Content uploaded by Sobhan Kumar Mukherjee
Author content
All content in this area was uploaded by Sobhan Kumar Mukherjee on Jul 11, 2016
Content may be subject to copyright.
Comp. Newsl. 41,2004 29
Diversity of carpopodial structure in the Asteraceae
and its taxonomic significance
SOBHAN K. MUKHERJEE 1 & BERTIL NORDENSTAM1
1 Department of Botany ,University of Kalyani, Kalyani- 741235,
West Bengal, India
e-mail: sobhankr@yahoo.com
Department of Phanerogamic Botany, Swedish Museum of Natural History,
SE-104 05 Stockholm, Sweden
e-mail: bertiLnordenstam@nrm.se
Key words: Asteraceae, carpopodium, morphology, anatomy, classification, evolution.
Abstract
Presence and structure of carpopodia in 142 species belonging to 93 genera in four
subfamilies and 17 tribes of the Asteraceae have been investigated in details with the
help of LM and SEM. Abscission zone or carpopodium exists in between the
receptacle and the base of cypsela 14 types of carpopodia were recognized in the
present study. True carpopodium is absent in several taxa belonging to 23 genera.
Thickness of carpopodial cells is diacritical for some taxa and varies from 1 to 30 cell
rows. The probable route of evolution of carpopodia in Asteraceae is outlined.
Introduction
According to HAQUE & GODWARD (1984) the term 'carpopodium' was first used by
MATTFELD (1923), but cf. also below. Carpopodium is the basal abscission zone of the
cypsela, which is attached to the receptacle and composed of one or more rows of
cells, which are distinct morphologically from the rest of the cells of cypselar wall. Ini-
tial information about the different types of abscission zone of cypsela in Asteraceae
was
presented
in the
works
of
JOHN
(1921)
and
VRGOC
(1922).
This zone has been recognized as 'callus orpodocarp' by ROBINSON (1913), 'carpopod'
by BLAKE (1918), 'separation tissue' by ROTH (1977), 'mechanical tissue' by JEFFREY
(1987), or as 'carpopodium' by many authors after MATTFELD (e.g., ROBINSON &
BRETTELL 1973, ROBINSON & KING 1977, WETTER 1983, JEFFREY 1992, SHORT et al. 1989,
CRON et al. 1993, KARIS 1993, BREMER 1994). Carpopodium helps in cypselar
detachment; consequendy it is an important structure for active fruit dispersal. A few
examples of the usefulness of carpopodium characters in taxonomy will be mentioned
here.
30 Comp. Newsl. 41,2004
The morphology, cell structure and the presence or absence of carpopodium along
with other characters were used by KING & ROBINSON (1966) for the generic separation
of the Hofineisteria complex in the Eupatorieae, i.e. Malperia, Hoftneisteria,
Fleischmannia and Pleurocoronis. ROBINSON & KING (1977) later identified five types
of carpopodia in the Eupatorieae. They also emphasized the mode of orientation and
wall thickness of carpopodial cells.
In Senecioneae, the morphology and cell structure of carpopodium have been used
e.g. to segregate Miricacalia and Koyamacalia (now Parasenecio) from other
cacalioid genera (ROBINSON & BRETTELL 1973) and two types of carpopodia were
distinguished. JEFFREY (1987) recognized five carpopodial characters (as 'mechanical
tissue') as useful descriptors in systematic studies of the Asteraceae. WETTER (1983)
surveyed the cellular structure of the carpopodium in 31 species of New World
Senecioneae, and he observed that the squarish to rectangular (quadrate) cells may
be arranged in one or several series and that the number of series of cells is more or
loss constant for each species. JEFFREY (1992) suggested three descriptive types of
carpopodium size, viz., large (>6 rows of cells), medium (3-6 rows of cells) and small or
absent (0-2 rows of cells). He also suggested descriptors for carpopodium margin, viz.
regular vs. irregular or undulate margin.
HAQUE & GODWARD (1984) described the detailed carpopodial structures in some spe-
cies of Asteraceae belonging to 18 genera, and eight types of carpopodia were
designated with the help of SEM. They also observed the absence of a carpopodium
in nine genera, or in present generic taxonomy actually ten genera.
The distinction of Peteravenia cyrili-nekonii (KING & ROBINSON 1979) relies mainly
upon microcharacters. The four other species of Peteravenia comprise a distinct spe-
cies group, based on both macro- and microcharacters. The microcharacters of
P. cyrili-nelsonii agree with those of the other four species of the genus, particularly
in details of the carpopodialstructure.
An investigation regarding the carpopodium along with other micromorphological
characters was done in order to evaluate their utility as generic markers in the tribe
Astereae by SUNDBERG (1985). According to him, carpopodial cells are either distinct
morphologically from the cells of the cypselar wall, as in some species investigated, or
not distinguishable from the rest of the cells of the pericarp in some other species. The
shape of the carpopodium usually changes depending on the actual position of the
cypsela on the receptacle. The characters of the carpopodial structure are, however,
seemingly constant within a particular genus.
SHORT et al. (1989) have emphasized on the presence or absence of carpopodium in
some members of the Inuleae, whereas KARIS (1993) has considered the length/
breadth ratio of the carpopodial cells, and whether the carpopodium is well developed
and sclerified, or carpopodium is absent or very obsolete. Examples of very distinct
Comp. Newsl. 41, 2004 31
caipopodia (in genus Baccharoides, tribe Vemonieae) can be seen as SEM images in
IsAWUMietaL (1996, Figs. 15-22).
In most previous systems (WAGENITZ 1976,CARLQUIST 1976, JEFFREY 1978, ROBINSON
1981, 1983,THORNE 1983,BREMER 1987), there are two well characterized subfamilies in
Asteraceae, viz. Cichorioideae (or Lactucoideae) and Asteroideae. However in more
recent classifications
(BREMER
&
JANSEN 1992, BREMER
et al.
1992, JANSEN
et al.
1990,
1991, KIM et al. 1992, BREMER 1994,1996), Asteraceae has three or four subfamilies
(Bamadesioideae, Carduoideae, Cichorioideae and Asteroideae). The paraphyly of
the Cichorioideae has been noted by some recent workers, particularly KIM & JANSEN
(1995), and most recendy, a revision of subfamilial classification based on molecular
phylogenetic studies has been proposed, resulting in a total of 11 subfamilies (PANERO
& FUNK 2002). This recent classification affects some material included in our study,
viz. Ainsliaea, now in tribe Pertyeae in subfamily Pertyoideae, and Macledium, now in
tribe Dicomeae.
The present study deals with carpopodia of cypselas in 142 species belonging to 93
genera of four subfamilies or 15 (or 17) tribes. The main objectives are i) to present the
various types of carpopodia in the Asteraceae, and ii) to elucidate the presence and
structure of carpopodia in different tribes, and iii) to evaluate the phylogenetic and
hence taxonomic significance of carpopodium structure.
Materials and methods
The present work has mainly been based on the study of dried cypselas from the
following herbaria, abbreviated as in HOLMGREN et al. (1990): AD, BRI, LISQNSW, RB,
SRGH, TAJ, and Z, but some cypselas were collected by the first author from different
parts of India. Indian specimens were deposited in the Herbarium, Department of
Botany, University of Kalyani, West Bengal, India, which is here named with a new
herbarium acronym, KAL. Tribal classification of the Asteraceae largely follows
HEYWOOD et al. (1977) and BREMER (1994) with some modifications (cf. above). Genera
and species are arranged in alphabetical sequence.
