ArticlePDF Available

The reliability of AutoCAD program in cephalometric analysis in comparison with pre¬programmed cephalometric analysis software

Authors:
  • College of Dentistry- University of Baghdad
35
Conservative Dentistry
The reliability of AutoCAD program in cephalometric analysis in comparison with pre-
programmed cephalometric analysis software
Mohammed Nahidh, B.D.S., M.Sc
Lecturer, Department of Orthodontics, College of Dentistry, University of Baghdad
Ahmed F. Al-Jarad, B.D.S., M.Sc.
Assistant Lecturer, Department of Orthodontics, College of Dentistry, University of Baghdad
Zana H. Aziz, B.D.S., M.Sc.
Orthodontist. Ministry of Health. Sulimani Governorate
INTRODUCTION
Since Broadbent (1) and Hofrath (2) introduced
the cephalometer in 1931, cephalometric analysis has
contributed to the analysis of malocclusion and it has
become a standardized diagnostic method in ortho-
dontic practice and research (2–4).
Twoapproachesmaybe usedtoperformacephalo-
metric analysis: a manual approach and a computer-
aided approach. The manual approach is the oldest
and most widely used. It consists of placing a sheet
of acetate over the cephalometric radiograph, tracing
salient features, identifying landmarks, and measur-
ing distances and angles between landmark locations.
Theotherapproachiscomputer-aided.Computerized
cephalometric analysis uses manual identication
of landmarks, based either on an overlay tracing of
the radiograph to identify anatomical or constructed
points followed by the transfer of the tracing to a digi-
tizer linked to a computer, or a direct digitization of
the lateral skull radiograph using a digitizer linked to
a computer, and then locating landmarks on the moni-
tor (5–7). Afterwards, the computer software completes
the cephalometric analysis by automatically measur-
ing distances and angles.
 Themajor sources of error incephalometric
analysis include radiographic lm magnication,
tracing, measuring, recording, and landmark identi-
cation.Previousstudiesrevealedthatinconsistency
inlandmarkidentication is an important sourceof
error in conventional cephalometry (8-10).
 Thiserrorisspecictoeachlandmarkandaf-
fected by experience and training of the observers (11).
Rapid advances in computer science have led
to its wide application in cephalometry. Computer-
aided cephalometric analysis is faster in data acquisi-
tion and analysis than conventional methods. Many
cephalometric programs have been developed to
perform computer-aided cephalometric analysis by
digitizing the landmarks. However, digitizing may
introduce errors such as head lm movement and
impropersequencingofdigitizedpoints.Totakead-
vantageofimageprocessingandcomputer-basedl-
ing systems that can integrate patients’ records and
images,theoriginalcephalometricradiographiclms
may be transformed into a digital format by a scan-
ner or video camera. A radiographic system for taking
direct-digital lateral cephalograms at reduced radia-
tion dose is presently available (12,13).
Consequently, many commercially available
or customized programs have been developed to con-
duct cephalometric analyses directly on the screen-
displayed digital image (14–15). Such applications could
substantially reduce the potential errors in the use
of digitizing pads and totally eliminate the need of
hardcopies of digitally born images for conventional
cephalometric analysis (15). Digital cephalometry also
has the benets of image storage, transmission and
Orthodontics
Orthodontics
ABSTRACT
Background: This study aimed to evaluate the reliability of AutoCAD program in cephalometric analysis in comparison with View-
box 3.1.1 cephalometric computer soware.
Materials and method: The sample consisted of 30 digital true lateral cephalometric radiographs of some under- and postgradu-
ate students in the College of Denstry/ University of Baghdad. Seventeen parameters (11 angular and 6 linear) were measured
using the Viewbox 3.1.1 cephalometric computer soware and re-measured using AutoCAD program. Descripve stascs were
performed for each parameter and paired samples t-test was obtained to evaluate the dierence between both of the methods.
Results: The results revealed the presence of non-signicant dierence between both sowares.
Conclusions: Cephalometric analysis with AutoCAD program was comparable with Viewbox 3.1.1 soware and both of them de-
pend on the landmarks idencaon by the observer. AutoCAD soware is available in Iraq unlike the other sowares and it can
be used in clinical diagnosis also suited for research projects.
Key words: AutoCAD, computerized cephalometric analysis.
36
36
36
processing (8).
Greateffortshavebeenmadetodevelopsystemsfor
automaticcomputerizedidenticationofcephalomet-
ric landmarks (4,17). However, automated systems are
atpresentunabletocompetewithmanualidentica-
tionintermsofaccuracyoflandmarkposition.The
landmarkslyingonpoorlydenedstructuresaredif-
culttoautomaticallyidentifyduetopoorsignal-to-
noise ratio (8). Earlier studies revealed that comput-
er-aided cephalometric analysis does not introduce
more measurement error than hand tracing, as long
aslandmarksareidentiedmanually(18,19).Therefore,
manually identifying landmarks on screen-displayed
digital images for cephalometric analysis may still be
the better strategy.
In Iraq, before 2006, the manual tracing was the dom-
inate method for cephalometric analysis, but after
transporting to the digital cephalometric X-ray, the
need for a software for cephalometric analysis begins.
Al-Nasseri (20) compared the accuracy of the comput-
erized procedure from digitizing the radiograph to
thenalcephalometricanalysisontwenty-sixlateral
cephalograms using Viewbox 3.0.1 cephalometric
computer software. His results showed that comput-
erized angular measurements were more comparable
to the manual method than with linear measurements,
with most of the differences being of low clinical im-
portance.Ontheotherhand,UthmanandAl-Sahaf(21)
measuredtheeffectoflmdigitizationonreliability
and validity of some angular and linear cephalomet-
ric measurements. They used the Dimaxis pro/clas-
sic imaging software (version 3.2.1) for landmarks
identicationandvariablecalculationsandfoundthat
the angular and linear measurements in digital images
were comparable with that of original radiograph and
areclinicallyacceptable.Thisworkwiththissoftware
is not easy, so the need for simple and full option soft-
ware has been aroused.
Mohammed (22) evaluated the reliability of landmarks
identicationandtheireffecton theaccuracyofthe
linear and angular measurements among the con-
ventional, hardcopy and direct digital cephalographs
of 110 Iraqi adults. Lateral conventional and digital
cephalometric radiographs were taken for each sub-
ject, a hardcopy image from the digital cephalometric
radiograph have been printed. Twenty one cephalo-
metricmeasurements(12angularand9linearmeas-
urements) were determined. Cephalometric analyses
were made by traditional (manual), direct digital
analysisbythePlanmecaSoftwareProgram(Dimax)
and direct manual analysis on the hardcopy image.
