developed and simulated atomic-scale models of Escherichia coli cell walls in a disordered circumferential arrangement. The cell-wall models are found to possess an anisotropic elasticity, as known experimentally, arising from the orthogonal orientation of the glycan strands and of the peptide cross-links. Other features such as thickness, pore size, and disorder are also found to generally agree with experiments, further supporting the disordered circumferential model of peptidoglycan. The validated constructs illustrate how mesoscopic structure and behavior emerge naturally from the underlying atomic-scale properties and, furthermore, demonstrate the ability of all-atom simulations to reproduce a range of macroscopic observables for extended polymer meshes.
Article
Full-text available
MreB proteins play a major role during morphogenesis of rod-shaped bacteria by organizing biosynthesis of the peptidoglycan cell wall. However, the mechanisms underlying this process are not well understood. In Bacillus subtilis, membrane-associated MreB polymers have been shown to be associated to elongation-specific complexes containing transmembrane morphogenetic factors and extracellular cell wall assembly proteins. We have now found that an early intra-cellular step of cell wall synthesis is also associated to MreB. We show that the previously uncharacterized protein YkuR (renamed DapI) is required for synthesis of meso-diaminopimelate (m-DAP), an essential constituent of the peptidoglycan precursor, and that it physically interacts with MreB. Highly inclined laminated optical sheet microscopy revealed that YkuR forms uniformly distributed foci that exhibit fast motion in the cytoplasm, and are not detected in cells lacking MreB. We propose a model in which soluble MreB organizes intra-cellular steps of peptidoglycan synthesis in the cytoplasm to feed the membrane-associated cell wall synthesizing machineries.
Article
Full-text available
The maintenance of rod cell shape in many bacteria depends on actin-like MreB proteins and on several membrane proteins that interact with MreB. Using super resolution microscopy, we show that at 50 nm resolution, Bacillus subtilis MreB forms filamentous structures of up to 3.4 μm length underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4 μm long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions led to the formation of patch-like structures rather than of extended filaments. Coexpression of wild type MreB with MreB mutated in the subunit interface leads to the formation of shorter MreB filaments and to a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus, MreB has an extended filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall.
Article
Full-text available
Retroviral capsid proteins are conserved structurally but assemble into different morphologies. The mature human immunodeficiency virus-1 (HIV-1) capsid is best described by a 'fullerene cone' model, in which hexamers of the capsid protein are linked to form a hexagonal surface lattice that is closed by incorporating 12 capsid-protein pentamers. HIV-1 capsid protein contains an amino-terminal domain (NTD) comprising seven α-helices and a β-hairpin, a carboxy-terminal domain (CTD) comprising four α-helices, and a flexible linker with a 310-helix connecting the two structural domains. Structures of the capsid-protein assembly units have been determined by X-ray crystallography; however, structural information regarding the assembled capsid and the contacts between the assembly units is incomplete. Here we report the cryo-electron microscopy structure of a tubular HIV-1 capsid-protein assembly at 8 Å resolution and the three-dimensional structure of a native HIV-1 core by cryo-electron tomography. The structure of the tubular assembly shows, at the three-fold interface, a three-helix bundle with critical hydrophobic interactions. Mutagenesis studies confirm that hydrophobic residues in the centre of the three-helix bundle are crucial for capsid assembly and stability, and for viral infectivity. The cryo-electron-microscopy structures enable modelling by large-scale molecular dynamics simulation, resulting in all-atom models for the hexamer-of-hexamer and pentamer-of-hexamer elements as well as for the entire capsid. Incorporation of pentamers results in closer trimer contacts and induces acute surface curvature. The complete atomic HIV-1 capsid model provides a platform for further studies of capsid function and for targeted pharmacological intervention.
Article
Full-text available
A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values. It is shown that in the latter case the formula reduces to the expression previously derived by den Otter and Briels [Mol. Phys. 98, 773 (2000)]. If simulations are carried out without constraining the coordinates of interest, the formula leads to a new method for calculating the free energy changes along these coordinates. This method is tested in two examples — rotation around the C–C bond of 1,2-dichloroethane immersed in water and transfer of fluoromethane across the water-hexane interface. The calculated free energies are compared with those obtained by two commonly used methods. One of them relies on determining the probability density function of finding the system at different values of the selected coordinate and the other requires calculating the average force at discrete locations along this coordinate in a series of constrained simulations. The free energies calculated by these three methods are in excellent agreement. The relative advantages of each method are discussed. © 2001 American Institute of Physics.
Article
Full-text available
Based on fluorescence microscopy, the actin homolog MreB has been thought to form extended helices surrounding the cytoplasm of rod-shaped bacterial cells. The presence of these and other putative helices has come to dominate models of bacterial cell shape regulation, chromosome segregation, polarity, and motility. Here we use electron cryotomography to show that MreB does in fact form extended helices and filaments in Escherichia coli when yellow fluorescent protein (YFP) is fused to its N terminus but native (untagged) MreB expressed to the same levels does not. In contrast, mCherry fused to an internal loop (MreB-RFPSW) does not induce helices. The helices are therefore an artifact of the placement of the fluorescent protein tag. YFP-MreB helices were also clearly distinguishable from the punctate, “patchy” localization patterns of MreB-RFPSW, even by standard light microscopy. The many interpretations in the literature of such punctate patterns as helices should therefore be reconsidered.