For microscopical investigation, mature dry cypselas were rehydrated in boiling water
and fixed in FAA solution (JOHANSEN 1940). Entire cypselas or basal half of cypselas
were boiled in saturated chloral hydrate solution for 1-6 minutes, washed with water,
stained in 0.5% aqueous safranin solution and mounted in 70% phenol glycerine so-
lution. Pretreated unstained cypselas or basal part of cypselas were also stained in
phloroglucin with HCL for demonstration of carpopodial cells. In some cases, LS and
RLS of the carpopodial region were stained in aforesaid procedures and were mounted
for observation of cellular structure of the carpopodial cells. For each species at least
five randomly selected cypselas were studied.
32 Comp. Newsl. 41, 2004
For SEM observation, entire cypselas were mounted on stubs and were processed
using standard SEM techniques. Photographs were taken in Philips SEM at R S. I. C.
ofBose Institute, Calcutta, W. B., India.
Sources of cypselas
Tribe Eupatorieae -Ageratina riparia (REGFX) R M. KING & H. ROB., BRI; SJL, S. coll.
Eupatorium cannabinum L, Z; Nr. 392. Eupatorium chinense L. van tozanense (HAY.)
KTTAMURA,
TAI;
Y. F.
CHEN
3898.
Eupatoriumformosanum
HAY.,
TAI;
Y.
F.
CHEN
3819.
Heterocondylus vitalbis (DC.) R M. KING & H ROB., RB; SN 252. Liatris spicata
Wimx, Z, Nr. 414. Mikania trinervis HOOK. & Cms., RB; SN 253.
Tribe Vernonieae —Baccharoides anthelmintica (L.) MOENCH, KAL; S. MUKHERTEE
1. Baccharoides calvoana
(HOOK,
F.)
ISAWUMI, EL-GHA2ALY
& B.
NORD.
ssp.
meridionalis
(WILD) ISAWUMI, EL-GHAZALY
& B.
NORD.,
SRGH; G.
POPE
1930.
Bothriocline laxa N. E. BR. ssp. laxa, SRGH; M. MAVI 11. Centrapalis MrMi (OLTV. &
HIERN) H. ROB., LISC; F. A. MENDONCA 2033. Elephantopusscaber L., RB; SN 257.
Lepidaploa gracilis (HB.K) H. ROB., RB; SN 250. Linda melleri (OLTV. & HERN) H.
ROB., LISC; R SANTOS 2051. Polydora bainesii (Ouv. & HERN) H ROB., SRGH; G. POPE
1929. Polydora poskeana (VATKE & HEDEB.) H. ROB., LISC; A R TORRE & PATVA
11332. Rolandrafruticosa (L.) O. KUNTZE, RB; SN 255. Vanillosmopsis capitata (SPR.)
SCH-BTP., RB; SH.24^VemonanthurjLcondensata (BAKER) H. ROB., RB; SN 249.
Vernonanthura diffusa (LESS.) H. ROB., RB; SN 254. Vernonia cistifolia O. HOFFM.,
SRGH; G.
POPE 1931.
Vernonia glabra
(WELD.) VATKE,
SRGH;
M. MAVI
12. Vernonia
petersiiOuv. & HERN, LISC; A. R TORRE 118. Vernonia scorpioides (LAM.) PERS., RB;
SN251. Vernonia senegalensis LESS., LISC; SCHLEBEN2457.
Tribe Astereae — Aster amellus L., Z; Nr. 350. Asterpeduncularis WALL, ex NEES,
KAL; S. MUKHERJEE 2. Aster thomsonii C. B. CLARKE, KAL; S. MUKHERTEE 3.
Baccharis halimifolia L., Z; Nr. 353. Brachycome campylocarpa J. M. BLACK, NSW;
L.
HAEGI
2065. Brachycome ciliaris
(LABEL.)
LESS.
var. ciliaris, NSW; L.
HAEGI
2105.
Brachycome curvicarpa G. L. DAVIS, NSW; L HAEGI 2066. Brachycome heterodonta
DC. var. heterodonta, NSW; L. HAEGI 2064. Brachycome parvula HOOK F. var.
lissocarpa (J. M. BLACK) G. L. DAVIS, AD; A. A MUNIR 5404. Erigeron acer L., Z; Nr.
388. Erigeron villarsii BELL., Z; Nr. 389. Myriactis humilis MERREL, TAI; Y. F. CHEN
3363. Vittadinia gracilis (HOOK F.) BURBEXJE, AD; N. N. DONNER 8633.
Tribe Inuleae s. lat (Inuleae, Plucheeae, Gnaphalieae) -Actinobole uliginosum
(AGRAY) EICHLER, NSW; L. HAEGI 2112. Athrixia phylicoides DC., SRGH; M. MAVI 14.
Buphthalmum salicifolium L.,.Z; Nr. 356. Carpesium cernuum L., Z; Nr. 362.
Carpesium nepalense LESS., KAL; S. MUKHERJEE 4. Chrysocephalum apiculatum
(LABEL.)
STEETZ,
NSW; L.
HAEGI 2133.
Craspedia uniflora
FORST.
F.,
AD; A. A
MUNIR
5498. Gamochaeta pensylvanica (WELD.) CABRERA (=Gnaphalium purpureum
Comp. Newsl. 41,2004 33
svibsp.pensylvanicum), SRGH; M. MAVI 3. Helichrysum cephaloidewn DC., SRGH; G.
POPE 1916. Helichrysum nitens Ouv. & HIERN, SRGH; G. POPE 1926. Helichrysum
odoratissimum (L.) SWEET, SRGH; G. POPE 1921. Helichrysum umbraculigerum LESS.,
SRGH; G. POPE 1927. Inula ensifolia L., Z; Nr. 405. Myriocephalus stuartii (F. MUELL.
&
SOND.
ex
SOND.) BENTH.,
NSW; L.
HAEGI
2128. Pterocaulon sphacelation
(LABEJL.)
F. MUELL., NSW; L. HAEGI 2117. Pulicaria angustifolia DC, KAL; S. MUKHERJEE 5.
Rhodanthecorymbiflora (SCHLECHT.) P. G. WILSON, NSW; L. HAEGI 2076. Rhodanthe
floribunda (DC.) P. G. WILSON, NSW; L. HAEGI 2160. Rhodanthe humboldtiana
(GAUDICH.)
P.
G.
WILSON,
Z; Nr.
401.
Rhodanthe moschata (A.
CUNN.
ex DC.)
P.
G.
WIL-
SON, NSW; L. HAEGI 2096. Rhodanthe uniflora (J. M. BLACK) P. G. WILSON, NSW; L.
HAEGI 2093. Rutidosis helichrysoides DC, NSW; L. HAEGI 2107. Rutidosis multiflora
(NEES)
B. L.
ROBINSON,
AD; A. A
MUNIR
5509. Triptilodiscus pygmaeus
TURCZ.
(Helipterum australe (A GRAY) DRUCE), NSW; L. HAEGI 2109. Xerochrysum
bracteatum (VENT.) N. N. TSVELEV, Z; Nr. 399. XeroleMa speciosissima (L.) A. A.
ANDERB., Z; Nr. 357.
Tribe Heliantheae -Arnica chamissonis LESS., Z; Nr. 347. Bidens biternata (LOUR.)