Theresultsshowedthatmostofcephalometricland-
markshavebeenidentied with moreprecisionand
reliability within the digital techniques rather than
with conventional and hardcopy techniques. With the
hardcopy analysis technique, all the linear measure-
ments either skeletal or dental showed a high sig-
nicant variation, so it cannot be used to make the
so good diagnosis or the evaluation of the treatment
plan. On the other hand, there was no statistical sig-
nicance difference between the conventional and
digital methods and both techniques could be used
as clinical tool in diagnosis and treatment planning
evaluation.
NowadaysinIraq,AutoCAD(AutoComputerAided
Design) program is the best solution. With this soft-
ware,bothdigital andconventionalX-rays,that can
be scanned and entered to this program, can be ana-
lyzed. It has the property of measuring the angular,
linear parameters and surface area. With it, the image
isimported,themagnicationiscorrectedandpoints
and planes can be obtained easily with the property
of enlarging the image, snapping the points, determi-
nation the mid between two points, drawing the per-
pendiculars, and measuring the variables with high
precision.
Since 2005, AutoCAD program used in cephalomet-
ric analysis and no one test its reliability, so the aim
of the present study is to evaluate the reliability of
AutoCAD program in cephalometric analysis in com-
parison with Viewbox 3.1.1 cephalometric computer
software.
MATERIALS AND METHOD
Sample
Thesampleconsistedof30digitaltruelateralcepha-
lometric radiographs of some under- and postgradu-
atestudentsintheCollegeofDentistry/Universityof
Baghdad.
Equipment
a)Pentium IV portable computer.
b)Analyzing softwares (AutoCAD 2007 by Au-
todesk, Inc., and Viewbox 3.1.1 by Dhal Orthodontic
Software).
Orthodontics
Orthodontics
Orthodontics
37
Orthodontics
Method
Cephalometric Analysis
Every digital true lateral cephalometric radiograph
was analyzed by Viewbox 3.0.1 cephalometric com-
puter software one time then by AutoCAD program
2007 on the second time to obtain the angular and lin-
ear measurements. After importing the picture to both
oftheseprograms,themagnicationwas corrected,
the points were localized, the planes were determined,
and the angles and distances were measured by the
AutoCAD program while in Viewbox 3.0.1 software
the planes and measurements were obtained directly
as the program designed.
Cephalometric Landmarks, Planes, and Measure-
ments
I. Cephalometric Landmarks
1. PointS(Sella):Themidpointofthehypophysial
fossa (23).
2. PointN(Nasion):Themostanteriorpointonthe
nasofrontal suture in the median plane (23).
3. PointAr(Articulare):Thepointofintersectionof
the external dorsal contour of the mandibular con-
dyle and the temporal bone (24).
4. PointA(Subspinale):The deepest midline point
on the premaxilla between the Anterior Nasal
Spine and Prosthion (25).
5. Point B (Supramentale): The deepest midline
point on the mandible between Infradentale and
Pogonion (25).
6. PointPog(Pogonion):Itisthemostanteriorpoint
on the mandible in the midline(25).
7. PointANS(AnteriorNasalSpine):Itisthetipof
the bony anterior nasal spine in the median plane
(23).
8. PointPNS(PosteriorNasalSpine):Thisisacon-
structed radiological point, the intersection of a
continuation of the anterior wall of the pterygo-
palatinefossaandtheoorofthenose.Itmarks
the dorsal limit of the maxilla (23).
9. PointMe(Menton):Thelowestpointonthesym-
physeal shadow of the mandible seen on a lateral
cephalograms (26).
10. Point Go (Gonion): A point on the curvature of
the angle of the mandible located by bisecting the
angle formed by the lines tangent to the posterior
ramus and inferior border of the mandible (26).
11. PointIi(Incisorinferius):Thetipofthecrownof
the most anterior mandibular central incisor (23).
12. PointIs(Incisorsuperius):The tip of the crown
of the most anterior maxillary central incisor (23).
13. PointAp1(Apicale1):Rootapexofthemostan-
terior maxillary central incisor (23).
14.PointAp1(Apicale1):Rootapexofthemostan-
terior mandibular central incisor (23).
II. Cephalometric planes
1. Sella-Nasion(SN)plane: Formedbyaline join-
ing Sella turcica and Nasion (23).
2. S-Ar plane: Formed by a line joining Sella turcica
and Articulare (23).
3. Ar-Goplane:AlinejoiningArticularetoGonion
(23).
4. N-Pog plane: Formed by a line joining Nasion
and point Pogonion (25).
5. N- A line: Formed by a line joining Nasion and
point A (25).
6. N- B line: Formed by a line joining Nasion and
point B (25).
7. Palatal plane: Formed by a line joining ANS and
PNS (23).
8. Mandibularplane(MP):Formedbyalinejoining
GonionandMenton(23).
9. Longaxisof theupperincisor(U1):Alinecon-
necting Is and Ap 1 (23).
10. Longaxisofthelowerincisor(L1):Alinecon-
necting Ii and Ap 1(23).
11. Mandibular incisor- Mandibular plane: A line
connecting the long axis of the lower incisor to
the mandibular plane (23).
12. Maxillary incisor- Palatal plane: A line connect-
ing the long axis of the upper incisor to the palatal
plane (23).
Cephalometric measurements
A. Angular measurements
1. SNA angle: The angle between lines S-N and
N-A. It represents the angular anteroposterior po-
sition of the maxilla to the cranial base (27,28).
2. SNBangle:TheanglebetweenlinesS-NandN-B.
It represents the angular anteroposterior position
of the mandible to the cranial base (27,28).
3. ANB angle: The angle between lines NA and
N-B. It is the most commonly used measurement
for appraising anteroposterior disharmony of the
jaws (27,28).
4. Gonialangle(Ar-Go-Me):Theanglebetweenthe
posterior border of the ramus and the mandibular
plane(23).
5. Saddle angle (N-S-Ar): The angle between the
Orthodontics
Orthodontics
38
38
38
anterior and the posterior cranial base. This an-
gle formed at the point of intersection of the S-N
plane and the S-Ar plane (23).
6. Articular angle (S-Ar-Go): The angle between
S-ArandAr-Goplanes(23).
7. S-N-Pog angle: The angle between S-N and N-
Pog planes (23).
8. SN-PPangle:TheanglebetweenS-Nandpalatal
planes (23).
