DataPDF Available

Research-gate-SUPP-INF-Quantum and Classical Molecular Dynamics of Ionic Liquids Electrolytes for Na-Li-based Batteries molecular origins of the conductivity behavior

Authors:
1
Quantum and Classical Molecular Dynamics of Ionic Liquids
Electrolytes for Na/Li-based Batteries: molecular origins of the
conductivity behavior
J. M. Vicent-Luna1, J. M. Ortiz-Roldan1, S. Hamad1, R. Tena-Zaera2, S. Calero1, and J. A. Anta1 *
1Department of Physical, Chemical, and Natural Systems. Universidad Pablo de Olavide. Ctra. Utrera km. 1. ES-41013
Seville, Spain.
2Materials Division, Ik4-Cidetec, Parque Tecnologico de San Sebastian, Paseo Miramon 196, 20009 Donostia-San
Sebastian, Spain.
* E-mail: anta@upo.es
2
Table S1. Point charges, Lennard Jones, and intramolecular parameters for [CnPYR]+ (n=4 used in this
work), [Tf2N]-, Li+, and Na+ (Nomenclature of [CnPYR]+ is shown in figure S2).
Atom types
ε (KJ/mol)
σ (nm)
Charge (e)
H
A
0.1004
0.2394
0.16
H
C
0.1004
0.2475
0.144
H
1
0.1004
0.2394
0.160
N
A
0.5690
0.3216
-0.208
C
CN
0.2343
0.3516
-0.096
C
CC
0.2343
0.3516
-0.280
C
1T
0.2209
0.3465
-0.240
C
1
0.2209
0.3465
-0.080
C
2
0.2209
0.3465
-0.288
C
S
0.2209
0.3465
-0.288
C
T
0.2209
0.3465
-0.432
N
0.5694
0.3216
-0.528
S
0.8374
0.3516
0.816
C
0.2210
0.3465
0.280
O
0.7034
0.2929
-0.424
F
0.1775
0.2919
-0.128
Li+
0.0764
0.2126
0.800
Na+
0.0116
0.3330
0.800
BONDS
Kr (KJ/mol/nm2)
r
0
(nm)
C*-C*
112100
0.1529
C*-H*
259000
0.1090
N
A
-C
1
/C
1T
141000
0.1466
N
A
-C
CN
178700
0.1529
C
CC
-C
CC
217600
0.1510
C
CC
-C
CN
217600
0.1440
F-C
369947
0.1323
C-S
197132
0.1818
S-O
533457
0.1442
S-N
311598
0.1570
3
BENDS
Κφ (
KJ/mol/rad
2)
φ
0 (deg)
H*-C*-H*
276.1
107.8
N
A
/C*-C*-C*
418.4
112.7
N
A
/C*-C*-H*
313.2
110.7
C
1
/C
1T
-N
A
-C
CN
/C
1T
292.6
110
C
CN
-N
A
-C
CN
292.6
102.6
N
A
-C
CN
-C
CC
292.6
107
C
CN
-C
CC
-C
CC
292.6
107
N
A
-C
CN
-H
A
146.3
110
C
CN
-C
CC
-H
A
146.3
110
C
CC
-C
CC
-H
A
146.3
110
F-C-F
781.5
107.1
S-C-F
694.4
111.8
C-S-O
870.6
102.6
O-S-O
98.8
118.5
O-S-N
791.4
113.6
C-S-N
816.5
100.2
S-N-S
671.5
125.6
TORSIONS
δ (deg)
Κχ (KJ/mol/)
n
H
C
-C
T
-C
S
-H
C
0
0.670
3
H
C
-C
T
-C
2
-H
C
0
0.670
3
H
C
-C
T
-C
S
-C
S
0
0.670
3
H
C
-C
T
-C
S
-C
2
0
0.670
3
H
C
-C
S
-C
S
-C
2
0
0.670
3
H
C
-C
S
-C
2
-C
1
0
0.670
3
H
C
-C
S
-C
2
-H
C
0
0.670
3
H
C
-C
S
-C
S
-H
C
0
0.670
3
H
C
-C
S
-C
2
-C
1
0
0.670
3
C
T
-C
S
-C
2
-C
1
0
0.628
1
C
T
-C
S
-C
S
-C
2
0
0.628
1
C
T
-C
S
-C
S
-C
S
0
0.628
1
C
S
-C
S
-C
2
-C
1
0
0.628
1
C
S
-C
S
-C
S
-C
2
0
0.628
1
4
C
S
-C
S
-C
S
-C
S
0
0.628
1
H
C
-C
2
-C
1
-H
1
0
0.816
3
H
C
-C
2
-C
1
-N
A
0
0.000
0
C
T
-C
2
-C
1
-N
A
180
0.419
3
C
S
-C
2
-C
1
-N
A
180
0.419
3
C
CN
-N
A
-C
1
-H
1
180
0.816
2
C
CN
-N
A
-C
1
-C
2
180
0.000
3
C
CN
-N
A
-C
1T
-H
1
180
0.816
2
H
A
-C
CN
-C
CC
-H
A
180
8.374
2
H
A
-C
CC
-C
CC
-H
A
180
8.374
2
C
T
-C
S
-C
2
-H
C
0
0.816
3
C
S
-C
S
-C
2
-H
C
0
0.816
3
C
T
-C
S
-C
S
-H
C
0
0.816
3
C
T
-C
2
-C
1
-H
1
0
0.816
3
C
S
-C
2
-C
1
-H
1
0
0.816
3
F-C-S-O
0
0.726
3
S-N-S-O
0
-0.008
3
F-C-S-N
0
0.662
3
S-N-S-C
0
32.795
1
S-N-S-C
0
-10.427
2
S-N-S-C
0
-3.197
3
5
Figure S1. Two dimensional schematic representation and nomenclature of the [CnPYR]+ cation (n=4
used in this work).
6
Figure S2. Logarithmic representation (top) and linear representation (bottom) of the mean squared
displacement as a function of the simulation time for electrolytes with a fixed concentration of 1.0 M of
Na+[Tf2N]-. From left to right, [C4PYR]+, [Tf2N]- and Na+ respectively. Results shown correspond to the
time interval for which the diffusion coefficients were extracted.
7
Table S2. Diffusion coefficients [× 10-11 m2/s] for individual species of electrolytes with a fixed
concentration of 1.0 M of Na+[Tf2N]- at 298 K. Results are for a comparison between 3 different
simulations of 50 ns and 1 simulation of 200 ns, with diffusion coefficients extracted from Eq. (1) in time
intervals of 30, 30, 30 and 100 ns, respectively.
Sim. 1 [30 ns] Sim. 2 [30 ns] Sim. 3 [30 ns] Sim. 4 [100 ns]
[C4PYR]+
0.59
0.42
0.51
0.58
[Tf2N]-
0.44
0.32
0.35
0.45
Na
+
0.16 0.15 0.15 0.18
8
Figure S3. Density of the electrolytes versus temperature for different concentrations of Na+[Tf2N]-(left)
and Li+[Tf2N]-(right). Simulated values and experimental data correspond with closed and open symbols
with lines respectively.
9
Figure S4. Self-diffusion coefficients as a function of temperature for individual species constituents of
electrolytes with a fixed concentration of 0.2 M of Na+[Tf2N]- (top) and 1.0 M of Na+[Tf2N]- (bottom).
10
Figure S5. Conductivity as a function of the temperature for electrolytes containing raw IL
[C4PYR]+[Tf2N]-.
ResearchGate has not been able to resolve any citations for this publication.
ResearchGate has not been able to resolve any references for this publication.