MERR.&SHERFF,K^S. MUKHERJEE
6.2fttfewcerra/aL.,Z; Nr. 354.BidenspilosaL.,
KAL; S. MUKHERJEE 7. Bidens tenuifolia LABJLL. (Glossogyne tenuifolia CASS.), BRI; s.
iL, s. coll Chrysanthellum americanum (L.) VATKE, KAL; S. MUKHERJEE 8. Coreopsis
tinctoria Nun., Z; Nr. 381. Cosmos sulphureus CAV., Z; Nr. 382. Echinacea purpurea
MOENCH, Z; Nr. 385. Gaillardia aristata PURSH, Z; Nr. 395. Glossocardia bidens
(RETZ.) J. F. VELDKAMP, KAL; S. MUKHERJEE 9. Helianthus annuus L., Z; Nr. 398.
Tithonia diversifolia (HEMSL.) A GRAY, BRI; s. n., s. coll. Tithonia rotundifolia (Mux.)
BLAKE, SRGH; M. MAVI 17. Xanthiumpungens WALLROTH, BRI; s. n., s. coll. .
Tribe Tageteae - Tagetes minuta L., BRI; s. n., s. coll
Tribe Senecioneae - Cissampelopsis volubilis (BLUME) MIQ., KAL; S. MUKHERJEE 15.
Crassocephalum crepidioides (BENTH.) S. MOORE, BRI; s. n., s. coll Crassocephalum
rubens (Juss. ex JACQ.) S. MOORE, SRGH; M. MAVI 13. Emilia discifolia (Ouv.) C.
JEFFREY, SRGH; M. MAVI 1. Emilia flammea CASS., Z; Nr. 389. Erechtites
quadridentata (LABIJJL) DC, AD; A. A. MUNIR 5533. Erechtites valerianifolia
(WOLF) DC, BRI; s. n., s. coll Ligularia dentata (A. GRAY) HARA, Z; Nr. 415. Senecio
edgeworthii HOOK, F., KAL; S. MUKHERJEE 11. Senecio hewrensis HOOK, F., KAL; S.
MUKHERJEE 12. Senecio laceratus (F. MUELL.) BELCHER, AD; N. N. DONNER 8595.
Senecio lautus FORST. F. ex WILLD. ssp. dissectifolius ALL, AD; A. A MUNIR 5338.
Senecio lautus FORST. F. ex WILLD. ssp. maritimus Au, AD; A. A. MUNIR 5574. Senecio
wightii (WALL.) BENTH., KAL; S. MUKHERJEE 16. Steirodiscus tagetes (L.) SCHLTR.
(Gamolepis annua LESS.), Z; Nr. 396. Synods acuminata (WALL, ex DC.) C. JEFFREY &
Y.L. CHEN, KAL; S. MUKHERJEE 10. Synods kunthiana (WALL, ex DC.) C. JEFFREY & Y.L
CHEN, KAL; S. MUKHERJEE 13. Synods triligulata (BUCIL-HAM. ex. D. DON) C. JEFFREY
& Y. L. CHEN, KAL; S. MUKHERJEE 14.
34 Comp. Newsl. 41, 2004
Tribe Anthemideae - Achillea ageratifolia (SIBTH. & SM.) BOISS., Z; Nr. 335. A.
macrophylla L., Z; Nr. 337. Anacyclus depressus BALL, Z; Nr. 339. Anthemis tinctoria
L., Z; Nr. 342. Leucanthemum weyrichii
(MAXIM.)
MIYABE
&
MIYAKE,
Z; Nr. 373.
Cladanthus arabicus (L.) CASS., Z; Nr. 379. Matricaria maritima L., Z; Nr.374.
Tanacetum macrophyllum (WALDST. & Km) SCILBIP., Z; Nr. 373.
Tribe Arctoteae—Arctotheca calendula (L.)
LEVYNS,
AD; N. N.
DONNER
8541.
Arctotis
venusta
NORLINDH,
Z; Nr. 345. Berkheya zeyheri
(SOND.
&
HARV.)
OLTV.
&
HIERN
ssp.
zeyheri, LISC; A. R. TORRE 6907.
Tribe Calenduleae - Calendula officinalis L., Z; Nr. 358. Dimorphothecapluvialis
(L.) MOENCH, Z; Nr. 384.
Tribe Cynareae —Arctium lappa L., Z; Nr. 343. Carduus defloratus L, Z; Nr. 359.
Carlina acanthifolia ALL. ssp. cynara (POURRET ex DUBY) ROUY, Z; Nr. 360. Carlina
vulgaris L. ssp. vulgaris, Z; Nr. 361. Centaurea cyanus L., Z; Nr. 364. Centaurea
macrocephala MUSS.-PUSCHK. ex WEED., Z; Nr. 366. Centaurea maculosa LAM. ssp.
maculosa, Z; Nr. 369. Cirsiumjaponicum DC, Z; Nr. 378. Cirsiumvulgare (SAVI) TEN.,
BRI; s. n., s. colL Echinops sphaerocephalus L., Z; Nr. 386. Leuzea rhapontica (L.) J.
HomB,Z;Nr. 413.Pft7osfemon^wcan/A^(I^iLi.)GREUTER,Z;Nr. 377.
Tribe Pertyeae - Ainsliaea latifolia (D. DON) SOL-BIP., KAL; S. MUKHERJEE 17.
Ainsliaea reflexa MERRILL var. nimborum HAND.-MAZZ., TAI; Y.F.CHEN 3300.
Tribe Mutisieae s. lat (incL Dicomeae) - Gerbera jamesonii Boms ex HOOK F., Z; Nr.
397. Macledium sessiliflorum
(HARV.
in
HARV.
&
SOND.)
S.
ORTIZ
ssp. sessiliflorum,
LISC; A. R TORRE 13.
Tribe Lactuceae —Actites megalocarpa
(HOOK
F.)
LANDER
, AD; A. A.
MUNIR
5512.
Catananche caerulea L., Z; Nr. 363. Cicerbita cyanea (D. DON) BEAUV., KAL; S.
MUKHERJEE 18. Cicerbita macrorhiza (ROYLE) BEAUV., KAL; S. MUKHERJEE 19. Crepis
pyrenaica (L) GREUTER, Z; Nr. 383. Crepis vesicaria L, AD; N. N. DONNER 8607. Hiera-
cium villosum J ACQ., Z; Nr. 404. Hypochaeris glabra L, AD; A. A. MUNIR 8601.
Hypochaeris radicata L., BRI; s. n., s. coll Lactuca serriola L., BRI; s.n., s. colL
Leontodon autumnalis L., Z; Nr. 409. Sonchus brachyotus DC, KAL; S. MUKHERJEE
20. Sonchus schweinfurthii OLTV. & HIERN, SRGH; M. MAVI 8. Taraxacum officinale
(L.)
G.
WEBER,
AD; A. A.
MUNIR
5500. Tragopogon porrifolius L, AD; N. N.
DONNER
8606.
Results
The characteristic features of carpopodium in different species are summarized in the
following Table 1.