9. Maxillaryincisor–Palatal plane angle(U1-PP):
Theanglebetweenlongaxisofupperincisorand
palatal plane, posteriorly (27,28).
10. Mandibularincisor–Mandibularplaneangle(L1-
MP):Thatangle formed by the longaxis of the
most labial mandibular incisor to the mandibular
plane, posteriorly (24).
11. Inter-incisalangle(U1-L1):Theangleformedby
the intersection of the lines representing the long
axes of the most labial maxillary and mandibular
incisors, posteriorly (27,28).
B. Linear Measurements
1. S-N: A distance from Sella to Nasion (23).
2. S-Ar: A distance from Sella to Articulare (23).
3. Mandibular body length: It represents the distance
fromGoniontoMenton(23).
4. Ramuslength:ThedistancebetweenAr and Go
(23).
5. Totalanteriorfacialheight(TAFH):It’smeasured
from N to Me (29).
6. Posteriorfacialheight(PFH):It’smeasuredfrom
StoGo(29).
Statistical Analyses
All the data of the sample were subjected to computer-
izedstatisticalanalysisusingSPSSversion15(2006)
computerprogram.Thestatisticalanalysisincluded:
1. Descriptive Statistics
a) Means.
b) Standarddeviations(SD).
c) Statistical tables.
2. Inferential Statistics
a) Paired- samples t-test for the comparison be-
tween both methods.
In the statistical evaluation, the following levels of
signicanceareused:
Non-signicant NS P>0.05
Signicant  * 0.05≥P>0.01
Highlysignicant ** 0.01≥P>0.001
Veryhighlysignicant*** P≤0.001
RESULTS AND DISCUSSION
Different studies had been made to compare between
the manual and computerized cephalometric analy-
sis revealed non-signicant difference between the
methods (6,13).
Baskin and Cisneros (14)conducted a study to deter-
mine the reliability and reproducibility of measure-
ments obtained from two popular programs, Dentofa-
cialPlannerandQuickCeph,ascomparedtomanual
tracings using the measurements of Steiner’s analysis.
TheyfoundthatbothDentofacialPlannerandQuick
Ceph can produce dependable results.
Theresultofthepresentstudyrevealedthatthemean
values of the measured variables by both softwares
wereveryclosewithanon-signicantdifferencebe-
tweenbothmethods(Table1).
For both methods, the cephalometric analysis depend-
edmainlyonlandmarksidenticationbytheobserver
rather than the method of calculating and measuring
of the linear or angular variables.
Althoughtheresultsshowedanon-signicantdiffer-
ence between both softwares; the differences between
them obviously seen in their design. Viewbox was
designed as a cephalometric analysis program devel-
oped by an orthodontist. Initially it was written for
personal computers in the DOS environment and later
it was ported to Windows 3.1. Version 3.1.1 incor-
porates the latest in cephalometric analysis software,
including advanced image processing algorithms,
Procrustes superimposition and Principal Component
Analysis, while AutoCAD program in fact designed
for solving engineering purposes rather than ortho-
dontic analysis. One of the most features in the Au-
toCAD program is that the observer has a full con-
trol in locating points that are between two shadows,
likeGonionunlikepreprogrammedidenticationby
Viewbox 3.1.1 cephalometric computer software.
CONCLUSIONS
AutoCAD program, like Viewbox, is not restricted to
cephalometric analyses, however, this program can
perform measurements on any diagnostic record that
can be scanned with a scanner or photographed with
a video or digital camera. Such records might include
frontal, submentovertex and panoramic radiographs,
orthodontic models, facial and prole photographs,
Orthodontics
Orthodontics
Orthodontics
39
Orthodontics
hand-wristradiographs,animalradiographs,etc.The
resultsof the present study revealednon-signicant
difference between both methods. Therefore,Auto-
CAD program can be used in clinical diagnosis also
suited for research projects.
Linear
Measurements
(mm)
Variables Descriptive statistics Method difference
d.f.=29
Viewbox AutoCAD
Mean S.D. Mean S.D. Mean
difference
t-test p-value
SNA 82.67 3.25 82.83 3.17 0.17 1.37 0.19(NS)
SNB 79.44 3.15 79.50 2.98 0.06 0.44 0.67(NS)
ANB 3.33 1.33 3.28 1.41 -0.06 -0.44 0.67(NS)
GA 126.22 3.14 126.22 3.32 0 0 1(NS)
N-S-Ar 122.06 5.18 122.56 5.29 0.50 1.84 0.08(NS)
S-Ar-Go 144.50 5.89 143.94 5.92 -0.56 -1.82 0.09(NS)
SN-PP 9.28 2.44 9.17 2.20 -0.11 -0.52 0.61(NS)
S-N-Pog 80.44 3.01 80.39 3.01 -0.06 -0.37 0.72(NS)
U1-PP 111.11 8.78 110.83 8.54 -0.28 -0.77 0.45(NS)
L1-MP 100.39 6.48 100.61 7.20 0.22 0.44 0.67(NS)
U1-L1 124.83 10.72 125.39 10.85 0.56 1.25 0.23(NS)
S-N 67.89 2.64 68.32 3.03 0.42 1.26 0.23(NS)
S-Ar 33.08 2.94 33.31 2.94 0.23 1.82 0.09(NS)
Go-Me 68.22 2.89 68.73 3.03 0.50 1.24 0.23(NS)
Ar-Go 45.21 6.22 45.42 6.12 0.21 1.34 0.20(NS)
TAFH 113.02 7.29 113.14 7.17 0.12 0.75 0.46(NS)
PFH 74.73 6.62 74.87 6.54 0.14 1.76 0.10(NS)
Table 1. Descriptive statistics and methods difference for the measured variables
Angular
Measurements
(°)
Orthodontics
REFERENCES
1. BroadbentBH.Anewx-raytechniqueanditsapplicationtoorthodontia.AngleOrthod1931;1(2):45–66.
(IVSL)
2. Hofrath H. Die Bedeutung der Röntgenfern- und Abstandsaufnahme für die Diagnostik der Kieferanoma-
lien. Fortschr Orthodont 1931; 1: 232-58 [Cited by: AllenWI. Historical aspects of roentgenographic
cephalometry.AmJOrthod1963;49(6):451-9].
3. BaumrindS,MillerDM.Computer-aidedheadlmanalysis:TheUniversityofCaliforniaSanFrancisco
method.AmJOrthod1980;78(1):41–65.
Orthodontics
40
40
40
4. ForsythDB,ShawWC,RichmondS,RobertsCT.Digitalimagingofcephalometricradiographs,part2:
imagequality.AngleOrthod1996;66(1):43–50.
