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PROGRAMMABLE DEVICE
CONFIGURATION METHODS ADAPTED TO
ACCOUNT FOR RETIMING

FIELD OF THE INVENTION

This invention relates to design or configuration methods
for integrated circuit devices, including, e.g., field-program-
mable gate array (FPGAs) or other types of programmable
logic devices (PLDs), and to design or configuration methods,
for designing or configuring such devices, that account for the
ability to retime the design or configuration.

BACKGROUND OF THE INVENTION

Early programmable devices were one-time configurable.
For example, configuration may have been achieved by
“blowing”—i.e., opening—fusible links. Alternatively, the
configuration may have been stored in a programmable read-
only memory. Those devices generally provided the user with
the ability to configure the devices for “sum-of-products” (or
“P-TERM”) logic operations. Later, such programmable
logic devices incorporating erasable programmable read-
only memory (EPROM) for configuration became available,
allowing the devices to be reconfigured.

Still later, programmable devices incorporating static ran-
dom access memory (SRAM) elements for configuration
became available. These devices, which also can be reconfig-
ured, store their configuration in a nonvolatile memory such
as an EPROM, from which the configuration is loaded into the
SRAM elements when the device is powered up. These
devices generally provide the user with the ability to config-
ure the devices for look-up-table-type logic operations.

While it may have been possible to configure the earliest
programmable logic devices manually, simply by determin-
ing mentally where various elements should be laid out, it was
common even in connection with such earlier devices to
provide programming software that allowed a user to lay out
logic as desired and then translate that logic into a configu-
ration for the programmable device. With current larger
devices, it would be impractical to attempt to lay out the logic
without such software. Similar software may be used to
design fixed logic devices such as application-specific inte-
grated circuits (ASICs).

Some user logic designs would be able to operate at higher
clock speeds if the designs could be optimized. However,
known configuration methods do not always take all possible
optimizations into account.

SUMMARY OF THE INVENTION

Known configuration methods for programmable inte-
grated circuit devices, as well as design methods for applica-
tion-specific integrated circuits, optimize circuit designs by
detecting the paths with the longest delay and applying opti-
mization techniques to reduce or “crush” those delays. How-
ever, such techniques may not properly account for the ability
to “retime” a design by moving registers within the design.

In particular, unidirectional or “feed-forward” logic paths
are amenable to pipelining. On the other hand, cyclic logic
paths (i.e., loops) are less amenable to pipelining. If a user
logic design includes both feed-forward and cyclic logic
paths, a technique that focuses on optimizing the path with the
longest delay may focus on paths that can be shortened by
retiming, while neglecting other, apparently shorter, paths
that remain as the longer paths after retiming of other paths.
However, ifthe design method could account for the improve-
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ment available from retiming, optimizations could be applied
to those circuit paths that, while they appear shorter, are
actually longer once retiming is applied.

The present invention provides methods for identifying
those logic paths that are critical but cannot be shortened by
retiming and therefore should be the focus of optimization
efforts, with higher priority for optimization than those paths
that can be shortened by retiming. Because the latter paths are
those that are unidirectional, embodiments of the invention,
with “awareness” of the availability of later retiming, identify
cyclic logic paths, and in particular those cyclic paths that are
critical and near-critical, so that those paths can be optimized,
while other paths remain available to be shortened by retim-
ing.

Therefore, in accordance with the present invention there is
provided a method of configuring an integrated circuit device
with a user logic design. The method includes analyzing the
user logic design to identify critical and near-critical cyclic
logic paths within the user logic design, applying timing
optimizations to the critical and near-critical cyclic logic
paths, and retiming logic paths other than the critical and
near-critical cyclic logic paths.

A machine-readable data storage medium encoded with
instructions for carrying out such a method also is provided.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features of the invention, its nature and various
advantages will be apparent upon consideration of the follow-
ing detailed description, taken in conjunction with the accom-
panying drawings, in which like reference characters refer to
like parts throughout, and in which:

FIG. 1 shows an example of a circuit that may be optimized
using embodiments of the present invention;

FIG. 2 shows an example of the application of a known
optimization technique to the circuit of FIG. 1;

FIG. 3 shows another example of a circuit that may be
optimized using embodiments of the present invention;

FIG. 4 shows an example of optimization of the circuit of
FIG. 3 in accordance with an embodiment of the present
invention;