Article
Full-text available
How bacteria grow and divide while retaining a defined shape is a fundamental question in microbiology, but technological advances are now driving a new understanding of how the shape-maintaining bacterial peptidoglycan sacculus grows. In this Review, we highlight the relationship between peptidoglycan synthesis complexes and cytoskeletal elements, as well as recent evidence that peptidoglycan growth is regulated from outside the sacculus in Gram-negative bacteria. We also discuss how growth of the sacculus is sensitive to mechanical force and nutritional status, and describe the roles of peptidoglycan hydrolases in generating cell shape and of D-amino acids in sacculus remodelling.
Article
Full-text available
Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.
Article
Full-text available
Rod-shaped bacteria elongate by the action of cell wall synthesis complexes linked to underlying dynamic MreB filaments. To understand how the movements of these filaments relate to cell wall synthesis, we characterized the dynamics of MreB and the cell wall elongation machinery using high-precision particle tracking in Bacillus subtilis. We found that MreB and the elongation machinery moved circumferentially around the cell, perpendicular to its length, with nearby synthesis complexes and MreB filaments moving independently in both directions. Inhibition of cell wall synthesis by various methods blocked the movement of MreB. Thus, bacteria elongate by the uncoordinated, circumferential movements of synthetic complexes that insert radial hoops of new peptidoglycan during their transit, possibly driving the motion of the underlying MreB filaments.
Article
Full-text available
Growth of the mesh-like peptidoglycan (PG) sacculus located between the bacterial inner and outer membranes (OM) is tightly regulated to ensure cellular integrity, maintain cell shape, and orchestrate division. Cytoskeletal elements direct placement and activity of PG synthases from inside the cell, but precise spatiotemporal control over this process is poorly understood. We demonstrate that PG synthases are also controlled from outside of the sacculus. Two OM lipoproteins, LpoA and LpoB, are essential for the function, respectively, of PBP1A and PBP1B, the major E. coli bifunctional PG synthases. Each Lpo protein binds specifically to its cognate PBP and stimulates its transpeptidase activity, thereby facilitating attachment of new PG to the sacculus. LpoB shows partial septal localization, and our data suggest that the LpoB-PBP1B complex contributes to OM constriction during cell division. LpoA/LpoB and their PBP-docking regions are restricted to γ-proteobacteria, providing models for niche-specific regulation of sacculus growth.
Article
Full-text available
Drug-resistant bacteria have caused serious medical problems in recent years, and the need for new antibacterial agents is undisputed. Transglycosylase, a multidomain membrane protein essential for cell wall synthesis, is an excellent target for the development of new antibiotics. Here, we determined the X-ray crystal structure of the bifunctional transglycosylase penicillin-binding protein 1b (PBP1b) from Escherichia coli in complex with its inhibitor moenomycin to 2.16-A resolution. In addition to the transglycosylase and transpeptidase domains, our structure provides a complete visualization of this important antibacterial target, and reveals a domain for protein-protein interaction and a transmembrane helix domain essential for substrate binding, enzymatic activity, and membrane orientation.
Article
Full-text available
In bacterial cells, the peptidoglycan cell wall is the stress-bearing structure that dictates cell shape. Although many molecular details of the composition and assembly of cell-wall components are known, how the network of peptidoglycan subunits is organized to give the cell shape during normal growth and how it is reorganized in response to damage or environmental forces have been relatively unexplored. In this work, we introduce a quantitative physical model of the bacterial cell wall that predicts the mechanical response of cell shape to peptidoglycan damage and perturbation in the rod-shaped Gram-negative bacterium Escherichia coli. To test these predictions, we use time-lapse imaging experiments to show that damage often manifests as a bulge on the sidewall, coupled to large-scale bending of the cylindrical cell wall around the bulge. Our physical model also suggests a surprising robustness of cell shape to peptidoglycan defects, helping explain the observed porosity of the cell wall and the ability of cells to grow and maintain their shape even under conditions that limit peptide crosslinking. Finally, we show that many common bacterial cell shapes can be realized within the same model via simple spatial patterning of peptidoglycan defects, suggesting that minor patterning changes could underlie the great diversity of shapes observed in the bacterial kingdom.