5. BaumrindS, Frantz RC. The reliability of head lmmeasurements: 1. Landmark identication.Am J
Orthod1971;60(2):111–27.
6. RichardsonA.Acomparison oftraditionalandcomputerizedmethods ofcephalometricanalysis.EurJ
Orthod1981;3(1):15–20.
7. TurnerPJ,WeerakoneS.Anevaluationofthe reproducibility oflandmarkidenticationusingscanned
cephalometricimages.JOrthod2001;28(3):221–30.
8. Forsyth DB, Shaw WC, Richmond S. Digital imaging of cephalometric radiology, part I: advantages and
limitationsofdigitalimaging.AngleOrthod1996;66(1):37–42.(IVSL)
9. Cohen AM, Linney AD. A low cost system for computer-based cephalometric analysis. Br J Orthod 1986;
13(2):105–8.
10. HoustonWJB,MaherRE,McElroyD,SherriffM.Sourcesoferrorinmeasurementsfromcephalometric
radiographs.EurJOrthod1986;8(3):149–51.
11. KvamE,KrogstadO.Variabilityintracingsoflateralheadplatesfordiagnosticorthodonticpurposes.A
methodologicstudy.ActaOdontolScand1969;27(4):359-69.
12. NaslundEB,KrugerM,PeterssonA,HansenK.Analysisoflow-dosedigitallateralcephalometricradio-
graphs.DentomaxillofacRadiol1998;27(3):136–9.
13. SagnerT,StorrI,BenzC,Rudzki-JansonI.Diagnosticimagequalityincomparisonofconventionaland
digitalcephalometricradiographs.DentomaxillofacRadiol1998;27(SI):S26Abstract27.
14.BaskinHN, CisnerosGJ.Acomparisonoftwocomputercephalometric programs.JClin Orthod1997;
31(4):231-3.
15. OliverRG.Cephalometricanalysiscomparingvedifferentmethods.BrJOrthod1991;18(4):277–83.
16. GotfredsenE,KragskovJ,WenzelA.Developmentof asystemforcraniofacialanalysisfrommonitor-
displayeddigitalimages.DentomaxillofacRadiol1999;28(2):123-6.
17. RudolphDJ,SinclairPM,CogginsJM.Automaticcomputerizedradiographicidenticationofcephalo-
metriclandmarks.AmJOrthodDentofacOrthop1998;113(2):173–9.
18. GravelyJF,BenziesPM.Theclinical signicance of tracing error in cephalometry.Br J Orthod 1974;
1(3):95-101.
19. EnlowDH,HansMG.Essentialsoffacialgrowth.Philadelphia:WBSaundersCompany;1996.p.259–60.
20. Al-NasseriNA.Theaccuracyofcomputerisedcephalometricanalysiscomparedtoconventionalmanual
method.MustansiriaDentJ2005;2(1):7-14.
21. UthmanAT,Al-Sahaf NH.Validityandreliabilityof cephalometric measurements in traditional versus
digitizedcephalometry.MustansiriaDentJ2006;3(3):233-8.
22. Mohammed RJ. Comparison of lateral cephalometric analysis of conventional, digital and hardcopy ceph-
alograph.Amasterthesis,DepartmentofPedodontics,Orthodontics,andPreventiveDentistry,University
of Mousl, 2008.
23. RakosiT.Anatlasandmanualofcephalometricradiography.2nded.London:Wolfemedicalpublications
Ltd.; 1982.
24.BjöِrkA.Thefaceinprole.AnanthropologicalX-rayinvestigationonSwedishchildrenandconscripts.
Svensktandläkare-Tidskrift1947;40(5B)Suppl:1-180.
25. DownsWB.Variationsinfacialrelationships:theirsignicanceintreatmentandprognosis.AmJOrthod
1948;34(10):812-40.
26. CaueldPW.Tracingtechniqueandidenticationoflandmarks.InJacobsonA(ed).Radiographiccepha-
lometryfrombasicstovideoimaging.1sted.Chicago:QuintessencepublishingCo.;1995.
27. RiedelRA.Therelationofmaxillarystructurestocraniuminmalocclusionandinnormalocclusion.An-
gleOrthod1952;22(3):142-5.(IVSL)
28. Steiner CC. Cephalometrics for you and me. Am J Orthod 1953; 39(10): 729-55.
29. BiggerstaffRH,AllenRC,TuncayOC,BerkowitzJ.Averticalcephalometricanalysisofthehumancrani-
ofacialcomplex.AmJOrthod1977;72(4):397-405.
Orthodontics
Orthodontics
Periodontics
... It has showed adequate reliability when compared to the Viewbox 3.1.1 software in landmark identification, angular and linear measurements 22) . Additionally, this software was considered as accurate and reliable in other medical fields with both angular and linear measurement when compared to manual measurements with goniometer 23,24) or with other software packages, such as ImageTool®, and Adobe Photoshop® 25) . ...
... iPhone iOS-based applications have been tested for cephalometric tracing in four studies, however these revealed contradictory results [26][27][28] . On the other hand, only one study has included AutoCAD in orthodontic cephalometry 22) and two have included OneCeph as an Andoid-based application 3,26) . Therefore, this study aimed to evaluate the reliability of OneCeph mobile phone application for cephalometric tracing of angular and linear measurements in comparison with AutoCAD computer software. ...
... This study was designed to evaluate the applicability of the user-friendly application of OneCeph in comparison to the AutoCAD software which had been proved to adequately measure linear and angular measurements [22][23][24][25] and therefore used as a standard measure. Recently, OneCeph has been evaluated twice and was found more valid than CephNinja and the best alternative to Viewbox 4 26) and of adequate reliability when compared to Dolphin Imaging software 3) . ...
... Previously, the magnification size of the lateral cephalometric radiographs was calibrated by comparing the nasal rod scale in the cephalometric X-ray device with the nasal rod scale displayed on the computer [19]. The use of AutoCAD software is based on a study on AutoCAD reliability [20]. That study concluded that there are no significant differences in lateral cephalometric radiograph measurements when using AutoCAD or Viewbox 3.1 [20]. ...
... The use of AutoCAD software is based on a study on AutoCAD reliability [20]. That study concluded that there are no significant differences in lateral cephalometric radiograph measurements when using AutoCAD or Viewbox 3.1 [20]. In this present study, 10 cephalometric radiograph parameters were measured linearly: upper face height (N-ANS), total facial height (N-Me), frontal sinus height (FsHt), mandibular ramus height (Ar-Go), lower face height (ANS-Me), mandibular body length (Me-Go), mastoid width (MaWd), mastoid height (MaHt), the depth of the face (Ba-ANS), and the length of craniofacial base (Ba-N). ...