•
Table 1. Different types of carpopodia in Asteraceae in the present study
Tribe, genus and species
Tribe Eupatorieae
Ageratina riparla
Eupaiorium cannabinum (Fig. 1)
Eupatorium chinense var, tozanense (Fig. 2)
Eupatorium formosanum
Heterocondylus vitalbis
Liatris spicata
Mikania trinervls (Figs. 3, 4)
Tribe Vernonieae
Baccharoides anthetmintica
Baccharoides calvoana ssp. meridionalis
Bothrioctine laxa ssp. laxa
Cenlrapalis kirkii (Fig. 6)
Elephanlopus scaber
Lepidaploa gracilis
Linzia melieri
Polydora bainesii
Polydora poskeana
Rolandra fruticosa
Vanillosmopsis capitata (Fig. 5)
Vernonanthura condensate:
Vernonanthura diffusa
Vernonia cistifolia
Vernonia glabra
Vernonia peter-sit (Fig. 30)
Vernonia scorpioides
I 'crnonia senegatcn.sis (Fig. 31)
Carpopodium
Presence as wide as (S)
or or wider (W)
absence of or narrower
carpo- (N)than the
podium base of
cypsela
Type af carpopodium Thickness of carpopodium in
no. of cell rows or any special
character
S
S
w
s
w
s
Symmetric, complete ring
Morphologically symmetric & ring-like, but
anatomically absent (pseudo-carpopodium)
Poorly differentiated
Morphologically symmetric & ring-like, but
anatomically absent (pseudo-carpopodium)
Symmetric, complete ring
Symmetric, complete ring
Asymmetric, cup-like with unequal lobes at the
apex
10-15
Thick-walled carpopodial
cells absent
1
Thick-walled carpopodial
cells absent
12-18
12-18
15-20
N Symmetric, complete ring 5-8
W Symmetric, complete ring 20 - 25
N Symmetric, complete ring 3-4
y. Symmetric, cup-like with 5-6 shallow 20 - 30
apical furrows
S Symmetric, complete ring 5-7
S Symmetric, complete ring 12-15
W Symmetric, disc-like complete ring 7-10
W Symmetric, complete ring 5-11
S Symmetric, complete ring 2-6
S Symmetric, complete wavy ring 4-10
W Asymmetric, complete ring 3-4
S Symmetric, complete ring 11-17
W Symmetric, complete ring 10-17
S Symmetric, complete ring 10-15
W Symmetric, complete ring 7-11
S Symmetric, complete ring 5-8
S Symmetric, complete ring 4-6
W Symmetric, complete ring 17 - 25
Tribe Astereae
Aster amellus (Fig. 32)
Aster peduncularis
Aster thomsonii
Baccharis halimifolia (Fig. 33)
Brachycome campylocarpa
Brachycome ciliaris var. ciliaris
Brachycome curvicarpa
Brachycome heterodonlavw. heterodonta
Brachycome parvula var. lissocarpa
Erigeron acer
Erigeron villarsii (Fig. 34)
Kiyrlactis humilis
Vittadinia gracilis (Fig. 7)
Tribe Inuleae s. lat
Actinobole uliginosum
Athrixia phylicoides (Fig, 8)
Buphthalmum salicifolium
Carpesim cernuum
Carpeslum nepalense
Chrysocephalum apiculatum
Craspedia unijlora (Fig. 9)
Gamochaeta pensyhanica (Fig. 35)
Helichrysum cephaloideum
Helichrysum nitens
Helichrysum odoratissimum
Helichrysum umbraculigerum (Fig. 10)
Inula ensifolia
hAyriocephalus stuartii
Pterocaulon sphacelatum
Pulicaria angustifolia
Rhodanthe corymbijlora
Rhodanthe Jloribunda
Rhodanthe humboldtiana (Fig. 11)
Rhodanthe moschata
Rhodanthe unijlora
Rutidosis helichrysoides
Rutidosis multijlora
Triptitodiscus pygmaeus
Xerochrysum bracteatum
Xerolekia speciosissima
0>
Asymmetric, complete ring 6-10
Asymmetric, complete ring 3-7
Asymmetric, complete ring 6-12
Asymmetric, complete ring 5-8
Symmetric, complete ring 3-4
Symmetric, complete ring 4-5
Poorly differentiated 1
Symmetric, complete ring 2-4
Asymmetric, complete ring 8-12
Asymmetric, complete ring 8-12
Asymmetric, complete ring 4-7
Symmetric, tubular complete ring 2-3
Asymmetric, complete ring 5-11
Asymmetric, disc-like complete ring 3-4
Asymmetric, disc-like complete ring 3-4
Poorly differentiated 1
Asymmetric, disc-like complete ring 3-4
Symmetric, complete ring 5-6
Asymmetric, complete ring 2-4
Asymmetric, complete ring 2-4
Symmetric, complete ring 4-6
Symmetric, complete ring 4-6
Symmetric, complete ring 4-6
Asymmetric, complete ring 12-17
Poorly differentiated 1 Q
Poorly differentiated 1 S
Asymmetric, disc-like complete ring 5-8
Asymmetric, compjete ring 3-5 '
Asymmetric, complete ring 4-6
Symmetric, complete ring 3-5 j2
Morphologically inconspicuous ring-like, but Thick-wallcd carpopodial
anatomically absent (pseudo-carpopodium) cells absent ^
Asymmetric, complete ring 5-7 ^-
Poorly differentiated 1 ^
O
9
Tribe Hcliantheae
Arnica chamissonis + W
Bidens biternata + S
Bidens cernua
Bidens pilosa
Bidens tenu'tfolia + W
Chrysanthellum amehcanum
Coreopsis tincloria
Cosmos sulphureus (Fig. 12) + S
Echinacea purpurea
Gailiardia aristata
Glossocardia bidens (Fig. 13) + S
Hetianthus annuus + S
Tithoniadiversifolia (Fig. 14) + S
Tlthonia rotundifolia + S
Xanthlum pungens
Tribe Tageteae
Tdgeles minuta + S
Tribe Senecioneae
Cissampetopsis volubilis + S
Crassocephaium crepidioides (Figs. 15, 16) + S
Crassocephalum rubens + S
Emilia disci/olia + N
EmiliaJlammea (Fig. 36) + S
Erechtites quadridentata + S
Erechtites valerianifolia + S
Ligularia dentata (Fig. 17) + S
Senecio edgeworthii (Fig. 18) + S
Senecio hewrensis (Fig. 19) + S
Senecio laceratus + S
Senecio lautus ssp. dissectifolius + S
Senecio lautus ssp. maritimus + S
Senecio wightii + S
Sleirodiscus tagetes + g
Synotis acuminata + W
Synods kunthiana + ^ S
Synods thliguiata + • S
Symmetric, complete ring
Asymmetric, ring-like 2-lobed 3-6
3-5
Asymmetric, lobed complete ring 5-9
Asymmetric, complete ring, turned to one side 5-6
Asymmetric, 5-angled complete ring 8-15
Asymmetric, in two opposite sections 7-12
Asymmetric, in two opposite sections 7-12
Asymmetric, in two opposite sections 8-15
Asymmetric, complete ring, turned to one side 6-20
Symmetric, complete ring 6-8
Asymmetric, 4-angled complete ring 2
Symmetric, 3-4-angled compete ring 3-4
Asymmetric, 5-angled complete ring 2-4
Poorly differentiated 1
Asymmetric, complete ring 3-4
Poorly differentiated 1
Symmetric, complete ring 3-6
Asymmetric, complete ring 3-6
Asymmetric, nearly complete ring, with one ^ 5
marked interruption
Asymmetric, distorted or lacerated 3-6
Poorly differentiated 1
Poorly differentiated 1
Asymmetric, complete ring 4-8
Morphologically symmetric ring, but Thick-walled carpopodial
anatomically absent (pseudo-carpopodium) cells absent
Asymmetric, complete ring 7-12
Asymmetric, complete ring 6-8
Asymmetric, complete ring 6-8
Triht Anthemidcac
Achillea ageratifolia