Article
Full-text available
Penicillin-binding protein 2 (PBP2) from N. gonorrhoeae is the major molecular target for beta-lactam antibiotics used to treat gonococcal infections. PBP2 from penicillin-resistant strains of N. gonorrhoeae harbors an aspartate insertion after position 345 (Asp-345a) and 4-8 additional mutations, but how these alter the architecture of the protein is unknown. We have determined the crystal structure of PBP2 derived from the penicillin-susceptible strain FA19, which shows that the likely effect of Asp-345a is to alter a hydrogen-bonding network involving Asp-346 and the SXN triad at the active site. We have also solved the crystal structure of PBP2 derived from the penicillin-resistant strain FA6140 that contains four mutations near the C terminus of the protein. Although these mutations lower the second order rate of acylation for penicillin by 5-fold relative to wild type, comparison of the two structures shows only minor structural differences, with the positions of the conserved residues in the active site essentially the same in both. Kinetic analyses indicate that two mutations, P551S and F504L, are mainly responsible for the decrease in acylation rate. Melting curves show that the four mutations lower the thermal stability of the enzyme. Overall, these data suggest that the molecular mechanism underlying antibiotic resistance contributed by the four mutations is subtle and involves a small but measurable disordering of residues in the active site region that either restricts the binding of antibiotic or impedes conformational changes that are required for acylation by beta-lactam antibiotics.
Article
Full-text available
The varied effects of beta-lactam antibiotics on cell division, cell elongation, and cell shape in E. coli are shown to be due to the presence of three essential penicillin binding proteins with distinct roles in these three processes. (A) Cell shape: beta-Lactams that specifically result in the production of ovoid cells bind to penicillin binding protein 2 (molecular weight 66,000). A mutant has been isolated that fails to bind beta-lactams to protein 2, and that grows as round cells. (B) Cell division: beta-Lactams that specifically inhibit cell division bind preferentially to penicillin binding protein 3 (molecular weight 60,000). A temperature-sensitive cell division mutant has been shown to have a thermolabile protein 3. (C) Cell elongation: One beta-lactam that preferentially inhibits cell elongation and causes cell lysis binds preferentially to binding protein 1 (molecular weight 91,000). Evidence is presented that penicillin bulge formation is due to the inhibition of proteins 2 and 3 in the absence of inhibition of protein 1.
Article
To withstand the high intracellular pressure, the cell wall of most bacteria is stabilized by a unique cross-linked biopolymer called murein or peptidoglycan. It is made of glycan strands [poly-(GlcNAc-MurNAc)], which are linked by short peptides to form a co-valently closed net. Completely surrounding the cell, the murein represents a kind of bacterial exoskeleton known as the murein sacculus. Not only does the sacculus endow bacteria with mechanical stability, but in addition it maintains the specific shape of the cell. Enlargement and division of the murein sacculus is a prerequisite for-growth of the bacterium. Two groups of enzymes, hydrolases and synthases, have to cooperate to allow the insertion of new subunits into the murein net. The action of these enzymes must be well coordinated to guarantee growth of the stress-bearing sacculus without risking bacteriolysis. Protein-protein interaction studies suggest that this is accomplished by the formation of ct multienzyme complex, a murein-synthesizing machinery combining murein hydrolases and synthases. Enlargement of both the multilayered murein of gram-positive and the thin, single-layered murein of gram-negative bacteria seems to follow an inside-to-outside growth strategy. New material is hooked in a relaxed state underneath the stress-bearing sacculus before it becomes inserted upon cleavage of covalent bonds in the layer(s) under tension. A model is presented that postulates that maintenance of bacterial shape is achieved by the enzyme complex copying the preexisting murein sacculus that plays the role of a template.
Article
Penicillin and related beta-lactams comprise one of our oldest and most widely used antibiotic therapies. These drugs have long been known to target enzymes called penicillin-binding proteins (PBPs) that build the bacterial cell wall. Investigating the downstream consequences of target inhibition and how they contribute to the lethal action of these important drugs, we demonstrate that beta-lactams do more than just inhibit the PBPs as is commonly believed. Rather, they induce a toxic malfunctioning of their target biosynthetic machinery involving a futile cycle of cell wall synthesis and degradation, thereby depleting cellular resources and bolstering their killing activity. Characterization of this mode of action additionally revealed a quality control function for enzymes that cleave bonds in the cell wall matrix. The results thus provide insight into the mechanism of cell wall assembly and suggest how best to interfere with the process for future antibiotic development. Copyright © 2014 Elsevier Inc. All rights reserved.
Article
Significance Across all kingdoms of life, maintaining the correct cell shape is critical for behaviors such as sensing, motility, surface attachment, and nutrient acquisition. Maintaining proper shape requires cellular-scale coordination of proteins and feedback systems that enable responses that correct local morphological perturbations. Here, we demonstrate that the MreB cytoskeleton in Escherichia coli preferentially localizes to regions of negative curvature, directing growth away from the poles and actively straightening locally curved regions of the cell. Moreover, our biophysical simulations of curvature-biased growth suggest that cell wall insertion causes surface deformations that could be responsible for the circumferential motion of MreB. Taken together, our work demonstrates that MreB’s local orchestration of persistent, bursty growth enables robust, uniform growth at the cellular scale.
Article
Significance For complex biological processes, the formation of protein complexes is a strategy for coordinating the activities of many enzymes in space and time. It has been hypothesized that growth of the bacterial cell wall involves stable synthetic complexes, but neither the existence of such complexes nor the consequences of such a mechanism for growth efficiency have been demonstrated. Here, we use single-molecule tracking to demonstrate that the association between an essential cell wall synthesis enzyme and the cytoskeleton is highly dynamic, which allows the cell to buffer growth rate against large fluctuations in enzyme abundance. This indicates that dynamic association can be an efficient strategy for coordination of multiple enzymes, especially those for which excess abundance can be harmful to cells.