Article
Full-text available
Craniofacial characteristics are one of the sex determination parameters of age after puberty. The aim of this study is to obtain linear measurements using lateral cephalometric radiography of adults aged 20–40 years based on sex in Indonesia. Ten linear craniofacial parameters on 100 digital lateral cephalometric radiographs were measured. Inter-intra observer reliability was tested using Technical Error Measurement. The independent t-test and the Mann–Whitney U test were used to evaluate the significance of the findings. There are significant differences between males and females on 10 of the linear measurements using lateral cephalometric radiography. Lateral cephalometric radiography showed that the linear measurements of 10 cephalometic parameters were higher in males than females, so it can be used to determine sex.
... Phần mềm AutoCAD đã cho thấy độ tin cậy phù hợp trong việc xác định mốc, đo góc và tuyến tính của một bức ảnh [6]. Ngoài ra, AutoCAD đã cho thấy độ tin cậy và độ chính xác trong phép đo tuyến tính và góc trong các lĩnh vực y tế khi so sánh với phép đo thủ công bằng máy đo góc hoặc các gói phần mềm khác chẳng hạn như ImageTool® và Adobe Photoshop® [5]. ...
Article
Ứng dụng công nghệ trong thời đại 4.0 trong nghiên cứu khoa học nói chung và ngành Y học cổ truyền nói riêng là cần thiết và cấp bách để đáp ứng nhu cầu nghiên cứu và điều trị. Các bệnh lý “văn phòng” có xu hướng tăng cao do chuyển dịch nhu cầu việc làm và chăm sóc sức khỏe của người dân. Một số thói quen lâu ngày dẫn đến tình trạng tật và có nguy cơ tiến triển thành bệnh. Do đó, cần tìm ra công cụ chẩn đoán và lượng giá điều trị thích hợp và tối ưu chi phí theo dõi. Một trong những phương pháp vận động cải thiện tốt các tư thế “sai lệch” là bài tập dưỡng sinh Nguyễn Văn Hưởng, một số công trình nghiên cứu cho thấy hiệu quả khi can thiệp bài tập Nguyễn Văn Hưởng trên người có tật hoặc người bệnh. Tuy nhiên, việc can thiệp động tác là thủ công và mang tính chủ quan của người tập và người hướng dẫn. Tất yếu cần tìm ra một phương pháp đo lường khách quan mà bất kì người nào cũng có thể theo dõi và điều chỉnh. Phương pháp đo lường thông qua hình ảnh (ảnh tĩnh, video) và phần mềm phân tích thiết kế autoCAD (HACAD) có từ những năm 1990 và phát triển nhiều từ năm 2008 đến nay cho thấy là một xu hướng khách quan. Đã có 2 công trình đo lường hiệu quả bằng autoCAD trên tật cổ rùa tại Việt Nam cho thấy tính khả thi của mô hình đo lường này. Hướng phát triển từ mô hình HACAD có thể tùy biến vào chẩn đoán, can thiệp và theo dõi. Bao gồm: đo lường các tật và tư thế sai, đo lường sinh trắc của động tác Nguyễn Văn Hưởng nói riêng và bài tập trị liệu nói chung, đo lường hiệu quả sau quá trình can thiệp, đo lường theo dõi các đặc điểm (chu vi, kích thước, mốc biên độ,…) sau can thiệp. Mô hình HACAD có thể trở thành xu hướng mới trong nghiên cứu can thiệp vận động dưỡng sinh Nguyễn Văn Hưởng, một phần không thể tách rời của Y học cổ truyền Việt Nam.
... AutoCAD yazılımının araştırmada ve teşhiste kullanılabilir olduğu bildirilmiştir. 15 Sefalometrik filmler üzerinde mandibular posterior boşluğu değerlendiren çalışmalarda, Xi noktasından mandibular ikinci moların distal noktasına olan uzaklık, 12,13 C noktasından mandibular birinci moların distal noktasına olan uzaklık, 1,16 Xi noktasından mandibular birinci moların distal noktasına olan uzaklık 2 ölçülmüştür. Xi noktasının lokalizasyonunun tekrarlanabilirliğinin düşük olduğunu gösteren bir çalışma nedeni ile bu çalışmada mandibular posterior boşluğu değerlendirirken C noktası referans olarak alınmıştır. ...
Article
Full-text available
Amaç: Üst birinci premolar çekiminin maksiller ve mandibular posterior boşluğa olan etkisinin değerlendirilmesidir. Gereç ve Yöntem: Çalışmanın materyalini, dişsel Sınıf II maloklüzyona sahip, üst iki birinci premolar çekimi ile sabit apareylerle tedavi edilmiş 20 bireyin tedavi öncesi (T1), sonrası (T2) ve pekiştirme sonrası (T3) lateral sefalometrik radyografileri oluşturdu. Lateral sefalometrik radyografiler üzerinde, yedi boyutsal ve dört açısal ölçüm aynı yazar tarafından yapıldı. İstatistiksel analizde, sürekli sayısal değişkenlerin dağılımının normale yakın dağılıp dağılmadığı Shapiro-Wilk testiyle incelendi. Ölçüm ortalamalarında istatistiksel olarak anlamlı değişim olup olmadığı parametrik verilerde Wilks’in Lambda testi, nonparametrik verilerde ise Friedman testiyle incelenerek; Bonferroni düzeltmeli çoklu karşılaştırma ya da Dunn-Bonferroni post-hoc testler uygulandı. p<0.05 değeri anlamlı olarak kabul edildi. Bulgular: SNB açısı T3’te T1’e göre anlamlı düzeyde arttığı bulundu (p<0.05). ANB açısı T3’te T1’e göre anlamlı düzeyde azaldığı bulundu (p<0.05). T1’e göre hem T2 hem de T3’te U1-NA mesafesinin anlamlı düzeyde azaldığı bulundu (p<0.001). T1’e göre hem T2 hem de T3’te ve T2’ye göre T3’te U6-PTV mesafesinin anlamlı düzeyde arttığı bulundu (p<0.001). T1’e göre hem T2 (p<0.01) hem de T3’te (p<0.001) ve T2’ye göre T3’te CLMD (p<0.05) mesafesinin anlamlı düzeyde arttığı bulundu. T1’e göre hem T2 hem de T3’te ve T2’ye göre T3’te DC mesafesinin anlamlı düzeyde arttığı bulundu (p<0.001). CL1 mesafesi T3’te T1’e göre anlamlı düzeyde artmış bulundu (p<0.05). Sonuç: Maksiller posterior boşlukta premolar çekimine bağlı olarak artış izlenmiştir. Mandibular posterior boşlukta izlenen artışın maksiller posterior boşluktan daha az olduğu görülmüştür. Maksiller kesici dişlerde retraksiyon ve maksiller molarlarda meziyalizasyon hareketi izlenmiştir.