FIG. 5 shows the effective circuit resulting from the opti-
mization of FIG. 4;

FIG. 6 shows an example of a method according to an
embodiment of the present invention;

FIG. 7 shows a known programmable device configuration
design flow;

FIG. 8 shows a programmable device configuration design
flow in accordance with embodiments of the invention;

FIG. 9 is a cross-sectional view of a magnetic data storage
medium encoded with a set of machine-executable instruc-
tions for performing the method according to the present
invention;

FIG. 10 is a cross-sectional view of an optically readable
data storage medium encoded with a set of machine execut-
able instructions for performing the method according to the
present invention; and

FIG. 11 is a simplified block diagram of an illustrative
system employing a programmable logic device incorporat-
ing the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Timing analysis under the assumption of the availability of
retiming is known. Such methods attempt to approximate the
cycle slack at every point in the circuit, where cycle slack is
the amount of delay that can be added to a circuit connection
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before it impacts the optimal period. This is similar to slack in
a traditional timing analysis, but assumes that registers may
be freely moved to reduce the clock period. The cycleslack of
each connection in the circuit can then be used to guide
optimization tools in minimizing effects detrimental to the
final retiming.

While determination of cycle slack is an accurate way of
predicting the effects of final retiming, cycle slack is difficult
to compute. The computational effort for accurate determi-
nation of cycle slack for each connection in a circuit is pro-
portional to the square of the number of nodes in the circuit.
Because of that complexity in computing cycle slack exactly,
known methods produce approximations of cycle slack
instead.

Specifically, cycle slack can be computed either exactly or
approximately using a sequential timing analysis under the
assumption that registers can be moved, considering each
register as being capable of taking off a delay equivalent to the
target clock period. When the timing analysis is carried out
with respect a particular point of reference in the circuit, some
registers take away some delay from a path while other circuit
elements add delay to the path. Therefore, the actual position-
ing of the register is irrelevant, but its effect on the path is
accounted for in the length. However, the slacks determined
by a single sequential timing analysis are only valid in rela-
tion to the point of reference used.

As a result, if one were to use every single point in the
circuit as a reference and perform multiple sequential timing
analyses, then the true cycle slack could be obtained by cal-
culating the minimum slack observed at each node over the
multiple sequential timing analyses. However, this is far too
complex for practical use. Therefore, various known
approaches are used to approximate the cycle slack, with each
approach introducing inaccuracies.

Approaches within embodiments of the present invention
provide information to device configuration software via
slacks and slack ratios, allowing the software to focus on the
circuit topologies that limit final retiming.

Circuits to be optimized may be represented by graph
structures similar to that illustrated in FIG. 1, which shows
one portion 100 of a much larger circuit. A unidirectional path
101 includes nodes 111, 121, 131, 141, 151, 161, 171 and
181, while cyclic path 102 includes nodes 141, 151 and 191.
Unidirectional path 101 includes six registers—five near
node 111 and one near node 181, while cyclic path 102
includes one register near node 191.

If unidirectional paths are considered to be cyclic (with
inputs connected to outputs), a delay-to-register-ratio
(DRR)—i.¢., the total delay divided by the number of regis-
ters—can be computed foreach path. In FIG. 1, the delays are
shown between each node. Unidirectional path 101 has a total
delay of 14 and a DRR of 14/6=2.33, while cyclic path 102
has total delay of 8 and a DRR of 8/1=8.

Retiming cannot achieve a clock period lower than the
largest DRR of any cycle. Therefore, in accordance with
embodiments of the invention, in order to focus on the circuit
topologies that limit final retiming, the most critical cycles—
i.e., those with the largest DRRs, should be found.

Critical cycles can be detected by techniques that find
“negative cycles.” According to one such technique, paths
101, 102 shown in FIG. 1 are converted to paths 201, 202 of
FIG. 2 by multiplying each delay by —1, and assigning to each
node with registers a delay equivalent to the number of reg-
isters multiplied by a target clock period. In the example of
FIG. 2, the target clock period is 7. In FIG. 2, path 201 has a
total weight of 35+7-(2x7)=28 and is therefore a “positive
cycle,” but path 202 has a total weight of 7-3-3-2=-1and is
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therefore a “negative cycle”” The maximum DRR of a circuit,
as well as the critical cycle, can be found by starting with an
estimate of the target period and doing a binary search to find
the highest target period that creates a negative cycle (there
are several known techniques for finding negative cycles).
That negative cycle is the critical cycle, and that target period
is the maximum DRR.