Article
The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments' traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability.
Article
X-ray diffraction results are presented for cell walls and extracted peptidoglycans isolated from six species of bacteria. The selection of cells includes both Grampositive and Gram-negative organisms and three of the four chemotypes are represented. Orientated diffraction patterns were obtained from layered specimens of peptidoglycans from the three bacteria where the glycan (polysaccharide) chains are loosely cross-linked by peptide. Conversely, no orientation was achieved for the tightly cross-linked peptidoglycans. The orientated features of the peptidoglycan diffraction patterns concerned a single sharp “meridional” reflection and a broad “equatorial” reflection. Both these spacings varied with specimen water content, the sharp reflection (0.98 nm wet to 0.94 nm dry) being identified with the axial advance of a glycan helix and the equatorial reflection (1.9 nm wet to 0.9 nm dry) with the separation by cross-linking peptide chains of adjacent glycan chains. Using the diffraction pattern and the known primary structure of peptidoglycan as constraints in conformational mapping, a range of stereochemically acceptable helical models is deduced for the glycan chains; insufficient information is available to select a single model. A conformation for the glycan chain with attached peptide was selected for study with the glycan in the form of a fourfold right-handed helix. The optical diffraction of this model is compared with the peptidoglycan X-ray diagram. Good agreement between the patterns is achieved if the model helix is subjected to axial distortions within the ranges allowed by the conformation maps. The undistorted helix allows the possibility of two systematic sets of hydrogen bonds. An assessment of the changes in the X-ray patterns, on extracting the teichoic and teichuronic accessory polymers to produce peptidoglycan, leads to the conclusion that these polymers are distributed throughout the volume of the cell wall. The glycan chains run parallel to the surface of the peptidoglycans and, so far as can be defined by X-ray diffraction, the various peptidoglycans appear to have the same general structure.
Article
Staphylococcus aureus grown in the presence of an alanine-racemase inhibitor was labeled with D-[1-13C]alanine and L-[15N]alanine to characterize some details of the peptidoglycan tertiary structure. Rotational-echo double-resonance NMR of intact whole cells was used to measure internuclear distances between 13C and 15N of labeled amino acids incorporated in the peptidoglycan, and from those labels to 19F of a glycopeptide drug specifically bound to the peptidoglycan. The observed 13C-15N average distance of 4.1 to 4.4 Å between D- and L-alanines in nearest-neighbor peptide stems is consistent with a local, tightly packed, parallel-stem architecture for a repeating structural motif within the peptidoglycan of S. aureus.
Article
The bacterial cell wall is a mesh polymer of peptidoglycan - linear glycan strands cross-linked by flexible peptides - that determines cell shape and provides physical protection. While the glycan strands in thin 'Gram-negative' peptidoglycan are known to run circumferentially around the cell, the architecture of the thicker 'Gram-positive' form remains unclear. Using electron cryotomography, here we show that Bacillus subtilis peptidoglycan is a uniformly dense layer with a textured surface. We further show it rips circumferentially, curls and thickens at free edges, and extends longitudinally when denatured. Molecular dynamics simulations show that only atomic models based on the circumferential topology recapitulate the observed curling and thickening, in support of an 'inside-to-outside' assembly process. We conclude that instead of being perpendicular to the cell surface or wrapped in coiled cables (two alternative models), the glycan strands in Gram-positive cell walls run circumferentially around the cell just as they do in Gram-negative cells. Together with providing insights into the architecture of the ultimate determinant of cell shape, this study is important because Gram-positive peptidoglycan is an antibiotic target crucial to the viability of several important rod-shaped pathogens including Bacillus anthracis, Listeria monocytogenes, and Clostridium difficile.
Article
While vegetative Bacillus subtilis cells and mature spores are both surrounded by a thick layer of peptidoglycan (PG, a polymer of glycan strands cross-linked by peptide bridges), it has remained unclear whether PG surrounds prespores during engulfment. To clarify this issue, we generated a slender ΔponA mutant that enabled high-resolution electron cryotomographic imaging. Three-dimensional reconstructions of whole cells in near-native states revealed a thin PG-like layer extending from the lateral cell wall around the prespore throughout engulfment. Cryotomography of purified sacculi and fluorescent labelling of PG in live cells confirmed that PG surrounds the prespore. The presence of PG throughout engulfment suggests new roles for PG in sporulation, including a new model for how PG synthesis might drive engulfment, and obviates the need to synthesize a PG layer de novo during cortex formation. In addition, it reveals that B. subtilis can synthesize thin, Gram-negative-like PG layers as well as its thick, archetypal Gram-positive cell wall. The continuous transformations from thick to thin and back to thick during sporulation suggest that both forms of PG have the same basic architecture (circumferential). Endopeptidase activity may be the main switch that governs whether a thin or a thick PG layer is assembled.