Achillea macrophylla
Anacyclus depresses
Anthemis iinctoria (Figs. 20, 21)
Cladanthus arabicus
Leucanthemum weyrichii (Fig. 37)
Matricaria marilima
Tanacetum macrophyllum
Tribe Arctoteae
Arctotheca calendula
Arctotis venusta
Berkheya zeyheri ssp. zeyheri (Fig. 22)
Tribe Calenduleae
Calendula officinalis
Dimorphotheca pluvialis
Tribe Cyaareae
Arctium lappa
Carduus dejloratus
Carlina acanthifolia
Carlina vulgaris
Centaurea cyanus
Centaurea macrocephala (Fig. 23)
Centaurea maculosa ssp. maculosa (Fig. 38)
Cirsium japonicum
Cirsium vulgare
Echinops sphaerocephatus
Leuzea rhapontica (Fig. 24)
Ptilostemon diacanthus
Symmetric, complete triangular ring
Symmetric, complete triangular ring 4-6
4-6
Poorly differentiated
Morphologically asymmetric ring, but
anatomically absent (pseudo-carpopodium)
Asymmetric, complete ring
Symmetric, complete ring
Asymmetric, complete ring
1
Thick-walled carpopodial
cells absent
10-17
3-5
4-7
Asymmetric, two opposite sections 4-6
Morphologically inconspicuous, ring-like, but
anatomically absent (pseudo-carpopodium)
Morphologically present, but anatomically
absent (i)seudo-carpopodium)
Thick-walled carpopodial
cells absent
Thick-walled carpopodial
cells absent
Morphologically ring-like, but anatomically
absent (pseudo-carpopodium)
Asymmetric, complete ring
Strongly asymmetric, a band of thick-walled
cells around the base, to form a continuous ring
Strongly asymmetric, a band of thick-walled
cells around the base, to form a continuous ring
Strongly asymmetric, a band of thick-walled
cells around the base, to form a continuous ring
Strongly asymmetric, a band of non-thickened
cells around the base, to form a continuous ring
Strongly asymmetric, deeply 6-10-lobed
interrupted ring
Symmetric, complete ring
Poorly differentiated
Thick-walled carpopodial
cells absent
4-5
Cell layer thickness not
countable
Cell layer thickness not
countable
Cell layer thickness not
countable
Cell layer thickness not
countable
Cell layer thickness not
countable
4-7
1
Tribe Pertyeae
Ainsliaea latifolia (Fig. 39) + W
Ainsliaea reflexa var. nimborus + S
Tribe Dicomeac
Macledium sessilijlorum ssp, sessilijlorum
Tribe Mutisieac
Gerbera jamesonil
Tribe Lactuceae
Actites megalocarpa
Catananche caerulea (Fig. 40) + W
Cicerbita cyanea + S
Cicerbita macrorhiza + S
Crepis pyrenaica (Fig. 41) + S
Crepis vesicaria (Fig. 25) + S
Hieracium villosvm (Fig. 26) + N
Hypochaeris glabra (Fig. 27) + S
Hypochaeris radicata + S
Lacluca serriola (Fig. 28) + S
Leontodon autumnalis (Fig, 29) + S
Sonchus brachyotus
Sonchus schwe injur thii
Taraxacum ojpcinale
Tragopogon porrifolius
Symmetric, disc-like complete ring 2-17 cells, vertically
oriented
Symmetric, disc-like complete ring 2-17 cells, vertically
oriented
Strongly asymmetric, one-sided 10 - 13
Asymmetric, complete ring 3-5
Asymmetric, complete ring 3-4
Asymmetric, 4-6-lobed ring 10 - 15
Asymmetric, 5-lobed ring, 2 lobes larger and 8-12
more projecting
Asymmetric, nearly complete ring with one . _ ,
marked interruption
Asymmetric, 4-lobed ring, with one large , _
strongly projecting lobe
Asymmetric, 5-lobcd ring, with one larger . ,
projecting lobe
Asymmetric, nearly complete ring with one 3 _ 6
narrow interruption
Morphologically symmetric complete ring, but Thick-wailed carpopodia]
anatomically absent (pseudo-carpopodium) cells absent
A few slightly thickened
cells present near base
40 Comp. Newsl. 41,2004
Discussion
The present study indicates that carpopodial structures show few or no correlations
between the four subfamilies of Asteraceae studied, i.e. Carduoideae, Pertyoideae,
Cichorioideae and Asteroideae. The presence or absence of carpopodium and its
structure (i.e., types, symmetry, arrangement, thickness and number of carpopodial
cells) are diacritical taxonomic parameters. Usually the orientation of carpopodial
cells and the number of rows of carpopodial cells are more or less constant in each
species.
When a true carpopodium is absent the abscission zone or thick-walled carpopodial
cells are lacking, as in Actites, Anacyclus, Arctium, Arctotheca, Arctotis, Bidens (2
spp.), Brachycome campylocarpa, Buphthalmum, Carduus, Carpesium,
Chrysanthellum, Coreopsis, Echinacea, Gaillardia, Gerbera, Macledium,
Myriactis, Ptilostemon, Sonchus, Taraxacum, Tragopogon, Xanthium and
Xerolekia. Here carpopodium is absent morphologically as well as anatomically.
HAQUE & GODWARD (1984) have reported the absence of carpopodium from nine ge-
nera including Arctotis, Tragopogon, and four species of Senecio. Present study
shows that all six species of Senecio studied (plus one now in Emilia) have distinct
carpopodia.
There is another type of cypsela which bears a basal ring morphologically similar to
a small carpopodiurn (observed in Calendula, Carlina acanthifolia, Cladanihus,
Dimorphotheca, Eupatorium cannabinum & formosanum, Leontodon, Rutidosis
multifloraand Steirodiscus) but this ring, or annulus, is not formed by thick-walled
carpopodial cells but cells identical with other pericarpic cells. Such type of
carpopodium-like structure may be termed "pseudo-carpopodium", when a true
carpopodium is anatomically absent but seemingly present morphologically.
The walls of carpopodial cells usually have a characteristic lignified thickening,
which is absent in adjacent pericarpic cells. Therefore in mature cypselas,
carpopodial cells do not contract but the pericarpic cells will contract. Thus an une-
ven tension pressure will be produced in the basal zone and which may be
responsible for the active detachment followed by dispersal of cypselas from
receptacle
(cf. HAQUE& GODWARD 1984).
Often carpopodial cells are arranged in two to many rows, but in cypselas with a
poorly differentiated carpopodium the abscission zone may or may not be visible
externally, although having one row of thick-walled carpopodial cells. These can be
made visible under light microscope after clearing. This is the case in Anthemis,
Brachycome heterodonta var. heterodonta, Emilia flammea, Erechtites
valerianifolia, Eupatorium chinense, Gamochaeta, Leuzea, Rhodanthe
corymbiflora & floribunda, Senecio lautus and Xerochrysum bracteatum.