... Es fundamental comprender que la discrepancia en los resultados con estudios foráneos podría estar ligado a diferencias raciales así como también a factores medioambientales, ya que la mayoría de investigaciones fueron realizados en individuos caucásicos, pero constituye un precedente que hay que tomar en consideración la disposición de los tejidos blandos del mentón especialmente en pacientes hiperdivergentes antes de iniciar una terapia ortodóncica, ya que la consulta del paciente es mejorar la estética facial (18). Dentro de las limitaciones encontradas fue que el trazado se realizó mediante un software de diseño AutoCAD utilizado por arquitectos e ingenieros para crear dibujos precisos en 2D y 3D, pero al mismo tiempo Mohammed et al., (21), mostraron que la utilización del mismo es confiable en comparación a otros programas de trazados cefalométricos, y ha sido muy utilizado en diferentes estudios (22,23). ...
Article
Full-text available
Objetivo : Comparar el grosor de tejidos blandos del mentón en individuos con diferentes patrones de crecimiento facial en radiografías cefálicas laterales del cráneo digitales en individuos de 18 a 45 años de edad. Material y Métodos : se realizó un estudio correlacional evaluando 160 radiografías laterales usando una pantalla de 13.3 pulgadas mediante el software AutoCAD 2020 obtenidas de un centro radiológico de la ciudad de Cuenca, en el periodo 2019. Se dividió en cuatro grupos de acuerdo al patrón de crecimiento facial (S-N/G-Gn): Bajo, Medio Bajo, Medio Alto y Alto y el grosor de los tejidos blandos del mentón se midió en sentido sagital a nivel de Pogonion, Gnation y Menton de las estructuras óseas a sus respectivos puntos en los tejidos blandos. Se utilizó la correlación de Rho de Spearman para evaluar las medias del grosor de los tejidos blandos del mentón y patrón facial, para la comparación entre grupos se usó la prueba post-hoc de Tuckey, con un nivel de confiabilidad del 95% (p<0,05). Resultados : Se encontró diferencias estadísticamente significativas entre las mujeres a nivel de Gnation, mostró un valor p=0,041, el grosor fue mayor en el patrón facial bajo y disminuye según aumenta el patrón esqueletal (Rho Spearman=-0,271) Existió diferencias significativas de acuerdo al dimorfismo sexual a nivel de Menton (p=0,049) y no existió diferencias significativas de acuerdo a la edad. Conclusión : A medida que las mujeres presentan un patrón facial vertical el espesor de Gnation es más delgado lo que implica, que al modificar verticalmente los tejidos duros de la mandíbula puede afectarse los tejidos blandos.
... software. 12 Additionally, it has shown reliability and accuracy in linear and angular measurement in other medical fields when compared to manual measurement with a goniometer 13,14 or other software packages, such as ImageTool Ò and Adobe Photoshop Ò . 15 Computer software must be accurate and reliable. ...
Article
Full-text available
Objective This study compares the accuracy and reliability of WebCeph (web-based program for cephalometric analysis) with the AutoCAD computer software. Materials and methods A sample of pretreatment digital lateral cephalograms of 50 orthodontic patients was analysed with WebCeph and AutoCAD software (as a standard measure). On each cephalogram, 17 landmarks and 11 measurements were marked and performed as skeletal, dental, and soft–tissue parameters. We used six angular and five linear measurements. A paired t-test was used to assess the systematic bias. The intraclass correlation coefficient (ICC) and Bland–Altman plot with linear regression analysis were used to assess the agreement between the two methods. Results There was adequate reproducibility for the measurements with both WebCeph and AutoCAD. The paired t-test showed statistically significant differences for five angular and two linear measurements (P < 0.05). The ICC test between WebCeph and AutoCAD revealed very good to excellent agreement for all measurements, except for the lower incisor to mandibular plane angle. The Bland–Altman plot visually showed a relatively acceptable limit of agreement for three angular and two linear measurements only, and the linear regression analysis revealed a significant proportional bias between the two methods for four angles and the upper lip-Esthetic line (U Lip-E Line). The systematic bias and level of agreement improved with the use of the semi-automatic WebCeph. Conclusions Different problems, such as poor landmark identification/soft tissue tracing and inconsistency of measurements, are inherent to the automatic WebCeph. The semi-automatic WebCeph can overcome some limitations of the automatic WebCeph; however, it should be used for cephalometric analysis with a great deal of caution.
... AutoCAD software is used in the current study. This program is accurate, reliable, and easy to manipulate with a simple method for correction of magnification [20]. Previous studies [5,8,11] tried to resize the photos, taken from magazines and journals, to the real size and use the ruler and protractor for measuring. ...
Article
Full-text available
Background: Evaluating the anteroposterior position of the maxillary incisors is an important step in the diagnosis and treatment planning in order to get better facial and dental esthetics. This study aimed to evaluate and compare the anteroposterior position of the maxillary central incisors in both genders and to find out whether there is a relation between this position relative to the forehead inclination. Samples and methods: Eighty dental students (40 males and 40 females) having normal dental and skeletal relationships and pleasing profile agreed to participate in this study. Standardized profile photograph on smiling was taken for each student and analyzed by AutoCAD program to assess the anteroposterior position of the maxillary central incisors and the inclination of forehead. Independent sample t-test and Pearson's Chi-square were used to assess the gender difference, while Pearson's correlation coefficient was used to assess the relationship. Results: Males showed maxillary central incisors positioned significantly more anteriorly relative to the forehead in comparison with females. In most of the studied sample, the maxillary central incisors were located anterior to the point glabella. Moderate to strong, direct, high significant correlations were found between maxillary central incisors position and forehead inclination in both genders. Conclusions: The forehead is considered as a helpful landmark for assessing the facial profile as it correlated significantly with the anteroposterior position of the maxillary central incisors
... In this study, AutoCAD software was used for getting measurements because of its simplicity and reliability in cephalometric analyses 19 . Accurate measurements could be obtained from this program when orthodontist located the landmarks precisely. ...
