Automatic melodic harmonization tackles the assignment of harmony content (musical chords) over a given melody. Probabilistic approaches to melodic harmonization utilize statistical information derived from a training dataset, producing harmonies that encapsulate some harmonic characteristics of the training dataset. Training data is usually annotated symbolic musical notation. In addition to the obvious musicological interest, different machine learning approaches and algorithms have been proposed for such a task, strengthening thus the challenge of efficient & effective music information utilisation using probabilistic systems. Consequently, the aim of this chapter is to provide an overview of the specific research domain as well as to shed light on the subtasks that have arisen and since evolved. Finally, new trends and future directions are discussed along with the challenges which still remain unsolved.