Although the foregoing describes how to find a single
critical cycle with the maximum DRR, in reality there may be
several cycles that have DRRs which are close to the maxi-
mum DRR and will cause problems for a retiming step. Those
“near-critical” cycles can be found, e.g., by iterating the nega-
tive cycle finder and, whenever a negative cycle is found,
identifying that cycle as a near-critical cycle and adding a
small delay to every edge of that cycle. That cycle will no
longer be negative, but running the negative cycle finder again
may highlight another path that is now negative. This process
can be iterated with the same target period until no more
negative cycles are found. The iterations can continue at a
lower target period, which can continue to be reduced, until
some preset limit is reached, to find all near-critical cycles,
with nearness determined by that limit.

It is known to drive circuit optimizations based on slacks
that are computed by a timing analysis engine that is provided
with an estimate of circuit delays. Similarly to cycle slack,
defined above, slack is defined as the amount of delay that can
be added to a node, or edge, before it exceeds the timing
requirement for paths that use that node, or edge. This differs
from cycle slack primarily in that there is no assumption that
registers can move.

Optimization is preferably applied to nodes, or edges, with
a low or zero slack. In some cases, slack ratios are used
instead of slacks. Slack ratio is the ratio of the slack to the
requirement at the node, or edge. A simple timing-driven cost
function may be as follows:

timing . = Z [delay; % (1 —slackratio;)]

(iccircitit)

Such a cost function favors delay improvements for circuit
elements that have very low slack ratios at the cost of possibly
increasing the delay for circuit elements that have a high slack
ratio, and does not account for the possibility of retiming.

Where circuit design or configuration software already
uses slacks or slack ratios in its cost calculations, a modifica-
tion in accordance with the present invention can make the
software retiming-aware. Slacks and slack ratios of circuit
components that are involved in critical or near-critical cycles
can be reduced, by moving registers, to cause the optimiza-
tion tool to focus its efforts on those cycles. Similarly, slacks
and slack ratios of circuit components that are not in a critical
ornear-critical cycle can be increased, by moving registers, to
help provide some optimization flexibility. The exact modi-
fications applied to the slacks and slack ratios may be a
function of the desired result and may be determined empiri-
cally. For example, one embodiment may be to reduce the
slacks and slack ratios of all nodes, or edges, in critical cycles
to zero while increasing the slacks and slack ratios of all
nodes, or edges not in critical cycles by a fixed amount.

The methods of computing cycle slacks can be further
enhanced by carefully choosing reference points for sequen-
tial timing analysis. One possibility is to select as reference
points one node selected from each of the critical and near-
critical cycles. These selections can be updated during run
time. For example, a placement routine may make several
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calls to a timing analysis routine to update its knowledge of
slacks and slack ratios. During these calls a critical cycle
finding routine can be run to provide a new source of refer-
ence points. These new reference points can be added to the
set of reference points to be used during sequential timing
analysis. Over time the set will grow to include more refer-
ence points in order to get an accurate picture of cycle slack at
each node.

Cycle slacks can be converted into cycle slack ratios based
on the number of registers that were used to obtain the cycle
slack. Cycle slack ratio is a normalization of the slack ratio,
resulting ina number between 0 and 1. As the cycle slack ratio
for an element gets closer to 0, that element is considered
more critical, while as the cycle slack ratio for an element gets
closerto 1, that element is considered less critical. This quan-
tity can be determined by tracking the number of registers in
addition to arrival time and required time that are normally
computed at each node as part of sequential timing analysis.
One formula for converting cycle slacks into cycle slack
ratios may be:

cycle_slackratio,=cycle_slack,/(num_registers,xclock-
_period)
This formulation for converting cycle slacks into cycle slack
ratios allows cycle slack ratios to be factored into timing cost.

Even though certain nodes or edges may have relatively
high “regular” slacks or slack ratios that suggest that those
nodes or edges are less critical than other nodes or edges, the
moving of registers in accordance with embodiments of the
invention can have the effect of changing the cycle slacks or
cycle slack ratios for some or all nodes, so that the degrees of
criticality indicated by the cycle slacks or cycle slack ratios
may differ—in some cases significantly—from the degrees of
criticality suggested by the regular slacks or slack ratios. In
some embodiments, this difference in the effects of cycle
slack ratios and regular slack ratios could be accounted for by
combining the cycle slack ratio and the regular slack ratio
using a weighting constant as follows:

slackratio=axcycle_slackratio;+(1-a)xregular_slack-
ratio,
The weighting constant, o, would controls whether the slack
ratio used in the timing cost is entirely based on cycle slack
ratios, regular slack ratios, or some blend of the two.