Article
Bacterial peptidoglycan (PG or murein) is a single, large, covalently cross-linked macromolecule and forms a mesh-like sacculus that completely encases the cytoplasmic membrane. Hence, growth of a bacterial cell is intimately coupled to expansion of murein sacculus and requires cleavage of preexisting cross-links for incorporation of new murein material. Although, conceptualized nearly five decades ago, the mechanism of such essential murein cleavage activity has not been studied so far. Here, we identify three new murein hydrolytic enzymes in Escherichia coli, two (Spr and YdhO) belonging to the NlpC/P60 peptidase superfamily and the third (YebA) to the lysostaphin family of proteins that cleave peptide cross-bridges between glycan chains. We show that these hydrolases are redundantly essential for bacterial growth and viability as a conditional mutant lacking all the three enzymes is unable to incorporate new murein and undergoes rapid lysis upon shift to restrictive conditions. Our results indicate the step of cross-link cleavage as essential for enlargement of the murein sacculus, rendering it a novel target for development of antibacterial therapeutic agents.
Article
X-ray diffraction, density measurements, and stereochemical data were used in order to disclose the architecture of murein, the rigid component of almost all bacterial cell walls. Dry densities of 1.38–1.39 g/cm3 were observed for Micrococcus luteus and Staphylococcus aureus. The X-ray data for gram-positive (S. aureus, M. luteus) and gram-negative (Escherichia coli) strains were almost identical, showing, in addition to some diffuse scattering with broad maxima corresponding to Bragg values of 0.22 and 0.45 nm, two sharp peaks indicating periodicities of about 0.7 and 0.94 nm. These latter periodicties were not found in whole bacteria but emerge immediately after breakage of the whole cells. In gram-positive species a weak oriented reflex at 4.2 nm appeared, while all other reflexes remain ring-shaped. Diffraction patterns obtained under the influence of humidity and certain metal ions showed strong variations in the position of the 0.45-nm halo.These data, together with stereochemical considerations, invalidate the hiterto advanced models of a chitin-like structure of the glycan chains in murein. Instead, the following model proposed and discussed here is consistent with the experimental data. The structure is made up of layers, which in S. aureus and M. luteus are separated by about 4.2 nm. The layers are more or less randomly rotated against each other. The sugar chains run parallel to these layers and, hence, to the surface of the cell wall. They do not possess a twofold screw axis as in chitin or cellulose. Thus, the peptide strands protude from the glycan chain axis in different directions. The peptide strands seem to assume fairly rigid conformations and to be mainly responsible for the regular layer-like arrangement of murein.
Article
Changes in cell turgor pressure have been followed in cells of Microcystis sp. transferred to culture medium containing added NaCl at osmolalities of 30–1,500 mosmol kg-1 ( 74–3,680 kPa). Upon upshock turgor decreased, due to osmotically-induced water loss from the cell. However, partial recovery of turgor was then observed in illuminated cells, with maximum turgor regain in media containing 30–500 mosmol kg-1 NaCl. The lightdependent recovery of turgor pressure was completed within 60 min, with no evidence of further changes in cell turgor up to 24 h. This is the first direct evidence that turgor regulation may occur in a prokaryotic organism. Short-term increases in cell K+ content were also observed upon upshock in NaCl, indicating that turgor regain may involve a turgorsensitive K+ uptake system. Estimation of internal K+ concentration in cells transferred to 250 mosmol kg-1 NaCl showed that changes in cell K+ may account for at least half of the observed turgor regain up to 60 min.
Article
VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids. VMD can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods. Molecules are displayed as one or more "representations," in which each representation embodies a particular rendering method and coloring scheme for a selected subset of atoms. The atoms displayed in each representation are chosen using an extensive atom selection syntax, which includes Boolean operators and regular expressions. VMD provides a complete graphical user interface for program control, as well as a text interface using the Tcl embeddable parser to allow for complex scripts with variable substitution, control loops, and function calls. Full session logging is supported, which produces a VMD command script for later playback. High-resolution raster images of displayed molecules may be produced by generating input scripts for use by a number of photorealistic image-rendering applications. VMD has also been expressly designed with the ability to animate molecular dynamics (MD) simulation trajectories, imported either from files or from a direct connection to a running MD simulation. VMD is the visualization component of MDScope, a set of tools for interactive problem solving in structural biology, which also includes the parallel MD program NAMD, and the MDCOMM software used to connect the visualization and simulation programs. VMD is written in C++, using an object-oriented design; the program, including source code and extensive documentation, is freely available via anonymous ftp and through the World Wide Web.
Article
Growth of the bacterial cell wall peptidoglycan sacculus requires the co-ordinated activities of peptidoglycan synthases, hydrolases and cell morphogenesis proteins, but the details of these interactions are largely unknown. We now show that the Escherichia coli peptidoglycan glycosyltrasferase-transpeptidase PBP1A interacts with the cell elongation-specific transpeptidase PBP2 in vitro and in the cell. Cells lacking PBP1A are thinner and initiate cell division later in the cell cycle. PBP1A localizes mainly to the cylindrical wall of the cell, supporting its role in cell elongation. Our in vitro peptidoglycan synthesis assays provide novel insights into the cooperativity of peptidoglycan synthases with different activities. PBP2 stimulates the glycosyltransferase activity of PBP1A, and PBP1A and PBP2 cooperate to attach newly synthesized peptidoglycan to sacculi. PBP2 has peptidoglycan transpeptidase activity in the presence of active PBP1A. Our data also provide a possible explanation for the depletion of lipid II precursors in penicillin-treated cells.
