The Middle East and North Africa (MENA) region, comprised of 19 countries, is currently facing a serious challenge to supply their growing economies with secure, affordable and clean electricity. The MENA region holds a high share of proven crude oil and natural gas reserves in the world. Further, it is predicted to have increasing population growth, energy demand, urbanization and industrialization, each of which necessitates a comparable expansion of infrastructure, resulting in further increased energy demand. When planning this expansion, the effects of climate change, land use change and desertification must be taken into account. The MENA region has an excellent potential of renewable energy (RE) resources, particularly solar PV and wind energy, which can evolve to be the main future energy sources in this area. In addition, the costs of RE are expected to decrease relative to conventional energy sources, making a transition to RE across the region economically feasible. The main objective of this paper is to assume a 100% RE-based system for the MENA region in 2030 and to evaluate its results from different perspectives. Three scenarios have been evaluated according to different high voltage direct current (HVDC) transmission grid development levels, including a region-wide, area-wide and integrated scenario. The levelized cost of electricity (LCOE) is found to be 61 €/MWhel in a decentralized scenario. However, it is observed that this amount decreases to 55 €/MWhel in a more centralized HVDC grid connected scenario. In the integrated scenario, which consists of industrial gas production and reverse osmosis water desalination demand, integration of new sectors provides the system with required flexibility and increases the efficiency of the usage of storage technologies. Therefore, the LCOE declines to 37 €/MWhel and the total electricity generation is decreased by 6% in the system compared to the non-integrated sectors. The results clearly show that a 100% RE-based system is feasible and a real policy option.