Comp. Newsl. 41, 2004 41
Identical arrangement of cells has been reported by WETTER (1983) in Senecio
cineraria and S. vulgaris, and he noted the distinction in this character of Senecio
from other, especially cacalioid genera. Presence of a distinct carpopodium in the
senecioid genus Cineraria was also reported by CRON et al. (1993), and carpopodium
characteristics have been mentioned in many other recent papers on this and other
tribes.
The carpopodium may be symmetric or asymmetric. A flattened cypsela commonly
has a moderately asymmetric type of carpopodium. A winged cypsela with a broad
base usually possesses a small symmetrical carpopodium.
Druses were not found in the carpopodial cells, although SUNDBERG (1985) has noted
that carpopodial cells may contain druses. He also mentioned that "The cypselas with
rounded bases often lack true carpopodium", but this statement may not be always
true. Many cypselas from the present study have in fact a rounded base with true
carpopodium.
Usually the diameter of carpopodium is same as the base of the cypsela, although in
some species carpopodium is wider than the base, while fewer species have narrower
carpopodium
SHORT et al. (1989) have noted that a prominent annular carpopodium exists in
Craspedia, Chrysocephalum (as 'Helichrysum"), Rhodanthe fas 'Helipterum'),
Myriocephalus stuartii, Rutidosis helichrysoides and others. They did not observe
the thickness of carpopodial cell layer in terms of number of cell rows, which are
mentioned in the present study.
On the basis of presence or absence of thick-walled cells of carpopodia and the
number of tires or rows of carpopodial cells, the carpopodia can be divided into two
broad groups and altogether six kinds, as follows.
I Primitive carpopodia.
Thick-walled carpopodial cells are absent, or carpopodia are formed by only
thin-walled cells, or carpopodial cells are represented by a single row of thick-
walled cells.
In this group there are three kinds:
i) True carpopodium absent (carpopodium absent both morphologically and
anatomically). This kind lacks both carpopodium-like structure and thick-
walled carpopodial cells, e.g., Anacyclus, Arctotheca, Arctotis, Bidens
(2 species), Brachycome campylocarpa, Buphthalmum, Carpesium,
Chrysanthellum, Coreopsis, Gaillardia, Gerbera, Macledium, Myriactis,
Rutidosis, Sonchus, Taraxacum, Tragopogon and Xanthium.
42 Comp. Newsl. 41,2004
ii) Pseudo-carpopodium (carpopodium morphologically present but anatomically
absent). In this kind the cypsela has externally a carpopodium-like structure which
is formed by thin-walled pericarpic cells. Thick-walled carpopodial cells are ab-
sent, e.g., Calendula, Carlina acanthifolia, Cladanthus, Eupatorium
cannabinum & formosanum, Dimorphotheca, Leontodon, Rutidosis multiflora
and Steirodiscus.
iii) Poorly differentiated carpopodium. Carpopodium maybe externally visible or
may not be recognized as a definite structure, but it is always associated with a
single row of thick-walled carpopodial cells, e.g.,Anthemis, Brachycome
heterodonta var. heterodonta, Emilia flammea, Erechtites valerianifolia,
Eupatorium chinense, Gamochaeta, Rhodanihe corymbijlora & floribunda,
Leuzea, Senecio lautus and Xerochrysum.
IL Advanced carpopodia. Carpopodia are always formed by two to many rows of
thick-walled carpopodial cells.
In this group there are three kinds:
i) Poorly advanced. This kind is very rare. The thickness of carpopodia is nearly
constandy two rows or tires of cells, e.g., Crassocephalum crepidioides and
Emilia discifolia.
ii) Moderately advanced. This is the most common kind, where thickness of
carpopodium varies from 3-9 cell rows or tires, and found in the majority of taxa.
iii) Highly advanced. Less frequent than the previous one; thickness of carpopodium
varies from 10-30 rows or tires of cells, s.g.,Ageratina riparia, Ainsliaea latifolia,
Baccharoides calvoana ssp. meridionalis, Catananche caerulea, Centrapalis
kirkii, Crepis pyrenaica, Heterocondylus vitalbis, Lepidaploa gracilis,
Leucanthemum weyrichii, Liatris spicata, Pulicaria angustifolia, Vernonia
cistifolia & senegalensis.
The present study indicates that, out of 14 (or 17) studied tribes, the asymmetric type
of carpopodia is prevalent in six (or eight) tribes (Arctoteae, Cynareae, Heliantheae,
Inuleae s. lat, Lactuceae and Tageteae), whereas the symmetric type is predominant in
four tribes (Calenduleae, Eupatorieae, Pertyeae, and Vemonieae). Remaining tribes
(Anthemideae, Astereae and Senecioneae) have both symmetric and asymmetric
types of carpopodia or no carpopodium (Mutisieae and Dicomeae).
Within a tribe, some taxa have primitive carpopodia, whereas other taxa bear advanced
carpopodia. Therefore, on this character alone the tribe cannot be regarded as
advanced or primitive. So, the development of carpopodia is heterobathrnic.
Distinguished authors in different times have considered various tribes of the
Asteraceae as primitive, such as the Heliantheae (BENTHAM 1873, CRONQUIST 1955), the
Comp. Newsl. 41,2004 43
Senecioneae
(SMALL
1919),
the Cynareae (or Cardueae,
LEONHARDT
1949),
the
Vemomeae(AuGiER&rxjMERAC
1951),
the Mutisieae
(CARLQUIST
1976,JEFFREY
1977),
the Eupatorieae (ROBINSON 1981), the Cynareae (Cardueae) and the Vernonieae (BRE-
MER
1987),
and the Bamadesieae and the Mutisieae
(BREMER 1996)
as most primitive.
On the basis of nature of carpopodium in our limited study, it is not possible to draw
any conclusions on which tribe is the most primitive or which one is the most
advanced.
The structure of carpopodium varies when viewed from the top or from the side. In
spite of that a number of different types of carpopodia have been observed and
presented below with some examples. The number of species examined in each genus
is also given in parenthesis, if more than one species of a genus was examined.
(i) Carpopodium lacking. In many members of the family Asteraceae a true
carpopodium is absent both morphologically and anatomically, i.e., thick-walled
carpopodial cells are absent; examples are mentioned earlier.
(ii) 'Pseudo-carpopodium'. Morphologically carpopodium is present, but it is absent
anatomically. In this case, thick-walled carpopodial cells are also absent and the
carpopodium-like structure is formed by thin-walled pericarpic cells. That is why
we term this 'pseudo-carpopodium'. Examples are mentioned earlier.
(ii) Poorly differentiated carpopodium, which is represented by a single row of thick-
walled carpopodial cells. Thin-walled cells are present above the thickened cells.
Examples are noted earlier.
(iv) Complete ring-like symmetric carpopodium. It is the most common type; e.g.
Achillea (2), Actinobole, Ageratina, Ainsliaea (2), Arnica, Baccharoides (2),
Bothriocline, Brachycome (3), Cissampelopsis, Echinops, Elephantopus,
Heterocondylus, Inula, Lepidaploa, Liatris, Linzia, Matricaria,
Myriocephalus, Polydora (2), Pterocaulon, Rolandra, Rutidosis
helichrysoides, Vernonanthura (2) and Vernonia (5).
(v) Complete ring-like asymmetric carpopodium This is also prevalent in Asteraceae;
e.g., Aster (3), Athrixia, Baccharis, Bidens tenuifolia, Carlina vulgaris,
Chrysocephalum, Emilia discifolia, Leucanthemum, Cicerbita (2), Craspedia,
Erigeron (2), Glossocardia, Helichrysum (4), Pulicaria, Rhodanthe (3), Senecio
(2), Synotis (3), Tanacetum, Triptilodiscus, Vanillosmopsis and Vittadinia.