Article
The periplasmic murein (peptidoglycan) sacculus is a giant macromolecule made of glycan strands cross-linked by short peptides completely surrounding the cytoplasmic membrane to protect the cell from lysis due to its internal osmotic pressure. More than 50 different muropeptides are released from the sacculus by treatment with a muramidase. Escherichia coli has six murein synthases which enlarge the sacculus by transglycosylation and transpeptidation of lipid II precursor. A set of twelve periplasmic murein hydrolases (autolysins) release murein fragments during cell growth and division. Recent data on the in vitro murein synthesis activities of the murein synthases and on the interactions between murein synthases, hydrolases and cell cycle related proteins are being summarized. There are different models for the architecture of murein and for the incorporation of new precursor into the sacculus. We present a model in which morphogenesis of the rod-shaped E. coli is driven by cytoskeleton elements competing for the control over the murein synthesis multi-enzyme complexes.
Article
The regulation of cell shape is a common challenge faced by organisms across all biological kingdoms. In nearly all bacteria, cell shape is determined by the architecture of the peptidoglycan cell wall, a macromolecule consisting of glycan strands crosslinked by peptides. In addition to shape, cell growth must also maintain the wall structural integrity to prevent lysis due to large turgor pressures. Robustness can be accomplished by establishing a globally ordered cell-wall network, although how a bacterium generates and maintains peptidoglycan order on the micron scale using nanometer-sized proteins remains a mystery. Here, we demonstrate that left-handed chirality of the MreB cytoskeleton in the rod-shaped bacterium Escherichia coli gives rise to a global, right-handed chiral ordering of the cell wall. Local, MreB-guided insertion of material into the peptidoglycan network naturally orders the glycan strands and causes cells to twist left-handedly during elongational growth. Through comparison with the right-handed twisting of Bacillus subtilis cells, our work supports a common mechanism linking helical insertion and chiral cell-wall ordering in rod-shaped bacteria. These physical principles of cell growth link the molecular structure of the bacterial cytoskeleton, mechanisms of wall synthesis, and the coordination of cell-wall architecture.
Article
Two hallmarks of the Firmicute phylum, which includes the Bacilli and Clostridia classes, are their ability to form endospores and their "Gram-positive" single-membraned, thick-cell-wall envelope structure. Acetonema longum is part of a lesser-known family (the Veillonellaceae) of Clostridia that form endospores but that are surprisingly "Gram negative," possessing both an inner and outer membrane and a thin cell wall. Here, we present macromolecular resolution, 3D electron cryotomographic images of vegetative, sporulating, and germinating A. longum cells showing that during the sporulation process, the inner membrane of the mother cell is inverted and transformed to become the outer membrane of the germinating cell. Peptidoglycan persists throughout, leading to a revised, "continuous" model of its role in the process. Coupled with genomic analyses, these results point to sporulation as a mechanism by which the bacterial outer membrane may have arisen and A. longum as a potential "missing link" between single- and double-membraned bacteria.
Article
The bacterial actin homologue MreB forms helical filaments in the cytoplasm of rod-shaped bacteria where it helps maintain the shape of the cell. MreB is co-transcribed with mreC that encodes a bitopic membrane protein with a major periplasmic domain. Like MreB, MreC is localized in a helical pattern and might be involved in the spatial organization of the peptidoglycan synthesis machinery. Here, we present the structure of the major, periplasmic part of MreC from Listeria monocytogenes at 2.5 A resolution. MreC forms a dimer through an intimate contact along an N-terminal alpha-helix that connects the transmembrane region with two C-terminal beta-domains. The translational relationship between the molecules enables, in principle, filament formation. One of the beta-domains shows structural similarity to the chymotrypsin family of proteins and possesses a highly conserved Thr Ser dipeptide. Unexpectedly, mutagenesis studies show that the dipeptide is dispensable for maintaining cell shape and viability in both Escherichia coil and Bacillus subtilis. Bacterial two-hybrid experiments reveal that MreC Interacts with high-molecular-weight penicillin-binding proteins (PBPs), rather than with low-molecular-weight endo- and carboxypeptidases, indicating that MreC might act as a scaffold to which the murein synthases are recruited in order to spatially organize the synthesis of new cell wall material. Deletion analyses indicate which domains of B. subtilis MreC are required for interaction with MreD as well as with the PBPs.