Article
Full-text available
In orthodontics, assessment of any case is started with taking history and examining the jaws, soft tissues and dentition in different planes. The present study was conducted to modify a clinical method used to evaluate the sagittal jaw relationship and correlate it with other methods. One hundred and five individuals were selected to participate in this study. Clinical examination and true lateral cephalometric radiograph were taken to analyze different methods for assessing sagittal jaw relationship using AutoCAD program 2017. Data collected were analyzed using independent sample t-test, one-way ANOVA followed by post hoc Tukey's test and Pearson's correlation coefficient test. There was agreement between the two fingers method with other methods. The difference between modified method (Subspinale and Sublabiale to the Zero-Meridian line) was correlated significantly with other methods in class II sample. A new clinical method is developed to assess the sagittal jaw relation using Zero-Meridian line.
Article
Graphic images have accompanied the human since ancient times. Rock images, that preceded the written documents have reached us, and they inform us until nowadays for the evolution of humanity. The presentation and processing of information in graphic form, accompanies modern specialists and is an indispensable assistant for their work. The use of graphics software is an integral part of the skills, that modern engineers must possess. This paper proposes a new application of graphical representations in solving statics problems. The purpose of the proposed solution is to make the discipline of statics, which seriously hinders those who studying it, more clear and easy to perceive. A method for determining the moments of forces about a point, through the faces of rectangles is proposed. It is called the method of the rectangles. The summation of the faces on the individual rectangles is made in AutoCAD environment. This makes it possible to calculate the magnitude of any support reaction, by balancing its moment about an arbitrary point to the moment, about the same point of all other forces acting on the body.----------------------------------------------------------------------Doicheva, A. (2024). Application of AutoCAD for Graphic Solutions in Determining Static Quantities. In: Silhavy, R., Silhavy, P. (eds) Software Engineering Methods Design and Application. CSOC 2024. Lecture Notes in Networks and Systems, vol 1118, pp. 490-501. Springer, Cham. https://doi.org/10.1007/978-3-031-70285-3_37
Article
Full-text available
Introducción: Es importante el análisis de la posición de los labios ya que influye de la oclusión, la estabilidad de los dientes y por consiguiente en la estética facial. Objetivo: Evaluar el espesor de los labios en individuos de 18 a 45 años de edad, con diferente patrón facial vertical en radiografías cefálicas laterales del cráneo Métodos: Estudio observacional con enfoque correlacional, se evaluaron160 radiografías cefálicas laterales en formato digital usando una pantalla de 13,3 pulgadas mediante el software AutoCAD 2020. Se dividió en cuatro grupos de acuerdo al patrón facial vertical (S-N/G-Gn): Bajo, Medio Bajo, Medio Alto y Alto; y el espesor de los tejidos blandos de los labios, se midió en cuatro niveles; el grosor de la base del labio superior, grosor del labio superior, grosor del labio inferior y grosor de la base del labio inferior. Para el análisis estadístico se utilizó el test de Kruskal-wallis y la prueba post-hoc Tukey, con un nivel de confiabilidad del 95% (p<0,05). Resultados: Se observaron diferencias significativas en el grosor de la base del labio superior con el tipo facial (p=0,005) mostró una correlación baja y negativa (Rho de Spearman -0,177). De acuerdo al sexo solo para las mujeres fue significativo en el espesor base del labio inferior (p=0,047). Conclusiones: El grosor de la base del labio superior va disminuyendo a medida que incrementa el patrón facial vertical por otro lado en las mujeres el grosor de la base del labio inferior aumenta a medida que aumenta el patrón facial.
Article
Full-text available
Computerised eephalometric softwares are widely spreading nowadays withseveral options regarding orthodontists demands. This study aims to compare theaccuracy of the computerised procedure from digitising the radiograph to the finalcephalometric analysis. Twenty—six lateral cephalograms were analysed, thirteenlandmarks were permanently marked and traced and eighteen variables; nine anglesand nine lines in both horizontal (X) and vertical (Y) directions were measuredmanually first, then scanned and the same landmarks were digitised on—screen usingViewbox 3.0.l cephalometric computer sottware. The results show that computerisedangular measurements were more comparable to the manual method than with linearmeasurements, with most of the differences being of low clinical importance
Article
1. Der groe Vorzug der Rntgenfernaufnahme gegenber der gebruchlicheren Nahaufnahme liegt in der objektiven Lebenswahrheit ihrer Bildgestaltung. Whrend man bei der Nahaufnahme mit einer durch die Zentralprojektion bedingten perspektivischen Verzeichnung der plattenfernen Bildteile zu rechnen gewohnt ist, kommt diese bei Fernaufnahmen wegen des angenhert parallelen Strahlenganges ganz in Fortfall. Derartige rntgenographische Reproduktionen stimmen daher mit dem Objekt in seinen smtlichen Grenausmaen vollkommen berein, was insbesondere fr metrische Ermittlungen am Lebenden von groem Werte ist.2. Eine Auswertung dieser Vorteile in der orthodontischen Diagnostik ist zweifellos auch fr die Erkennung der Anomalien von Nutzen. Handelt es sich doch hierbei hauptschlich um die Beurteilung individueller Variationen von Gren-, Projektions-und Korrelationsverhltnissen des Gesichtsschdels, die sich gleichfalls auf der Basis kraniometrischer Feststellungen am Lebenden aufbauen.Die allgemein gewrdigten Schwierigkeiten, die sich bei derartigen kephalometrischen Erhebungen ergeben, lassen sich mit Hilfe der Telerntgenographie leichter berwinden, als dies die gebruchlichen orthodontischen Untersuchungsmethoden und -mittel ermglichen. So bietet z. B. die Darstellung des Schdels in der Norma lateralis durch ihren bersichtlichen Einblick in die gesamten topographisch-anatomischen Verhltnisse des Gesichtsskeletts die Mglichkeit einer umfassenden Orientierung ber die sagittalen und vertikalen Relationen, die sich weiterhin durch entsprechende Messungen exakt bestimmen lassen.Diese Bestimmungen beschrnken sich nicht nur auf das kncherne Profil, sondern lassen sich auch auf das Integument ausdehnen, das sich in der Gesamtheit seiner morphologischen uerungen sichtbar und so der nheren Untersuchung zugnglich machen lt.3. Durch die Mglichkeit einer derartig eingehenden diagnostischen Analysierung des Gesichtsschdels ergeben sich nicht allein fr die Genese der Anomalien wertvolle Anhaltspunkte, es lassen sich selbstverstndlich auch die therapeutischen Richtlinien, gleichviel ob sie sich auf rein orthodontische Manahmen beschrnken oder ein chirurgisch-orthopdisches Vorgehen erheischen, in grerem Ausmae und mit grerer Sicherheit bestimmen.4. Nicht zuletzt stellt das orthoprojektorische Rntgenbild ein vorurteilsfreieres und wissenschaftlicheres Beweismittel eines Behandlungserfolges dar als das Modell oder die Profilphotographie, da es im Gegensatz zu diesen jede Tuschung a priori ausschliet.1. The great advantage