(vi) Complete ring-like strongly asymmetric carpopodium, which is turned to one
side; e.g., Cosmos, Tagetes.
(vii) Distorted or lacerated asymmetric carpopodium; e.g., Senecio laceratus.
(viii) Interrupted ring-like, deeply 6-10-lobed, asymmetric carpopodium; e.g., Cirsium
vulgare.
44 Comp. Newsl. 41,2004
(k) Interrupted ring-like, 4-6-lobed, asymmetric carpopodium; e.g., Crepis (2),
Hypochaeris (2).
(x) Strongly asymmetric carpopodium represented by a band of non-thickened or
thickened cells appearing continuously around the base of cypsela; e.g.,
Centaurea (3), Cirsium japonicum.
(xi) Cup-like symmetric or asymmetric carpopodium; e.g., Centrapalis, Mikania.
(xii) Nearly completed ring-like asymmetric carpopodium with one narrow
interruption; e.g., Lactuca serriola.
(xm) Nearly completed ring-like asymmetric carpopodium with one marked
interruption; e.g., Hieracium villosum, Senecio hewrensis.
(xiv) Interrupted ring-like 2-lobed asymmetric carpopodium or asymmetric
carpopodium in 2 opposite sections; e.g., Berkheya, Bidens biternata,
Helianthus, Tithonia (2).
(xv) One-sided strongly asymmetric carpopodium, e.g., Catananche.
Notes on evolution of carpopodium in the Asteraceae
There is no defimterelationsliip of carpopodia among the studied subfamilies of the
Asteraceae, since they all have different types of carpopodia. Similarly, different ge-
nera of the same tribe may have various types of carpopodia, or may have more or less
identical types of carpopodia. Different species of a genus often have unlike types of
carpopodia. The carpopodium is very characteristic for each species, the exomorphic
expression being gene-controlled. Therefore, the characteristic feature of the
abscission zone, or carpopodium, is apparently stable and diacritical for each species.
From the evolutionary point of view, the absence of carpopodium is probably the most
primitive state. The poorly differentiated carpopodium is one step further evolved.
One-sided carpopodium is probably he highest evolved type. All evolutionary stages
of carpopodium are outlined in Table U. From our observations it is obvious that the
carpopodium has a value for characterization and delimitation of taxa.
Acknowledgements
We are highly grateful to the Directors and Curators of the following herbaria: AD
(Adelaide, South Australia); BRI (Queensland, Australia); LISC (Lisboa, Portugal);
NSW (Sydney, Australia); RB (Rio de Janeiro, Brazil); SRGH (Harare, Zimbabwe); TAI
(Taipei, Taiwan) and Z (Zurich, Switzerland) who kindly have supplied mature
Comp. Newsl. 41,2004 45
cypselas
for
this study. The first author
is
also thankful
to
the late
Prof.
A.
KL SARKAR
and Dr. G. G. MArn, Department of Botany, University of Kalyani, Kalyani, West Ben-
gal, for valuable guidance during this work.
References
AUGIER J. & M.-L. DU MERAC 1951. La phylogenie des Composees. Rev. Sci. 3311:
167-182.
BENTHAM, G. 1873. Notes on the classification, history, and geographical distribution
of the Compositae. J.Linn. Soc. (Bot.) 13:355-577.
BLAKE, S.F. 1918. A revision of the genus Viguiera. Contr. GrayHerb. n.ser.54:1-205.
BREMER K. 1987. Tribal interrelationships of the Asteraceae. Cladistics 3:210-253.
BREMER, K. 1994. Asteraceae: Cladistics and Classification. Timber Press, Portland.
BREMER, K. 1996. Major clades and grades of the Asteraceae. In: HIND, D. J. N. & H. J.
BEENTJE (eds.), Compositae: Systematics. Proceedings of the International
Compositae Conference l,pp.l—7. RoyalBotanic Gardens, Kew.
BREMER, K. & R. K. JANSEN 1992. A new subfamily of the Asteraceae. Ann. Missouri
Bot. Gard.79:414-415.
BREMER K., JANSEN, R. K., KARIS, P. O., KALLERSJO, M., KEELEY, S. C, KIM, K.-J.,
MICHAELS,
H. J.,
PALMER,
J. D. & R. S.
WALLACE
1992. A
review
of the
phytogeny and classification of the Asteraceae. Nord. J. Bot. 12:141-148.
CARLQUIST, S. 1976. Tribal interrelationships and phylogeny of the Asteraceae. Aliso
8:465-492.
CRON, G. V., ROBBERTSE, P. J. & P. L. D. VINCENT 1993. The anatomy of the cypselae of
species of Cineraria L. (Asteraceae-Senecioneae) and its taxonomic
significance. Bot. J. Linn. Soc. 112:319-334.
CRONQUIST, A 1955. Phylogeny and taxonomy of the Compositae. Am.Midl. Nat.53:
478-511.
HAQUE, M. Z. & M. B. E. GODWARD 1984. New records of the carpopodium in
Compositae and its taxonomic use. Bot. J. Linn. Soc. 89:321-340.
HEYWOOD, V. H., HARBORNE, J. B. & B. L. TURNER (eds.) 1977. The Biology and
Chemistry of the Compositae. Academic Press, London.
HOLMGREN, P. K., HOLMGREN, N. H. & L. C. BARNETT 1990. Index Herbariorum. Part
I. The herbaria of the World, 8* edn. Regnum Veg. 120, New York.
ISAWUMI, M. A., EL-GHAZALY, G. & B. NORDENSTAM 1996. Pollen morphology, floral
microcharacters and taxonomy of the genus Baccharoides MOENCH
46 Comp. Newsl. 41, 2004
(Vemonieae: Asteraceae). Grana35:205-230.
JANSEN,
R.
K,
HOLSINGER,
K
E.,
MICHAELS,
H.
J. & J.
D.
PALMER
1990. Phylogenetic
analysis of chloroplast DNA restriction site data at higher taxonomic levels: an
example from the Asteraceae. Evolution 44:2089-2105.
JANSEN, R. K, MICHAELS, H. J. & J. D. PALMER 1991. Phylogeny and character evolu-
tion in the Asteraceae based on chloroplast DNA restriction site mapping. Syst.
Bot. 16:98-115.
JEFFREY, C. 1977. Corolla forms in Compositae - some evolutionary and taxonomic
speculations. In : HEYWOOD, V. H., HARBORNE, J. B.& B. L. TURNER (eds.),77?e
Biology and Chemistry of the Compositae 1: pp. 111-118. Academic Press,
London.
JEFFREY, C. 1978. Compositae. In: HEYWOOD, V. H. (ed.), Floweringplantsoj'the world,
pp. 263-268. Mayflower Books, New York.
JEFFREY, C. 1987. Developing descriptors for systematic analyses of Senecioneae
(Compositae). Bot. Jahrb. Syst. 108:201-211.
JEFFREY, C. 1992. The tribe Senecioneae (Compositae) in the Mascarene Islands with
an annotated world check-list of the genera of the tribe. KewBull. 47:49-109.
JOHANSEN, D. A 1940. Plant microtechnique. McGraw HilL New York.