Article
To withstand the high intracellular pressure, the cell wall of most bacteria is stabilized by a unique cross-linked biopolymer called murein or peptidoglycan. It is made of glycan strands [poly-(GlcNAc-MurNAc)], which are linked by short peptides to form a covalently closed net. Completely surrounding the cell, the murein represents a kind of bacterial exoskeleton known as the murein sacculus. Not only does the sacculus endow bacteria with mechanical stability, but in addition it maintains the specific shape of the cell. Enlargement and division of the murein sacculus is a prerequisite for growth of the bacterium. Two groups of enzymes, hydrolases and synthases, have to cooperate to allow the insertion of new subunits into the murein net. The action of these enzymes must be well coordinated to guarantee growth of the stress-bearing sacculus without risking bacteriolysis. Protein-protein interaction studies suggest that this is accomplished by the formation of a multienzyme complex, a murein-synthesizing machinery combining murein hydrolases and synthases. Enlargement of both the multilayered murein of gram-positive and the thin, single-layered murein of gram-negative bacteria seems to follow an inside-to-outside growth strategy. New material is hooked in a relaxed state underneath the stress-bearing sacculus before it becomes inserted upon cleavage of covalent bonds in the layer(s) under tension. A model is presented that postulates that maintenance of bacterial shape is achieved by the enzyme complex copying the preexisting murein sacculus that plays the role of a template.
Article
The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.
Article
For the rod-shaped Gram-negative bacterium Escherichia coli, changes in cell shape have critical consequences for motility, immune system evasion, proliferation and adhesion. For most bacteria, the peptidoglycan cell wall is both necessary and sufficient to determine cell shape. However, how the synthesis machinery assembles a peptidoglycan network with a robustly maintained micron-scale shape has remained elusive. To explore shape maintenance, we have quantified the robustness of cell shape in three Gram-negative bacteria in different genetic backgrounds and in the presence of an antibiotic that inhibits division. Building on previous modelling suggesting a prominent role for mechanical forces in shape regulation, we introduce a biophysical model for the growth dynamics of rod-shaped cells to investigate the roles of spatial regulation of peptidoglycan synthesis, glycan-strand biochemistry and mechanical stretching during insertion. Our studies reveal that rod-shape maintenance requires insertion to be insensitive to fluctuations in cell-wall density and stress, and even a simple helical pattern of insertion is sufficient for over sixfold elongation without significant loss in shape. In addition, we demonstrate that both the length and pre-stretching of newly inserted strands regulate cell width. In sum, we show that simple physical rules can allow bacteria to achieve robust, shape-preserving cell-wall growth.
Article
Most bacteria surround themselves with a peptidoglycan (PG) exoskeleton synthesized by polysaccharide polymerases called penicillin-binding proteins (PBPs). Because they are the targets of penicillin and related antibiotics, the structure and biochemical functions of the PBPs have been extensively studied. Despite this, we still know surprisingly little about how these enzymes build the PG layer in vivo. Here, we identify the Escherichia coli outer-membrane lipoproteins LpoA and LpoB as essential PBP cofactors. We show that LpoA and LpoB form specific trans-envelope complexes with their cognate PBP and are critical for PBP function in vivo. We further show that LpoB promotes PG synthesis by its partner PBP in vitro and that it likely does so by stimulating glycan chain polymerization. Overall, our results indicate that PBP accessory proteins play a central role in PG biogenesis, and like the PBPs they work with, these factors are attractive targets for antibiotic development.
Article
FtsZ, a bacterial homolog of tubulin, is well established as forming the cytoskeletal framework for the cytokinetic ring. Recent work has shown that purified FtsZ, in the absence of any other division proteins, can assemble Z rings when incorporated inside tubular liposomes. Moreover, these artificial Z rings can generate a constriction force, demonstrating that FtsZ is its own force generator. Here we review light microscope observations of how Z rings assemble in bacteria. Assembly begins with long-pitch helices that condense into the Z ring. Once formed, the Z ring can transition to short-pitch helices that are suggestive of its structure. FtsZ assembles in vitro into short protofilaments that are ∼30 subunits long. We present models for how these protofilaments might be further assembled into the Z ring. We discuss recent experiments on assembly dynamics of FtsZ in vitro, with particular attention to how two regulatory proteins, SulA and MinC, inhibit assembly. Recent efforts to develop antibacterial drugs that target FtsZ are reviewed. Finally, we discuss evidence of how FtsZ generates a constriction force: by protofilament bending into a curved conformation.
Article
The bacteria cell envelope is a complex multilayered structure that serves to protect these organisms from their unpredictable and often hostile environment. The cell envelopes of most bacteria fall into one of two major groups. Gram-negative bacteria are surrounded by a thin peptidoglycan cell wall, which itself is surrounded by an outer membrane containing lipopolysaccharide. Gram-positive bacteria lack an outer membrane but are surrounded by layers of peptidoglycan many times thicker than is found in the gram-negatives. Threading through these layers of peptidoglycan are long anionic polymers, called teichoic acids. The composition and organization of these envelope layers and recent insights into the mechanisms of cell envelope assembly are discussed.