of teleroentgenograms over the usual close-up skiagrams resides in the objective, true to life condition of the picture. In close-up x-ray pictures one is accustomed to reckon with the blurred parts of the picture which are farthest from the plate and are caused by central ray projections; in far-off pictures this defect is not to be found on account of the approximately parallel paths of the rays. Roentgenographic reproductions of this sort tally completely with the object in all its dimensions, which is of great value, particularly for metric measurements upon the living.2. The use of these advantages in orthodontic diagnosis is doubtless also useful in recognizing abnormalities. However here we are now dealing above all with the estimation of individual variations in the relations of size, projection and correlation of the bony structures of the face, which are likewise built upon the basis of craniometric measurements in the living.The generally recognized difficulties to be found in cephalometric surveys of this kind are more easily overcome by means of teleroentgenograms than is possible by the means and methods of ordinary orthodontic investigation. Thus, for instance the representation of the skull in norma lateralis, through the general insight into the topographical anatomical relations of the bony structures of the face, makes possible a comprehensive orientation in the sagittal and vertical relations, whose exactitude may be further controlled by corresponding measurements.These precisions are not limited to the osseous profile, but may be extended to the tegument which can be made visible in its general morphological outlines and so make closer investigation possible.3. Not only are valuable guiding points for the genesis of abnormalities brought to view through the possibility of this sort of searching diagnostic analysis of the bony structures of the face, but also it goes without saying that the general lines of treatment can be decided upon in the greatest measure and with more certainty, whether they be purely orthodontic, or whether they necessitate orthopedic surgical steps.4. Finally roentgenograms in orthoprojection give more unbiased and more scientific proof of the result of a treatment than models and profile photographs, as, in opposition to the latter, they preclude a priori all possibility of fraud.1. Le grand avantage de la tlradiographie, sur les radiographies habituelles faites de prs, rside dans la ressemblance objective du modle de l'image. Tandis qu'on est habitu, dans dans la radiographie de prs, compter avec une image perspective des parties les plus loignes de la plaque, produite par le rayon central, au contraire dans la tlradiographie, en raison du paralllisme approximatif des rayons ce dfaut est absent. Les reproductions radiographiques de ce genre s'accordent compltement avec l'objet dans toutes ses dimensions, ce qui est trs important dans les recherches sur le vivant.2. L'utilisation de ces avantages pour le diagnostic orthodontique est encore indubitablement d'une grande utilit pour reconnatre les anomalies. Pourtant il s'agit ici avant tout d'apprcier des variations individuelles dans les rapports de dimension, de projection et de corrlation du squelette facial qui s'tablissent galement sur la base de donnes crniomtriques sur le vivant.Les difficults gnralement reconnues, qui se prsentent dans les mensurations cphalomtriques de ce genre, se laissent vaincre l'aide de la tlradiographie plus facilement, que cela n'est possible par les mthodes et les moyens d'examen orthodontiques ordinaires. Ainsi par exemple la reprsentation du crne en profil exact, par le coup d'il gnral qu'elle permet de donner sur les rapports d'anatomie topographique de squelette facial, offre la possibilit d'une orientation complte dans les rapports verticaux et sagittaux, dont l'exactitude peut tre contrle par des mensurations correspondantes.Ces prcisions ne se limitent pas seulement au profil osseux, mais s'tendent encore aux tguments qui restent visibles dans leurs contours morphologiques gnraux et permettent ainsi un examen plus dtaill.3. Non seulement la possibilit de ce genre de diagnostic analytique dtaill du squelette facial rvle des points de repre de grande valeur dans la gense des anomalies, mais elle permet encore, cela va de soi, d'tablir les directives de la thrapeutique, soit qu'elles se limitent des mesures purement orthodontiques, soit qu'elles exigent des procds de chirurgie orthopdique, et ceci dans la mesure la plus tendue et avec une grande certitude.4. La radiographie en orthoprojection prsente enfin un moyen de juger du rsultat d'un traitement, qui est plus impartial et plus scientifique que le moulage ou la photographie de profil, car l'inverse de ces derniers elle exclut a priori toute imposture.
Article
What constitutes harmony and balance of the component parts of the face, namely: the skeletal framework, the denture, and the overlying musculature, has for many years commanded the attention of the research investigator, the teacher, and the clinician. A satisfactory solution is most difficult to attain, one being faced with the innumerable variations of type, as well as the unfolding of the facial pattern from the infant to the adult.The results of this study of twenty individuals with excellent occlusions and a review of similar investigations appear to warrant the following conclusions: 1.(1) There is a facial pattern that represents mean or average form for individuals possessing excellent occlusions.2.(2) There is a notable deviation on both sides of the mean findings of the facial pattern. These represent the usual variation one must reckon with when appraising balance and harmony.3.(3) Excessive deviations of the means and extremes found in this study usually express abnormalities of relationship which will be evident as disharmonies or imbalance of particular areas.4.(4) The skeletal pattern in the lateral aspect may be described in figures and be appraised as good or bad according to the amount of deviation of the readings from the known mean pattern. Such information can be of considerable help in forming a prognosis of treatment.5.(5) The relationship of the denture of any case to its skeletal pattern can likewise be compared with known relationships of good balance and harmony. Such analysis tends to point out the desirable tooth movement indicated in treatment.6.(6) Serial study of cases by this method permits definite expression of anteroposterior and vertical changes induced by treatment and those occurring during retention, as well as those changes that may be attributed to growth and development.7.(7) This method of cephalometric analysis has been tested for three years in the author's practice as well as in the graduate department of orthodontics at the University of Illinois. In the last year the orthodontics departments of the University of California, Northwestern, and Indiana have cooperated in testing its clinical and teaching value. Out of these experiences has come one particularly important comment: The ten figures used in the appraisal do describe skeletal and denture relationships but single readings are not so important; what counts is the manner in which they all fit together and their correlation with type, function, and, esthetics.
Article
Abstract No Abstract Available. Read before the Orthodontia Section of the Mid-Winter Meeting of the Chicago Dental Society, February 4, 1931.