According to other embodiments of the invention, the cost
function used by the configuration or design software can be
changed to add another component that tracks the size of
critical cycles. One example of such an altered cost function
may be:

timing cost= wx[ Z delay; X (1 — slackratio;)| +

Giecircuit)

£

(length, /registers,) X loop_crit,

cecritical_cycles

where loop_crit is a quantity that weights each critical cycle
so more attention is paid to the most critical cycle. This
quantity could either reflect the current situation or could
possibly include historical data on how critical a cycle was in
the past. This cost function would track the length (i.e., the
total delay) and number of registers of each critical cycle.
Optimizations that reduce the size of critical loops will
improve the new timing cost. Varying the parameters c.and f§
can trade off the amount of effort focused on traditional
timing driven optimizations and retiming-aware optimiza-
tions.
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As an alternative to applying sequential timing analysis
and cycle slack, according to other embodiments of the inven-
tion, identification of the timing-critical portions of the
design, under the assumption of a later retiming operation,
may be based on clock skew. Such an approach can be inte-
grated easily into an existing timing analysis infrastructure
that understands clock skews. Preferably, the timing analysis
understands both negative and positive clock skews, but in
cases where negative skew is not supported, the clock domain
can be shifted to convert negative skews into positive skews.

In accordance with this approach, a “virtual retiming” can
be computed by applying skews to register inputs. A negative
skew applied to a register clock input has the same effect as
moving the register forward during a retiming operation, and
a positive skew applied at a register clock input has the same
effect as moving the register backward during a retiming
operation.

For example, the circuit 300 illustrated in FIG. 3 has a first
register 301, followed by a first area of logic 302, followed by
second register 303, followed by a second area of logic 304,
followed by third register 305, followed by a third area of
logic 306, followed by a fourth register 307. Logic 302 has a
delay of 15 units, logic 304 has a delay of 30 units, and logic
306 has a delay of 15 units, for a total delay of 60 units. The
registers are clocked by a clock 308, with each register having
a respective skew 311, 313, 315, 317), all of which are 0.

As shown in FIG. 4, a skew of -15 can be applied at 313)
and a skew of +15 can be applied at 315, which has the same
effect as moving register 303 15 units forward and moving
register 305 15 units backward, reducing the critical delay of
circuit 400 from 60 units to 30 units. The resulting effective
circuit500is shownin FIG. 5, where the registers 303 and 305
are shown in their effective positions, and the total delay of 90
units (15+60+15) has been equally distributed (30+30+30)
among retimed logic areas 502, 504, 506.

By treating the retiming problem as one of computing a set
of skews, a significant amount of computational effort is
avoided. A real retiming solution would have to reposition
registers which would mean that the circuit topology is
changed, and many internal data structures would have to be
destroyed and rebuilt. On the other hand, a set of skews that
minimize the clock period can be compute by iterating timing
analysis with a procedure that adjusts the clock skew at every
register. The routine that adjusts clock skew would observe
the difference between the input slack and output slack at
each register and make skew adjustments to compensate for
any differences. By repeating such a timing analysis after
each skew adjustment, the effect of the adjustment can be
propagated globally forcing changes at other register loca-
tions. Such an iterative procedure usually converges within a
few iterations and produces skews that minimize the clock
period.

One way of adjusting skew at each register is to apply an
update to the skew in the following manner:

skew,«—skew +yx(outputslack,-inputslack;)

Only a portion of the slack difference between the two sides
is applied to the skew because a large value of y may cause
wild swings in the skew that prevent the method from con-
verging. An example of this process is illustrated in FIG. 6 for
the circuit of FIGS. 3-5. The method starts with a timing
analysis that establishes slack at every pointin the circuit. The
input slack 601 at register 303 is 45 while the output slack 602
is 0, and input slack 603 to register 305 is 0 while the output
slack 604 is 45. The skews are adjusted using a y set to 0.33.
This produces a skew 605 of -15 at register 303 (0.33x(0-