Article
During Bacillus subtilis sporulation, an endocytic-like process called engulfment results in one cell being entirely encased in the cytoplasm of another cell. The driving force underlying this process of membrane movement has remained unclear, although components of the machinery have been characterized. Here we provide evidence that synthesis of peptidoglycan, the rigid, strength bearing extracellular polymer of bacteria, is a key part of the missing force-generating mechanism for engulfment. We observed that sites of peptidoglycan synthesis initially coincide with the engulfing membrane and later with the site of engulfment membrane fission. Furthermore, compounds that block muropeptide synthesis or polymerization prevented membrane migration in cells lacking a component of the engulfment machinery (SpoIIQ), and blocked the membrane fission event at the completion of engulfment in all cells. In addition, these compounds inhibited bulge and vesicle formation that occur in spoIID mutant cells unable to initiate engulfment, as did genetic ablation of a protein that polymerizes muropeptides. This is the first report to our knowledge that peptidoglycan synthesis is necessary for membrane movements in bacterial cells and has implications for the mechanism of force generation during cytokinesis.
Article
In Caulobacter crescentus, intact cables of the actin homologue, MreB, are required for the proper spatial positioning of MurG which catalyses the final step in peptidoglycan precursor synthesis. Similarly, in the periplasm, MreC controls the spatial orientation of the penicillin binding proteins and a lytic transglycosylase. We have now found that MreB cables are required for the organization of several other cytosolic murein biosynthetic enzymes such as MraY, MurB, MurC, MurE and MurF. We also show these proteins adopt a subcellular pattern of localization comparable to MurG, suggesting the existence of cytoskeletal-dependent interactions. Through extensive two-hybrid analyses, we have now generated a comprehensive interaction map of components of the bacterial morphogenetic complex. In the cytosol, this complex contains both murein biosynthetic enzymes and morphogenetic proteins, including RodA, RodZ and MreD. We show that the integral membrane protein, MreD, is essential for lateral peptidoglycan synthesis, interacts with the precursor synthesizing enzymes MurG and MraY, and additionally, determines MreB localization. Our results suggest that the interdependent localization of MreB and MreD functions to spatially organize a complex of peptidoglycan precursor synthesis proteins, which is required for propagation of a uniform cell shape and catalytically efficient peptidoglycan synthesis.
Article
The peptidoglycan glycosyltransferases (PGTs) catalyze the processive polymerization of a C55 lipid-linked disaccharide (Lipid II) to form peptidoglycan, the main component of the bacterial cell wall. Our ability to understand this reaction has been limited due to challenges identifying the appropriate substrate analogues to selectively interrogate the donor (the elongating strand) and acceptor (Lipid II) sites. To address this problem, we have developed an assay using synthetic substrates that can discriminate between the donor and acceptor sites of the PGTs. We have shown that each site has a distinct lipid length preference. We have also established that processive polymerization depends on the length of the lipid attached to the donor.
Article
The stress-bearing component of the bacterial cell wall—a multi-gigadalton bag-like molecule called the sacculus—is synthesized from peptidoglycan. Whereas the chemical composition and the 3-dimensional structure of the peptidoglycan subunit (in at least one conformation) are known, the architecture of the assembled sacculus is not. Four decades' worth of biochemical and electron microscopy experiments have resulted in two leading 3-D peptidoglycan models: “Layered” and “Scaffold”, in which the glycan strands are parallel and perpendicular to the cell surface, respectively. Here we resolved the basic architecture of purified, frozen-hydrated sacculi through electron cryotomography. In the Gram-negative sacculus, a single layer of glycans lie parallel to the cell surface, roughly perpendicular to the long axis of the cell, encircling the cell in a disorganized hoop-like fashion. • cell wall • Cryo-EM • sacculus • tomography • cell shape
Article
X-ray diffraction, density measurements, and stereochemical data were used in order to disclose the architecture of murein, the rigid component of almost all bacterial cell walls. Dry densities of 1.38–1.39 g/cm3 were observed for Micrococcus luteus and Staphylococcus aureus. The X-ray data for gram-positive (S. aureus, M. luteus) and gram-negative (Escherichia coli) strains were almost identical, showing, in addition to some diffuse scattering with broad maxima corresponding to Bragg values of 0.22 and 0.45 nm, two sharp peaks indicating periodicities of about 0.7 and 0.94 nm. These latter periodicties were not found in whole bacteria but emerge immediately after breakage of the whole cells. In gram-positive species a weak oriented reflex at 4.2 nm appeared, while all other reflexes remain ring-shaped. Diffraction patterns obtained under the influence of humidity and certain metal ions showed strong variations in the position of the 0.45-nm halo. These data, together with stereochemical considerations, invalidate the hiterto advanced models of a chitin-like structure of the glycan chains in murein. Instead, the following model proposed and discussed here is consistent with the experimental data. The structure is made up of layers, which in S. aureus and M. luteus are separated by about 4.2 nm. The layers are more or less randomly rotated against each other. The sugar chains run parallel to these layers and, hence, to the surface of the cell wall. They do not possess a twofold screw axis as in chitin or cellulose. Thus, the peptide strands protude from the glycan chain axis in different directions. The peptide strands seem to assume fairly rigid conformations and to be mainly responsible for the regular layer-like arrangement of murein.