JOHN, A. 1921. Beitrage zur Kenntnis der Ablosungsvorrichtungen der
Kompositenfruchte.5ffl7i. Bot. Zentralblatt38:182-203.
KARIS, P. 0.1993. Heliantheae sensu lato (Asteraceae), clades and classification. PI.
Syst.Evol. 188:139-195.
KIM, K.-J., JANSEN, R. K., WALLACE, R. S., MICHAELS, H. J.& J. D. PALMER 1992.
Phylogenetic implications of rbcL sequence variation in the Asteraceae. Ann.
Missouri Bot. Gard. 79:428-445.
KIM, K-J. & R. K JANSEN 1995. ndh¥ sequence evolution and the major clades in the
sunflower family. Proc. Nat. Acad. Sci. U.SA.92:10379-10383.
KING, R. M. & H. ROBINSON 1966. Generic limitations in the Hofmeisteria complex
(Compositae-Eupatorieae). Phytologia 12:465—476.
KING, R. M & H. ROBINSON 1979. Studies on Eupatorieae (Asteraceae). CLXXVI. The
relationship of Eupatorium cyrili-nelsonii. Phytologia 44: 84—87.
LEONHARDT, R. 1949. Phylogenetisch-systematische Betrachtungen. I.
Betrachtungen zur Systematik der Compositen. Osterr. Bot. Zeitschr. 96:293-
324.
MATTFELD, J. 1923. Compositae. In: PILGER, R. (ed), Plantae Lutzelburgianae Brasilien-
ses. Notizblatt des Botanischen Gartens und Museums zu Berlin 8: 428—451.
Comp. Newsl. 41,2004 47
V/PANERO, J. L. & V. A. FUNK 2002. Toward a phylogenetic subfamilial classification for
the Compositae (Asteraceae). Proc. Biol. Soc. Washington 115(4): 909-922.
ROBINSON, B. L. 1913. Revisions of Alomia, Ageratum and Oxylobus. Proceedings of
the American Academy of Arts and Sciences 49:438-491.
ROBINSON, H. 1981. A revision of the tribal and subtribal limits of the Heliantheae
(Asteraceae). Smithsonian Contr. Bot. 51: 1-102.
ROBINSON, H. 1983. A generic review of the tribe Liabeae (Asteraceae). Smithsonian
Contr. Bot. 54:1-69.
ROBINSON, H. & R. D. BRETTELL 1973. Studies in the Senecioneae (Asteraceae). IV.
The genera Mesadenia, Syneilesis, Miracacalia, Koyamacalia, and
Sinacalia. Phytologia 27:265-276.
ROBINSON, H. & R. M. KING 1977. Eupatorieae - systematic review. In: HEYWOOD, V.
H., HARBORNE, J. B. & B. L. TURNER (eds.), The Biology and Chemistry of the
Compositae 1: pp. 437-485. Academic Press, London.
ROTH, I. 1977. Handbuch der Pflanzenanatomie, Spezieller Teil. Band X, Teil I.
Gebruder Borntraeger, Berlin.
SHORT, P. S., WILSON, K. E. & J. NAILON 1989. Notes on the fruit anatomy of Australian
members of the Inuleae (Asteraceae). Muelleria 7:57-79.
SMALL, J. 1919. The origin and development of the Compositae. New Phytol. Reprint
11. William Wesley and Son, London.
SUNDBERG, S. 1985. Micromorphological characters as generic markers in the
Astereae. Taxon 34:31-37.
THORNE,R.F. 1983. Proposed new reahgnments in the angiospenns. Nord. J. Bot. 3:
85-117.
VRGOC, A. 1922. Das Trennungsgewebe einiger offizineller und nichtoffizineller
Kompositenbluten. Berichte der Deutschen Botanischen Gesellschaft 32:176—
208.
WAGENITZ, G. 1976. Systematics and phylogeny of the Compositae (Asteraceae). PI.
Syst. Evol. 125:29-46.
WETTER, M. A 1983. Micromorphological characters and generic delimitation of some
New World Senecioneae (Asteraceae). Brittonia 35:1-22.
48 Comp. Newsl. 41,2004
Figs. 1—29. Structure of carpopodium in different taxa
Fig. 1: Eupatorium cannabinum. Fig. 2: Eupatorium chinense var. tozanense.
Figs. 3, 4: Mikania trinervis. Fig. 5: Vanillosmopsis capitata. Fig. 6: Centrapalis
kirkii. Fig. 7: Vittadinia gracilis. Fig.8: Athrixia phylicoides. Fig. 9: Craspedia uni-
flora. Fig. 10: Helichrysum umbraculigerum. Fig. 11: Rhodanthe humboldtiana.
Fig. 12: Cosmos sulphureus. Fig. 13: Glossocardia bidens. Fig. 14: Tithonia
diversifolia. Figs. 15,16: Crassocephalum crepidioides. Fig. 17: Ligularia dentata.
Fig. 18: Senecio edgeworthii. Fig. 19: Senecio hewrensis. Figs. 20, 21: Anthemis
tinctoria. Fig. 22: Berkheya zeyheri. Fig. 23: Centaurea macrocephala.
Fig. 24: Leuzea rhapontica. Fig. 25: Crepis vesicaria. Fig. 26: Hieracium villosum.
Fig. 27: Hypochaeris glabra. Fig. 28: Lactuca serriola. Fig. 29: Leontodon
autumnalis.
Comp. Newsl. 41, 2004 49
Figs. 3CM1. SEM photographs showing the structure of carpopodium
Fig.30: Vernoniapetersii,^200.¥ig.3l: V.senegalensis,* 100.Fig.32:Asteramellus,
* 200. Fig. 33: Baccharishalimifolia, x 800. Fig. 34:Erigeron villarsii, * 200. Fig. 35:
Gamochaeta pensylvanica, x 1600. Fig. 36: Emilia flammea, * 200. Fig. 37:
Leucanthemum weyrichii, x 200. Fig. 38: Centaureamaculosa, x 50. Fig. 39: Ainsliaea
latifolia, x 200. Fig. 40: Catananche caerulea, x 200. Fig. 41: Crepispyrenaica, x 200.
Comp. Newsl. 41, 2004
Table 2. Probable evolution of carpopodium in Asteraceae
Strongly asymmetric, one-sided carpopodium
t
Asymmetric, interrupted ring-Iilce 2-lobed carpopodium or asymmetric carpopodium in 2 opposite sections
Asymmetric, nearly complete, ring-like
carpopodium with one marked interruption Asymmetric, interrupted nng-like 4~6-lobed carpopodium
Asymmetric, nearly complete, ring-like
carpopodium with one narrow interruption
Asymmetric, cup-like carpopodium
Asymmetric carpopodium represented by a
band of non-thickened or thickened cells
appearing continuously around the base of
cypsela
Asymmetric, interrupted ring-like, deeply 6—10-lobed
carpopodium
Asymmetric distorted or lacerated carpopodium
_^ Strongly asymmetric ring-like carpopodium,
turned to one side
Asymmetric, complete ring-like carpopodium
Symmetric, complete ring-like carpopodium
Poorly differentiated carpopodium, i.e. carpopodium represented by single row of thick-walled carpopodial cells
Pseudo-carpopodium, i.e. carpopodium anatomically absent but morphologically present; carpopodium devoid o(
thick-walled carpopodial cells
True carpopodium absent, i.e. carpopodium absent both morphologically and anatomically; carpopodium devoid
of thick-walled carpopodia] cells.